
Population Genetics in BioPerl HOWTO
Jason Stajich, Dept Molecular Genetics and Microbiology, Duke

University <jason-at-bioperl-dot-org>
$Id: PopGen.xml,v 1.2 2005/02/23 04:56:30 jason Exp $

This document is copyright Jason Stajich, 2004. It can be copied and distributed under the terms
of the Perl Artistic License.

2005-03-1

Revision History
Revision 0.1 2004-06-28 JES

First draft
Revision 0.2 2004-02-22 JES

Updated method docs

Table of Contents
Introduction ... 1
The Bio::PopGen Objects ... 1
Building Populations ... 2
Reading and Writing Population data with Bio::PopGen::IO .. 3
Allele data from Alignments using Bio::AlignIO and Bio::PopGen::Utilities 4
Summary Statistics with Bio::PopGen::Statistics .. 5
Population Statistics using Bio::PopGen::PopStats ... 7
Coalescent Simulations .. 7
Bibliography .. 8

Introduction
We have aimed to build a set of modules that can be used as part of an automated process for testing
population genetics and molecular evolutionary hypotheses. These typically center around sequence
based data and we have built a set of routines which will enable processing of large datasets in a pipeline
fashion.

To see results of using these tools see Stajich and Hahn (2005) tajima_D, Hahn MW et al (2004) us-
ing composite_LD, and Rockman MV et al (2003) using Fst.

This document will be split up into sections which describe the data objects for representing populations,
tests you can perform using these objects, a coalescent implementation, and objects for performing se-
quence distance based calculations. A full treatment of the Bioperl interface to the PAML suite (Z.Yang,
1997) is covered in the PAML HOWTO and objects and data pertinent to phylogenetic data manipula-
tion are covered in the Trees HOWTO.

The Bio::PopGen Objects
In Bioperl we have created a few objects to describe population genetic data. These are all located in the
Bio::PopGen namespace, so they can be browsed by looking at the Bio/PopGen directory.

Bio::PopGen::Population is a container for a set of Bio::PopGen::Individual in order to represent indi-

1

viduals from a population. Each Individual has a set of Bio::PopGen::Genotype genotype objects which
are an allele set associated with a unique marker name. Methods associated with the Population object
can calculate the summary statistics such as pi, theta, heterozygocity by processing each Indi-
vidual in the set.

A Marker is the name given to a polymorphic region of the genome. In some instances a Marker can be
a unique collection of primer pair(s). In other cases it be a set of restriction enzymes. Markers are repres-
ented by a Bio::PopGen::Marker object which can contain information such as allele frequencies
in a population. Derived subclasses of the main Bio::PopGen::Marker are used to store special-
ized information about markers where supported by data formats. This is done particularly in the
Bio::Pedigree objects which are a set of modules derived from Bio::PopGen and intended to
handle the case of interrelated individuals.

Building Populations
Although a typical user will want to obtain data for analysis from files or directly from databases we will
describe briefly how to create Individuals with Genotypes and Populations of Individuals directly in the
code to illustrate the parameters used and access to the data stored in the objects.

A genotype is a triple of a marker name (string), an individual id (string or int), and set of alleles (array
of string). The individual_id field is optional as it is explicitly set when a genotype is added to and indi-
vidual. We can instantiate a Genotype object by using the following code.

use Bio::PopGen::Genotype;
my $genotype = Bio::PopGen::Genotype->new(-marker_name => 'D7S123',

-individual_id => '1001',
-alleles => ['104','107'],
);

To get the alleles back out from a Genotype object the

get_Alleles

method can be used. To replace alleles one must call the

reset_Alleles

and then

add_Allele

with a list of alleles to add for the genotype.

This genotype object can be added to an individual object with the following code which also builds an
individual with an id of '1001'.

use Bio::PopGen::Individual;
my $ind = Bio::PopGen::Individual->new(-unique_id => '1001',

-genotypes => [$genotype]
);

There is no restriction on the names of markers nor is there any attempted validation that a genotype's
individual_id is equal to the id of Individual is has been associated with it. It is merely a convience as it

Population Genetics in BioPerl HOW-
TO

2

is

Additional genotypes can be added to an individual with the add_Genotype method as the following
code illustrates.

$ind->add_Genotype(Bio::PopGen::Genotype->new(
-alleles => ['102', '123'],
-marker_name => 'D17S111'

)
);

A population is a collecion of individuals and can be instantiated with all the individuals at once or indi-
viduals can be added to the object after it has been created.

use Bio::PopGen::Population;
my $pop = Bio::PopGen::Population->new(-name => 'pop name',

-description => 'description',
-individuals => [$ind]);

add another individual later on
$pop->add_Inidividual($ind2);

Using these basic operations one can create a population individuals. Bio::PopGen::Marker objects are
intended to provide summary of information about the markers stored for all the individuals.

Typically it is expected that all individuals will have a genotype associated for all the possible markers
in the population. For cases where no genotype information is available for an individual empty or blank
alleles can be stored. This is necessary for consistency when running some tests on the population but
these blank alleles do not get counted when evaluating the number of alleles, etc. Blank alleles can be
coded as a dash ('-'), as a blank or empty (' ', or ''), or as missing '?'. The 'N' allele is also considered a
blank allele. The regexp used to test if an allele is blank is stored in the Bio::PopGen::Genotype as the
package variable $BlankAlleles. The following code resets the blank allele pattern to additionally match
'.' as a blank allele. This code should go BEFORE any code that calls the get_Alleles method in
Bio::PopGen::Genotype;

use Bio::PopGen::Genotype;
$Bio::PopGen::Genotype::BlankAlleles = '[\s\-N\?\.]';

Bio::PopGen::Marker is a simple object to represent polymorphism regions of the genome.

Reading and Writing Population data with
Bio::PopGen::IO

Typically one wants to get population data from a datafile.

To read data in CSV format

The CSV format is a comma delimited format where each row is for an individual. The first column
gives the individual or sample id and the rest of the columns are the alleles for the individual for each
marker. The names of the markers in these rows are listed in the header or which is the very first line of
the file.

Population Genetics in BioPerl HOW-
TO

3

SAMPLE,D17S1111,D7S123
1001,102 123,104 107
1002,105 123,104 111

To read in this CSV we use the Bio::Popgen::IO object and specify the csv format. We can call

next_individual

repeated times to get back a list of the individuals (one is returned after each time the iterator is called).
Additionally the

next_population

is a convience method which will read in all the individuals at once and create a new
Bio::PopGen::Population object containing all of thse individuals. The CSV format assumes that ',' is the
delimiter between columns while '\s+' is the delimiter between alleles. One can override these settings
by providing the -field_delimiter and -allele_delimited argument to Bio::Popgen::IO when instantiating.
Additionally a flag called -no_header can be supplied which specifies there is no header line in the re-
port and that the object should assign arbitrary marker names in the form 'Marker1', 'Marker2' ... etc.

Pretty Base format

Phase and hapmap format

Allele data from Alignments using
Bio::AlignIO and
Bio::PopGen::Utilities

Often one doesn't already have data in SNP format but want to determine the polymorphisms from an
alignment of sequences from many individuals. To do this we can read in an alignment and process each
column of the alignment determine if it is polymorphic in the individuals assayed. Of course this will not
work properly if the alignment is bad or with very distantly related species. It also may not properly
work for gapped or indel columns so we might need to recode these as Insertion or Deletion depending
on the questions one is asking.

The modules to parse alignments are part of the Bio::AlignIO system. To parse a clustalw or
clustalw-like output one uses the following code to get an alignment which is a Bio::SimpleAlign
object.

use Bio::AlignIO;
my $in = Bio::AlignIO->new(-format => 'clustalw', -file => 'file.aln');
my $aln;
if($aln = $in->next_aln) { # we use the while($aln = $in->next_aln) {}

code to process multi-aln files
$aln is-a Bio::SimpleAlign object

}

The Bio::PopGen::Utilities object has methods for turning a Bio::SimpleAlign object
into a Bio::PopGen::Population object. Each polymorphic column is considered a Marker and
as assigned a number from left to right. By default only sites which are polymorphic are returned but it
is possible to also get the monomorphic sites by specifying -include_monomorphic => 1 as an argument

Population Genetics in BioPerl HOW-
TO

4

to the function. The method is called as follows.

use Bio::PopGen::Alignment;
get a population object from an alignment
my $pop = Bio::PopGen::Utilities->aln_to_population(-alignment=>$aln);
to include monomorphic sites (so every site in the alignment basically)

my $pop = Bio::PopGen::Utilities->aln_to_population(-alignment=>$aln,
-include_monomorphic =>1);

In the future it will be possible to just ask for the sites which are synonymous and non-synonymous if
one can assume the first sequence is the reference sequence and that the sequence only contains coding
sequences.

Summary Statistics with
Bio::PopGen::Statistics

Pi or average pairwise differences is calculated by taking all pairs of individuals in a population and
computing the average number of differences between them. To use pi you need to either provide a
Bio::PopGen::PopulationI object or an arrayref of Bio::PopGen::IndividualI. Each
of the individuals in the population need to have the same complement of Genotypes for the Markers
with the same name.

use warnings;
use strict;
use Bio::PopGen::IO;
use Bio::PopGen::Statistics;
my $stats= Bio::PopGen::Statistics->new();
my $io = Bio::PopGen::IO->new(-format => 'prettybase',

-fh => *DATA);
if(my $pop = $io->next_population) {

my $pi = $stats->pi($pop);
print "pi is $pi\n";

to generate pi just for 3 of the individuals;
my @inds;
for my $ind ($pop->get_Individuals) {

if($ind->unique_id =~ /A0[1-3]/) {
push @inds, $ind;

}
}
print "pi for inds 1,2,3 is ", $stats->pi(\@inds),"\n";

}
pretty base data has 3 columns
Site
Individual
Allele
__DATA__
01 A01 A
01 A02 A
01 A03 A
01 A04 A
01 A05 A
02 A01 A
02 A02 T
02 A03 T
02 A04 T

Population Genetics in BioPerl HOW-
TO

5

02 A05 T
04 A01 G
04 A02 G
04 A03 C
04 A04 C
04 A05 G
05 A01 T
05 A02 C
05 A03 T
05 A04 T
05 A05 T
11 A01 G
11 A02 G
11 A03 G
11 A04 A
11 A05 A

01 out G
02 out A
04 out G
05 out T
11 out G

Waterson's theta - theta

K = Sum (1 / an)

Tajima's D can be calculated with the function tajima_D which calculates the D statistic for a set of
individuals. These can be provided as Bio::PopGen::Population objects or as an arrayref of
Bio::PopGen::Individuals.

The companion function tajima_D_counts can be called with just the number of samples (N), num-
ber of segregating sites (n), and the average number of pairwise differences (pi) in that order.

Fu and Li's D can be calculated with the function fu_and_li_D which calculates D statistic for a set
of individuals and an outgroup. The function takes 2 arguments both of which can be either an arrayref
of Bio::PopGen::Individual objects or a Bio::PopGen::Population object. The out-
group is used to determine which mutations are derived or ancestral. Additionally if the number of ex-
ternal mutations is known they can be provided as the second argument instead of a Population ob-
ject or arrayref of Individuals.

The companion method fu_and_li_D_counts allows one to just provide the raw counts of the
number of samples (N) number of segregating sites (n)and number of external mutations (n_e).

Fu and Li's D* can be calculated with the function fu_and_li_D_star calculates the D* statistics
using the number of samples, singleton mutations (mutations on external branches) and total number of
segregating sites. It takes one argument which is either an array reference to a set of
Bio::PopGen::Individual objects (which all have a set of Genotypes with markers of the same
name) OR it takes a Bio::PopGen::Population object which itsself is just a collection of Indi-
viduals.

The companion method fu_and_li_D_star_counts can be called with just the raw numbers of
samples (N), site (n), and singletons (n_s) as the arguments (in that order).

Fu and Li's F can be calculated with the function fu_and_li_F and calculates the F statistic for a set
of individuals and an outgroup. The function takes 2 arguments both of which can be either an arrayref
of Bio::PopGen::Individual objects or a Bio::PopGen::Population object. The out-
group is used to determine which mutations are derived or ancestral. Additionally if the number of ex-

Population Genetics in BioPerl HOW-
TO

6

ternal mutations is known they can be provided as the second argument instead of a Population ob-
ject or arrayref of Individuals.

The companion method fu_and_li_F_counts can be called with just the raw numbers of samples
(N), average pairwise differences (pi), number of segregating sites (n), and the number of external muta-
tiosn (n_e) as the arguments (in that order).

Fu and Li's F* can be calculated with the fu_li_F_star and calculates the F* statistic for a set of in-
dividuals. The function takes one argument an arrayref of Bio::PopGen::Individual or a
Bio::PopGen::Population object.

The companion method fu_and_li_F_star_counts can be called with just the raw numbers of
samples (N), average pairwise differences (pi), number of segregating sites (n), and the number of
singleton mutations (n_s) the arguments (in that order).

Linkage Disequilibrium composite_LD from Weir

Population Statistics using
Bio::PopGen::PopStats

Wright's Fst can be calculated for populations using the Fst in Bio::PopGen::PopStats.

use Bio::PopGen::PopStats;
@populations - are the sets of Bio::PopGen::Population
objects
@markernames - set of Marker names to use in this analysis
my $fst = $stats->Fst(\@populations,\@markernames);

Coalescent Simulations
The Bio::PopGen::Simulation::Coalescent module provides a very simple coalescent sim-
ulation. It builds a tree with individual.

Some very simple usage is to generate a few random coalescents and calculate some summary statistics.
We separate the topology generation from throwing the mutations down on the tree. So depending on
your question, you may want to generate a bunch of different topologies with mutations thrown down
randomly on them. Or if you want to look at a single topology with mutations thrown down randomly
many different times.

use Bio::PopGen::Simulation::Coalescent;
use Bio::PopGen::Statistics;
generate 10 anonymous individuals
my $sim = Bio::PopGen::Simulation::Coalescent->new(-sample_size => 10);
generate 50 different coalescents, each with
potentially a different topology and different mutations
Let's throw down 12 mutations
my $NumMutations = 12;
my @coalescents;
for (1..50) {

my $tree = $sim->next_tree;
$sim->add_Mutations($tree,$NumMutations);
we'll pull off the tips since that is all we want out of the

coalescent for summary statistics

Population Genetics in BioPerl HOW-
TO

7

push @coalescents, [$tree->get_leaf_nodes];
}
for each of these coalescents we can then calculate various statistics
my $stats = Bio::PopGen::Statistics->new;
for my $c (@coalescents) {

printf "pi=%.3f theta=%.3f Tajima's D=%-6.3f Fu and Li's D*=%-6.3f ",
$stats->pi($c), $stats->theta($c), $stats->tajima_D($c),
$stats->fu_and_li_D_star($c);

printf "Fu and Li's F*=%-6.3f\n", $stats->fu_and_li_F_star($c);
}

print "Stats for a single topology but mutations thrown re-down\n";
if you wanted to look at just one topology but mutations thrown
down many times

my $tree = $sim->next_tree;
for (1..50) {

$sim->add_Mutations($tree,$NumMutations);
my $c = [$tree->get_leaf_nodes];
printf "pi=%.3f theta=%.3f Tajima's D=%-6.3f Fu and Li's D*=%-6.3f ",
$stats->pi($c), $stats->theta($c), $stats->tajima_D($c),
$stats->fu_and_li_D_star($c);

printf "Fu and Li's F*=%-6.3f\n", $stats->fu_and_li_F_star($c);
}

Bibliography
“Disentangling the effects of demography and selection in human history”. Jason E Stajich and Matthew W Hahn.

“Mol Biol Evol”. 2005 22(1):63-73.

“Population genetic and phylogenetic evidence for positive selection on regulatory mutations at the factor VII locus
in humans”. Matthew W Hahn, Matthew V Rockman, Nicole Soranzo, David B Goldstein, and Greg A
Wray. “Genetics”. 2004 167(2):. 867-77.

Positive selection on a human-specific transcription factor binding site regulating IL4 expression.. Matthew V
Rockman, Matthew W Hahn, Nicole Soranzo, David B Goldstein, and Greg A Wray. Current Biology.
2003 13(23). 2118-23. .

Population Genetics in BioPerl HOW-
TO

8

