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a b s t r a c t  

Advances in DNA sequencing technology over the past decade have increased the volume of raw 
sequenced genomic data available for further assembly and analysis. While there exist many algorithms 
for assembly of sequenced genomic material, they often experience difficulties in constructing complete 
genomic sequences. Instead, they produce long genomic subsequences (scaffolds), which then become 
a subject to scaffold assembly aimed at reconstruction of their order along genome chromosomes. The 
balance between reliability and cost for scaffold assembly is not there just yet, which inspires one to 
seek for new approaches to address this problem. We present a new method for scaffold assembly based 
on the analysis of gene orders and genome rearrangements in multiple related genomes (some or even 
GRA 
enome assembly 

all of which may be fragmented). Evaluation of the proposed method on artificially fragmented mam-
malian genomes demonstrates its high reliability. We also apply our method for incomplete anophelinae 
genomes, which expose high fragmentation, and further validate the assembly results with referenced-
based scaffolding. While the two methods demonstrate consistent results, the proposed method is able 
to identify more assembly points than the reference-based scaffolding. 

 
 

 
 

 
 
 
 

 
 
 

. Background 

Genome sequencing technology has evolved over time, increas-
ng availability of sequenced genomic data. Modern sequencers are
ble to identify only short subsequences (reads) in the supplied
enomic material, which then become an input to genome assem-
ly algorithms aimed at reconstruction of the complete genome.
uch reconstruction is possible (but not guaranteed) only if each
enomic region is covered by sufficiently many reads. Lack of com-
rehensive coverage (particularly severe in single-cell sequencing
hitsaz et al. (2011), Nikolenko et al. (2013)) and presence of long
imilar subsequences (repeats) in genomes pose major obstacles
or existing assembly algorithms. They therefore often are able to
eliably reconstruct only long subsequences of the genome (inter-
paced with low-coverage regions and repeats), called scaffolds. 

The challenge of reconstructing a complete genomic sequence
rom scaffolds is known as the scaffolds assembly problem. It is
ften addressed technologically by generating so-called long-jump

ibraries Talkowski et al. (2012), Collins and Weissman (1984) or 
y using a related complete genome as a reference. Unfortunately, 

the technological solution may be expensive and inaccurate Hunt 

∗ Corresponding author. Tel.: +1 7039498047. 
E-mail address: aganezov@gwu.edu (S. Aganezov). 

1 See Appendix A. 
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et al. (2014), while the reference-based approach is obfuscated with 
structural variations across the genomes Feuk et al. (2006). 

In the current study, we assume that the constructed scaffolds 
are accurate and long enough to allow identification of orthologous 
genes. The scaffolds then can be represented as ordered sequences 
of genes and we pose the scaffolds assembly problem as the recon-
struction of the global gene order (along genome chromosomes) 
from the gene sub-orders defined by the scaffolds. We view such 
gene sub-orders as the result of both evolutionary events and tech-
nological fragmentation in the genome. Evolutionary events that 
change gene orders are genome rearrangements, most common of 
which are reversals, fusions, fissions, and translocations. Technologi-
cal fragmentation can be modeled by artificial “fissions” that break 
genomic chromosomes into scaffolds. Scaffold assembly can there-
fore be reduced to the search for “fusions” that revert technological 
“fissions” and glue scaffolds back into chromosomes. This obser-
vation inspires us to employ the genome rearrangement analysis 
techniques for scaffolding purposes. 

Rearrangement analysis of multiple genomes relies on the 
concept of the breakpoint graph. While traditionally the break-
point graph is constructed for complete genomes, it can also 
be constructed for fragmented genomes, where we treat scaf-

folds as “chromosomes”. We will demonstrate that the breakpoint 
graph of multiple genomes possesses an important property that 
its connected components are robust with respect to genome 
fragmentation. In other words, connected components of the 

dx.doi.org/10.1016/j.compbiolchem.2015.02.005
http://www.sciencedirect.com/science/journal/14769271
http://www.elsevier.com/locate/compbiolchem
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Fig. 1. Fusion/fission operations between the genome graphs of two-chromosomal 
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components also in the breakpoint graph of complete genomes. We 
will employ this robustness property of the connected components 
and use them to guide our scaffolding algorithm. 

3 Each regular vertex may be adjacent to at most one irregular vertex (e.g., in Fig. 2 
the vertex at is connected to a single irregular vertex with red, black, and blue edges 
enome P = [a, b] [− d, c] and unichromosomal genome P∗ = [a, b, − c, d], where regular
nd irregular edges are represented as solid and dashed, respectively. Grey boxes
nclose pairs of vertices representing genes. 

reakpoint graph mostly retain information about the complete
enomes, even when the breakpoint graph is constructed on their
caffolds. We will show how to utilize connected components of the
reakpoint graph for the scaffold assembly of fragmented genomes.

The paper is organized as follows. In Section 2, we provide
ackground information about breakpoint graphs and genome
earrangements, discuss connected components of breakpoint
raphs with respect to genome fragmentation, and describe our
caffold assembly algorithm. In Section 3, we evaluate our proposed
lgorithm on both simulated and real data. We summarize and
iscuss the paper results in Section 4. 

. Methods 

.1. Genome and breakpoint graphs 

We start with defining a graph representation for a single
enome, which may consist of multiple chromosomes and/or
caffolds commonly referred to as fragments. We represent each
ragment with n genes as an undirected graph on 2 · n regular ver-
ices representing gene extremities and several irregular vertices,
abeled by ∞, encoding fragment ends (telomeres, if a fragment is
 chromosome). A gene a is represented by two regular vertices
abeled as at and ah denoting its tail and head extremities, respec-
ively. Vertices corresponding to extremities of adjacent genes are
onnected by regular edges. Each vertex corresponding to a gene
xtremity at a fragment end is connected to an irregular vertex
ith an irregular edge. The genome graph of a genome is formed by

he graph representing its fragments. 
We remark that a single genome rearrangement affects the

enome graph as follows: a pair of edges are removed and a new
air of edges on the same four vertices is created (Fig. 1). Genome
earrangements are therefore often modeled as DCJ Yancopoulos
t al. (2005) or 2-break Alekseyev and Pevzner (2008) operations
n graphs. 
The breakpoint graph of k genomes composed of the same  
enes consists of 2·  regular vertices (representing gene extremi-
ies), a number of irregular vertices (representing fragment ends) 
nd undirected edges of k colors (one color reserved for each of the 
y and Chemistry 57 (2015) 46–53 47

enomes) encoding adjacencies between genes and/or fragment 
nds in the genomes. The breakpoint graph can be viewed as the 
uperposition of k genome graphs of individual genomes (Fig. 2). All 
dges connecting a pair of vertices in the breakpoint graph form a 
ultiedge, whose multicolor is the set of individual colors in the 
ultiedge3 (e.g., in Fig. 2 vertices ah and bt are connected by a 

multiedge of the red–black multicolor). 
We remark that traditionally breakpoint graphs are constructed 

on synteny blocks whose endpoints represent breakpoints (thus 
the name) in the genomes. In contrast, we construct the break-
point graph directly on genes, whose extremities may or may not 
form breakpoints. Such graph therefore can contain trivial multi-
edges formed by parallel edges of all colors, which correspond to 
gene adjacencies shared across all the genomes and would be hid-
den within synteny blocks. Clearly, each trivial multiedge in the 
breakpoint graph forms its own connected component, which we 
also call trivial. 

2.2. Connected components and fragmentation 

Under a connected component in the breakpoint graph we will 
understand any largest set of regular vertices such that any two of 
them are connected by a path consisting of regular edges of any 
colors. The connected components form a partition of the regular 
vertices. We will show that this partition is robust with respect to 
fragmentation of the genomes. Namely, we observe that the con-
nected components of the breakpoint graph of multiple genomes 
are strongly connected and can be hardly broken by technologi-
cal “fissions”. To support this observation, we applied a number of 
random fissions4 to six complete mammalian genomes and ana-
lyzed how such fissions affected the connected components of the 
breakpoint graph. 

Using Ensembl BioMart tool Kasprzyk (2011), we obtained the 
following six complete mammalian genomes and pairwise ortholo-
gous gene mappings between them: Homo sapiens (GRCh38), Mus 
musculus (GRCm38.p2), Rattus norvegicus (Rnor 5.0), Canis famil-
iaris (CanFam3.1), Macaca mulatta (MMUL 1.0), and Pan troglodytes 
(CHIMP2.1.4). From the orthologous gene mappings, we con-
structed gene families and filtered some of them so that each 
genome was represented as sequences of the same 11816 genes, 
each appearing in a single copy. 

In order to determine how robustness of the connected compo-
nents depends on the number of genomes, we analyzed different 
subsets of mammalian genomes of various sizes from 3 to all 6. For 
each subset of size , we considered all possible combinations of  
mammalian genomes and constructed their breakpoint graph. After 
the same number of random fissions5 was applied to every genome, 
we computed the averaged number of nontrivial connected com-
ponents in the breakpoint graphs. 

The results in Fig. 3 demonstrate that as the number of 
genomes grows, random fissions are less likely to break connected 
components into smaller ones. In other words, most connected 
components in the breakpoint graph of fragmented genomes are 
likely not affected by random fissions and thus represent connected 
forming the red–black–blue mutiedge (at , ∞)). 
4 Unfortunately we do not have information about the actual mechanism of frag-

mentation of a genome into scaffolds. 
5 A random fission operation uniformly selects a regular edge in the genome graph 

performs a fission on this edge (Fig. 1). 
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Fig. 2. Breakpoint graph BG of genomes A = [a, b, c, d] (black edges), B = [a, b][c, d] (red edges), and C = [a, − b, c][d] (blue edges). Regular edges in each genome are shown as 
solid, while irregular edges are shown as dashed. 
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uniqueness: there is no vertex z ∈ X, z / = x, z / = y such that the 
multiedge (z, ∞) has multicolor {P}; in other words, 
there are exactly two irregular edges of multicolor 
{P} in X: (x, ∞) and (y, ∞). 
ig. 3. Averaged number of connected components in the breakpoint graphs of mu
, 5, and 6 genomes is shown in green, brown, purple, and blue, respectively. (For i
eb version of this article.) 

.3. Scaffold assembly algorithm 

Our scaffold assembly algorithm takes as an input a set of frag-
ented genomes, whose scaffolds are represented as sequences of

enes. In the current study, we focus only on gene families that are
resent in each genome exactly once. 

The first step of our algorithm is a construction of the breakpoint
raph BG of the given genomes. 

From the breakpoint graph perspective, scaffold assembly cor-
esponds performing “fusions” in BG, i.e., adding new regular
dges (assembly edges) connecting vertices that represent scaffold
nds. Since the connected components in the breakpoint graph
re robust with respect to genome fragmentation, our algorithm
dds assembly edges only within existing connected components
nd thus preserves them. So the second step of our algorithm
dentifies pairs of matching vertices that will then be connected
y assembly edges (Fig. 4). Namely, vertices x, y : x / = y form a
atching pair in genome P if they satisfy each of the following

onditions: 
onnectivity: x and y belong to the same connected component X 
of BG; 
 mammalian genomes fragmented by random “fissions”. Statistics for groups of 3, 
etation of the references to color in this figure legend, the reader is referred to the 

extremity: there are multiedges (x, ∞) and (y, ∞) of multicolor 
{P} in BG; 
Fig. 4. Pseudocode for identification of matching pairs of vertices. 
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Fig. 5. Left panel: A connected component of the breakpoint graph of blue, black, red and green genomes. In this component the green genome has four irregular edges that 
correspond to fragment ends: (b, ∞), (c, ∞), (d, ∞), and (p, ∞). Since its endpoints b, c, p do not satisfy the uniqueness property, while endpoint d does not satisfy the extrimity 
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roperty, our algorithm is not able to assemble any of corresponding fragments in t
GRA with a genome rearrangement in the black genome. It results in a split of th

roperty with respect to the green genome. 

reliability: there exists a multiedge (x, y) (of any multicolor) in
BG. 

The connectivity condition preserves connected components in
he breakpoint graph. The extremity condition ensures that each of
, y represents a scaffold end in the genome P but not in any other
enome.6 The uniqueness condition ensures that there is a unique
ay to create an assembly edge for genome P inside the connected

omponent X: if there is another multiedge (z, ∞) of multicolor
P}, it would be unclear which pair out of x, y, z to connect with
n assembly edge. The reliability condition ensures that the new
djacency created by an assembly edge (x, y) in genome P is already
resent in some other genome(s).7 

Once we obtained a list of matching vertex pairs for every
enome P, we perform assembly of the corresponding fragment
nds in P. 

.4. Integration with MGRA framework 

We remark that our algorithm can be integrated with the
GRA framework Alekseyev and Pevzner (2009), which performs

earrangement analysis of multiple genomes, identifies reliable
enome rearrangements and transforms their breakpoint graph
nto an identity breakpoint graph (of a single ancestral genome).
he identity breakpoint graph consists of trivial multicycles, each
orming its own connected component. In the process of this trans-
ormation MGRA can only break the connected components of
he breakpoint graph into smaller ones, which can be viewed as
 refinement of the original connected components. As a result,
GRA can make possible for two vertices to obtain the uniqueness

roperty after a number of genome rearrangements (Fig. 5). 
However, since the irregular edges in the breakpoint graph after

 number of genome rearrangements may no longer correspond to
ragment ends, the extremity condition does not anymore imply
hat x and y are fragment ends. Therefore, to integrate the scaffold
ssembly with MGRA, we modify the extremity condition to addi-

ionally test if x and y correspond to fragment ends in the genome P. 
y similar reasons, the reliability condition for vertices x, y should 
e tested in the original breakpoint graph. So if BG denotes the orig-

6 Under random fragmentation, it is more likely for two genomes to share a com-
on chromosome end than a scaffold end, which is not a chromosome end. So, if 

 or y is a scaffold end in two or more genomes, it is more likely for this vertex to 
epresent a chromosome end. 

7 This condition is optional. It shall be utilized when the given genomes are closely 
elated; however if the genomes are rather diverse, this condition may result in only 
mall number of conservative assembly edges. 
en genome. Right panel: A possible refinement of the connected component with 
nected component into two, which makes vertices c and p obtain the uniqueness 

inal breakpoint graph, while BG∗ denotes this graph after a number 
of genome rearrangements performed by MGRA, then a matching 
pair (x, y) in  BG∗ should satisfy the following conditions: 

connectivity’: x and y belong to the same connected component X 
of BG ∗ ;

extremity’: there are multiedges (x, ∞) and (y, ∞) of multicolor 
{P} in both BG and BG ∗; 

uniqueness’: for any vertex z ∈ X such that z / = x, z / = y, and the 
multiedge (z, ∞) in  BG ∗ has multicolor {P}, the mul-
tiedge (z, ∞) either is not present in BG or has 
multicolor different from {P}; 

reliability’: there exists a multiedge (x, y) (of any multicolor) in 
BG; 

Integration with MGRA allows us to obtain more matching 
vertices (as compared to what we can recover from the original 
breakpoint graph). We also take into consideration all pairs of 
vertices that are endpoints of fusions reported by MGRA. If such 
vertices correspond to fragment ends, we interpret their fusion as 
assembly the corresponding fragments. 

3. Results and discussion 

3.1. Artificially fragmented genomes 

We start evaluation of the proposed scaffold assembly algorithm 
with running it on artificially fragmented mammalian genomes. 
We use the same set of six mammalian genomes and two differ-
ent approaches for fragmenting them: random fragmentation and 
fragmentation based on repeats in the genomes. The random frag-
mentation allows us to overcome the lack of information about 
genome fragmentation mechanism. However, we may have better 
insight in the fragmentation model, if we assume that genome scaf-
folds were obtained from a conventional genome assembler having 
difficulties in reconstruction of the order of long DNA repeats. In 
this case, it becomes realistic to fragment the genomes based on 
locations of such repeats. 

Random fragmentation. 
To create instances of randomly fragmented genomes, we 

applied k random artificial “fissions” to each of the genomes. For 

each value of k, we created 10 different sets of fragmented genomes, 
executed our algorithm on each of the sets (both with and without 
MGRA integration), and reported the following normalized values 
(averaged over the 10 sets): 
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oving all repeats of length at least L in the each of the six mammalian genomes.The column Orth accounts the fragments that contain at least one gene. 
ed gene. Similarly, column UOrth accounts for fragments that contain at least one gene present in every genome exactly once. 

Human Macaca Mouse Rat 

th Orth IDOrth UOrth Orth IDOrth UOrth Orth IDOrth UOrth Orth IDOrth UOrth 

 20318 5539 1779 10255 5345 1673 12975 4293 1597 10399 5011 1469 
%) (36.8%) (16.4%) (6.9%) (33.1%) (22.8%) (9.7%) (38.3%) (21.1%) (10.1%) (34.9%) (27.3%) (10.1%) 
3 16835 5256 2147 8586 4884 1943 11088 3994 1868 8742 4246 1672 
6%) (49.7%) (25.9%) (14.0%) (47.8%) (35.8%) (19.4%) (49.6%) (30.4%) (18.2%) (46.4%) (37.6%) (18.8%) 
3 13797 4769 2251 6865 4213 1978 9845 3697 2053 7527 3682 1754 
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Table 3 
Statistics on the number of fragments and coverage (in parenthesis) after rem
Column IDOrth accounts for fragments that contain at least one non-duplicat

L Chimpanzee Dog 

Orth IDOrth UOrth Orth IDOrth UOr

1K 10631 6234 1636 9067 4807 1547
(26.04) (19.6%) (7.7%) (33.2%) (24.2%) (9.9

1.5K 8994 5577 1939 7150 4066 166
(39.01) (30.2%) (15.6%) (52.1%) (40.6%) (21.

2K 7496 4781 2016 5579 3308 164

(48.51) (38.8%) (23.8%) (65.9%) (53.8%) (34.5%) (60.6%) (34.9%) (21.9%) (60.8%) (48.5%) (30.5%) (56.4%) (36.1%) (25.2%) (54.1%) (44.2%) (26.4%) 

2.5K 6497 4264 2045 4389 2653 1518 11727 4425 2306 5385 3463 1848 9061 3530 2184 6651 3266 1759 
(55.9%) (45.5%) (30.5%) (75.8%) (64.2%) (46.9%) (67.5%) (41.2%) (28.2%) (71.9%) (59.2%) (41.7%) (60.5%) (39.6%) (29.9%) (59.7%) (49.1%) (32.7%) 

3K 5789 3899 2012 3605 2246 1382 10226 4121 2301 4273 2894 1682 8448 3368 2199 5997 2994 1730 
(64.9%) (54.6%) (38.9%) (81.9%) (70.9%) (55.2%) (72.3%) (45.9%) (33.1%) (79.3%) (67.5%) (50.6%) (63.5%) (42.2%) (33.1%) (63.9%) (52.4%) (37.3%) 

3.5K 5197 3589 1965 3071 1908 1258 9005 3875 2278 3368 2377 1487 7909 3204 2189 5350 2725 1661 
(69.3%6) (58.6%) (43.4%) (85.6%) (74.7%) (61.8%) (75.9%) (50.3%) (37.4%) (84.9%) (74.4%) (58.6%) (66.2%) (44.3%) (35.8%) (67.9%) (55.7%) (41.55) 

4K 4694 3292 1896 2683 1698 1175 8007 3631 2221 2635 1940 1285 7538 3125 2223 4779 2502 1601 
(73.6%) (63.1%) (48.1%) (88.4%) (78.1%) (66.8%) (79.2%) (54.1%) (41.2%) (89.3%) (80.1%) (65.8%) (68.3%) (45.9%) (38.1%) (71.7%) (58.9%) (45.6%) 
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n the robustness of the connected components of the breakpoint
raph. Integration with the MGRA framework further yields addi-
ional number of highly reliable fragment assemblies. 

Repeat-based fragmentation. 
To create instances of repeat-based fragmented genomes, we

emoved all repeats longer that a fixed number of basepairs (from
 K to 4 K bp with the step of 0.5 K) and partitioned the genomes

nto fragments with no long repeats. We used the same set of six
ammalian genomes, for which we obtained the repeats locations

rom RepeatMasker Smit et al. (2010) database. We performed the
ollowing three experiments: 

(i) de novo assembly of multiple genomes: all six genomes are
fragmented (Table 3). 

(ii) assembly of multiple genomes with a single reference: all
genomes, but dog (the only representative of the carnivore
clade) are fragmented (Table 4). 

iii) assembly of a single genome with multiple references: only
dog genome is fragmented (Table 5). 

In each experiment we considered only fragments that contain
enes that are present exactly once in each genome. We evaluated
he proposed algorithm in the same way as in the random frag-

entation experiment, both with and without MGRA integration
Fig. 7). 

Experiments (i) and (ii) demonstrate that while in the presence
f a reference genome our algorithm yields more true fragment
djacencies, it still performs relatively well in the case, when no
eference is known. Experiment (iii) shows that our algorithm can
e used as a highly reliable step for assembly of a single fragmented
enome, when several complete reference genomes are known.
ince DNA repeats are subject to genome rearrangements in the
ourse of evolution, integration with MGRA yields additional true
djacencies. 

.2. Anophelinae genomes 

The second evaluation of our scaffold assembly algorithm
as performed on highly fragmented genomes from anophelinae

ubfamily, followed by comparison of the results to a reference-
ased assembly approach. Namely, we considered six anophelinae
enomes: Anopheles gambiae, Anopheles arabiensis, An. quadri-
nnulatus, An. merus, Anopheles dirus, and Anopheles albimanus,
or which we constructed gene families using orthologous gene

apping from OrthoDB Waterhouse et al. (2013). We then fil-
ered out all gene families that are not present exactly once on
ach given genome, thus limiting ourselves to the case of uni-
orm gene content across the genomes. After such filtration each
enome was represented as sequences of the same 6837 genes.
e remark that filtration eliminated all genes from some scaffolds

nd thus we exclude such scaffolds from assembly. Table 1 gives
he scaffold statistics for anophelinae genomes before and after
ltration. 

Order and orientation of gene families in each given genome
as determined from the corresponding GFF3 annotation obtained

rom VectorBase Megy et al. (2012), where a gene is represented by
 sequence of coding exons of various length. We define the gene
oordinate in a genomic fragment as the mean coordinate of all
ts coding exons start/end coordinates (i.e., (start + end)/2 averaged
ver all exons). Table 2 reports the number of scaffold assemblies
btained by the proposed algorithm. 

As mentioned above, we compared our assembly results to

nother anophelinae study (comparison study) led by Dr. Igor 
harakhov at Virginia Tech University. The comparison study per-
ormed analysis of An. gambiae, An. arabiensis genomes from the 
ame source, where An. gambiae represents a complete genome, Ta
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ig. 7. Accuracy of the proposed algorithm on artificially fragmented six mammali
ars) and without (green bars) integration with MGRA. For each value of L (with ste
ate for assembly results. (For interpretation of the references to color in this figure

hile An. arabiensis exposes rather high fragmentation. The

enome data preparation was similar to ours. The relationships 
etween these genes and their order on scaffold were visualized 

n genoPlotR Guy et al. (2010) and further compared to the cyto-
enetic Holt et al. (2002) and physical George et al. (2010) maps 

able 5 
tatistics on the number of fragments and coverage (in parenthesis) after removing all rep
hat contain at least one gene. Column IDOrth accounts for fragments that contain at lea
ontain at least one gene present in every genome exactly once. 

L Chimpanzee Dog 

Orth IDOrth UOrt
1K 26 9067 4675 3933

(100%) (33.3%) (23.7%) (21.4
1.5K 26 7150 3990 3480

(100%) (52.1%) (40.1%) (37.4
2K 26 5579 3265 2886

(100%) (65.9%) (53.4%) (50.4
2.5K 26 4389 2628 2346

(100%) (75.8%) (63.8%) (60.9
3K 26 3605 2228 2013

(100%) (81.9%) (70.7%) (68.1
3.5K 26 3071 1896 1717

(100%) (85.6%) (74.5%) (72.3
4K 26 2683 1687 1533

(100%) (88.4%) (77.9%) (75.8
nomes, that were broken at the positions of repeats of length at least L, with (blue 
 bp) blue and green bars give the true positive rate, while red bars give false positive 
d, the reader is referred to the web version of this article.) 

identifying breakpoints of fixed reversals. The An. gambiae genome 

assembly was used as a reference for scaffolding in An. arabiensis. 

Among 10 assemblies in An. arabiensis genome identified by 
our algorithm, the comparison study was able to identify and con-
firm 6. For example, our algorithm suggested assembly of scaffolds 

eats of length at least L in the dog genome.The column Orth accounts the fragments 
st one non-duplicated gene. Similarly, column UOrth accounts for fragments that 
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Fig. 8. genoPlotR visualization of gene order on scaffolds KB704374, KB704562

B704562 and KB704374 as well as of scaffolds KB704518 and
B704685 in the A. arabiensis genome, which was also identified
y the comparison study with the gene reference-based (Fig. 8). 

. Conclusions 

In current study, we proposed a scaffold assembly algorithm
ased on the genome rearrangement analysis, which can be
sed to assemble highly fragment genomes. The proposed algo-
ithm relies on the properties of breakpoint graph of multiple
enomes and can be further integrated with the MGRA frame-
ork. We evaluated the proposed algorithm by testing it on both

eal and simulated genomic data. In both cases, it significantly
educed fragmentation of the genomes and demonstrated high
eliability. 

While the proposed algorithm relies on unique gene content, we
re currently expanding the algorithm with support of non-unique
inserted/deleted or duplicated) genes, which will potentially lead
o even better quantity and quality of the scaffold assembly results.

e implemented the proposed algorithm in a prototype software,
hich we plan to make user-friendly and publicly available in near

uture. 
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