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Advances in DNA sequencing technology over the past decade have increased the volume of raw
sequenced genomic data available for further assembly and analysis. While there exist many algorithms
for assembly of sequenced genomic material, they often experience difficulties in constructing complete
genomic sequences. Instead, they produce long genomic subsequences (scaffolds), which then become
a subject to scaffold assembly aimed at reconstruction of their order along genome chromosomes. The
balance between reliability and cost for scaffold assembly is not there just yet, which inspires one to
seek for new approaches to address this problem. We present a new method for scaffold assembly based
on the analysis of gene orders and genome rearrangements in multiple related genomes (some or even
all of which may be fragmented). Evaluation of the proposed method on artificially fragmented mam-
malian genomes demonstrates its high reliability. We also apply our method for incomplete anophelinae
genomes, which expose high fragmentation, and further validate the assembly results with referenced-
based scaffolding. While the two methods demonstrate consistent results, the proposed method is able
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to identify more assembly points than the reference-based scaffolding.

© 2015 Elsevier Ltd. All rights reserved.

1. Background

Genome sequencing technology has evolved over time, increas-
ing availability of sequenced genomic data. Modern sequencers are
able to identify only short subsequences (reads) in the supplied
genomic material, which then become an input to genome assem-
bly algorithms aimed at reconstruction of the complete genome.
Such reconstruction is possible (but not guaranteed) only if each
genomic region is covered by sufficiently many reads. Lack of com-
prehensive coverage (particularly severe in single-cell sequencing
Chitsaz et al. (2011), Nikolenko et al. (2013)) and presence of long
similar subsequences (repeats) in genomes pose major obstacles
for existing assembly algorithms. They therefore often are able to
reliably reconstruct only long subsequences of the genome (inter-
spaced with low-coverage regions and repeats), called scaffolds.

The challenge of reconstructing a complete genomic sequence
from scaffolds is known as the scaffolds assembly problem. It is
often addressed technologically by generating so-called long-jump
libraries Talkowski et al. (2012), Collins and Weissman (1984) or
by using a related complete genome as a reference. Unfortunately,
the technological solution may be expensive and inaccurate Hunt
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etal.(2014), while the reference-based approach is obfuscated with
structural variations across the genomes Feuk et al. (2006).

In the current study, we assume that the constructed scaffolds
are accurate and long enough to allow identification of orthologous
genes. The scaffolds then can be represented as ordered sequences
of genes and we pose the scaffolds assembly problem as the recon-
struction of the global gene order (along genome chromosomes)
from the gene sub-orders defined by the scaffolds. We view such
gene sub-orders as the result of both evolutionary events and tech-
nological fragmentation in the genome. Evolutionary events that
change gene orders are genome rearrangements, most common of
which are reversals, fusions, fissions, and translocations. Technologi-
cal fragmentation can be modeled by artificial “fissions” that break
genomic chromosomes into scaffolds. Scaffold assembly can there-
fore be reduced to the search for “fusions” that revert technological
“fissions” and glue scaffolds back into chromosomes. This obser-
vation inspires us to employ the genome rearrangement analysis
techniques for scaffolding purposes.

Rearrangement analysis of multiple genomes relies on the
concept of the breakpoint graph. While traditionally the break-
point graph is constructed for complete genomes, it can also
be constructed for fragmented genomes, where we treat scaf-
folds as “chromosomes”. We will demonstrate that the breakpoint
graph of multiple genomes possesses an important property that
its connected components are robust with respect to genome
fragmentation. In other words, connected components of the
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Fig. 1. Fusion/fission operations between the genome graphs of two-chromosomal
genome P=[a, b][-d, c] and unichromosomal genome P’ =[a, b, — ¢, d], where regular
and irregular edges are represented as solid and dashed, respectively. Grey boxes
enclose pairs of vertices representing genes.

breakpoint graph mostly retain information about the complete
genomes, even when the breakpoint graph is constructed on their
scaffolds. We will show how to utilize connected components of the
breakpoint graph for the scaffold assembly of fragmented genomes.

The paper is organized as follows. In Section2, we provide
background information about breakpoint graphs and genome
rearrangements, discuss connected components of breakpoint
graphs with respect to genome fragmentation, and describe our
scaffold assembly algorithm. In Section 3, we evaluate our proposed
algorithm on both simulated and real data. We summarize and
discuss the paper results in Section 4.

2. Methods
2.1. Genome and breakpoint graphs

We start with defining a graph representation for a single
genome, which may consist of multiple chromosomes and/or
scaffolds commonly referred to as fragments. We represent each
fragment with n genes as an undirected graph on 2 - n regular ver-
tices representing gene extremities and several irregular vertices,
labeled by oo, encoding fragment ends (telomeres, if a fragment is
a chromosome). A gene a is represented by two regular vertices
labeled as af and a” denoting its tail and head extremities, respec-
tively. Vertices corresponding to extremities of adjacent genes are
connected by regular edges. Each vertex corresponding to a gene
extremity at a fragment end is connected to an irregular vertex
with an irregular edge. The genome graph of a genome is formed by
the graph representing its fragments.

We remark that a single genome rearrangement affects the
genome graph as follows: a pair of edges are removed and a new
pair of edges on the same four vertices is created (Fig. 1). Genome
rearrangements are therefore often modeled as DC] Yancopoulos
et al. (2005) or 2-break Alekseyev and Pevzner (2008) operations
on graphs.

The breakpoint graph of k genomes composed of the same ¢
genes consists of 2. £ regular vertices (representing gene extremi-
ties), a number of irregular vertices (representing fragment ends)
and undirected edges of k colors (one color reserved for each of the

genomes) encoding adjacencies between genes and/or fragment
ends in the genomes. The breakpoint graph can be viewed as the
superposition of k genome graphs of individual genomes (Fig. 2). All
edges connecting a pair of vertices in the breakpoint graph form a
multiedge, whose multicolor is the set of individual colors in the
multiedge® (e.g., in Fig. 2 vertices a" and bt are connected by a
multiedge of the red-black multicolor).

We remark that traditionally breakpoint graphs are constructed
on synteny blocks whose endpoints represent breakpoints (thus
the name) in the genomes. In contrast, we construct the break-
point graph directly on genes, whose extremities may or may not
form breakpoints. Such graph therefore can contain trivial multi-
edges formed by parallel edges of all colors, which correspond to
gene adjacencies shared across all the genomes and would be hid-
den within synteny blocks. Clearly, each trivial multiedge in the
breakpoint graph forms its own connected component, which we
also call trivial.

2.2. Connected components and fragmentation

Under a connected component in the breakpoint graph we will
understand any largest set of regular vertices such that any two of
them are connected by a path consisting of regular edges of any
colors. The connected components form a partition of the regular
vertices. We will show that this partition is robust with respect to
fragmentation of the genomes. Namely, we observe that the con-
nected components of the breakpoint graph of multiple genomes
are strongly connected and can be hardly broken by technologi-
cal “fissions”. To support this observation, we applied a number of
random fissions* to six complete mammalian genomes and ana-
lyzed how such fissions affected the connected components of the
breakpoint graph.

Using Ensembl BioMart tool Kasprzyk (2011), we obtained the
following six complete mammalian genomes and pairwise ortholo-
gous gene mappings between them: Homo sapiens (GRCh38), Mus
musculus (GRCm38.p2), Rattus norvegicus (Rnor_5.0), Canis famil-
iaris (CanFam3.1), Macaca mulatta (MMUL_1.0), and Pan troglodytes
(CHIMP2.1.4). From the orthologous gene mappings, we con-
structed gene families and filtered some of them so that each
genome was represented as sequences of the same 11816 genes,
each appearing in a single copy.

In order to determine how robustness of the connected compo-
nents depends on the number of genomes, we analyzed different
subsets of mammalian genomes of various sizes from 3 to all 6. For
each subset of size £, we considered all possible combinations of £
mammalian genomes and constructed their breakpoint graph. After
the same number of random fissions® was applied to every genome,
we computed the averaged number of nontrivial connected com-
ponents in the breakpoint graphs.

The results in Fig. 3 demonstrate that as the number of
genomes grows, random fissions are less likely to break connected
components into smaller ones. In other words, most connected
components in the breakpoint graph of fragmented genomes are
likely not affected by random fissions and thus represent connected
components also in the breakpoint graph of complete genomes. We
will employ this robustness property of the connected components
and use them to guide our scaffolding algorithm.

3 Eachregular vertex may be adjacent to at most one irregular vertex (e.g., in Fig. 2

the vertex a’ is connected to a single irregular vertex with red, black, and blue edges
forming the red-black-blue mutiedge (at, 00)).

4 Unfortunately we do not have information about the actual mechanism of frag-
mentation of a genome into scaffolds.

5 Arandom fission operation uniformly selects a regular edge in the genome graph
performs a fission on this edge (Fig. 1).
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Fig. 2. Breakpoint graph BG of genomes A=|a, b, c, d] (black edges), B=[a, b][c, d] (red edges), and C=[a, — b, c][d] (blue edges). Regular edges in each genome are shown as

solid, while irregular edges are shown as dashed.
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Fig. 3. Averaged number of connected components in the breakpoint graphs of multiple mammalian genomes fragmented by random “fissions”. Statistics for groups of 3,
4,5, and 6 genomes is shown in green, brown, purple, and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

2.3. Scaffold assembly algorithm

Our scaffold assembly algorithm takes as an input a set of frag-
mented genomes, whose scaffolds are represented as sequences of
genes. In the current study, we focus only on gene families that are
present in each genome exactly once.

The first step of our algorithm is a construction of the breakpoint
graph BG of the given genomes.

From the breakpoint graph perspective, scaffold assembly cor-
responds performing “fusions” in BG, i.e., adding new regular
edges (assembly edges) connecting vertices that represent scaffold
ends. Since the connected components in the breakpoint graph
are robust with respect to genome fragmentation, our algorithm
adds assembly edges only within existing connected components
and thus preserves them. So the second step of our algorithm
identifies pairs of matching vertices that will then be connected
by assembly edges (Fig. 4). Namely, vertices x, y:x # y form a
matching pair in genome P if they satisfy each of the following
conditions:

connectivity: x and y belong to the same connected component X
of BG;

extremity: there are multiedges (x, o) and (y, co) of multicolor
{P} in BG;
uniqueness: there is no vertex zeX, z #+ x, z # y such that the
multiedge (z, oo) has multicolor {P}; in other words,
there are exactly two irregular edges of multicolor
{P} in X: (x, 00) and (y, oo).

input : breakpoint graph BG on set G of k genomes
output: list of triples of (z,y, P) where z and y is a matching pair in genome P

result «+— empty list;
ces < connected components (sets of vertices) of BG on regular edges of all colors;
foreach cc in ccs do
foreach genome P in G do
ies < all irregular multiedges of multicolor { P} connecting vertices from cc;
if |ies| = 2 then
vl < regular vertex from first edge in ies;
v2 « regular vertex from second edge in ies;
if there is edge (v1,v2) in BG then
‘ append (v1,v2, P) to result;
end
end
end

end
return result;

Fig. 4. Pseudocode for identification of matching pairs of vertices.
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Fig. 5. Left panel: A connected component of the breakpoint graph of blue, black, red and green genomes. In this component the green genome has four irregular edges that
correspond to fragment ends: (b, 00), (¢, 00), (d, o), and (p, oo). Since its endpoints b, ¢, p do not satisfy the uniqueness property, while endpoint d does not satisfy the extrimity
property, our algorithm is not able to assemble any of corresponding fragments in the green genome. Right panel: A possible refinement of the connected component with
MGRA with a genome rearrangement in the black genome. It results in a split of the connected component into two, which makes vertices c and p obtain the uniqueness

property with respect to the green genome.

reliability: there exists a multiedge (x, ¥) (of any multicolor) in
BG.

The connectivity condition preserves connected components in
the breakpoint graph. The extremity condition ensures that each of
x,y represents a scaffold end in the genome P but not in any other
genome.® The uniqueness condition ensures that there is a unique
way to create an assembly edge for genome P inside the connected
component X: if there is another multiedge (z, co) of multicolor
{P}, it would be unclear which pair out of x, y, z to connect with
an assembly edge. The reliability condition ensures that the new
adjacency created by an assembly edge (x, y) in genome Pis already
present in some other genome(s).’

Once we obtained a list of matching vertex pairs for every
genome P, we perform assembly of the corresponding fragment
ends in P.

2.4. Integration with MGRA framework

We remark that our algorithm can be integrated with the
MGRA framework Alekseyev and Pevzner (2009), which performs
rearrangement analysis of multiple genomes, identifies reliable
genome rearrangements and transforms their breakpoint graph
into an identity breakpoint graph (of a single ancestral genome).
The identity breakpoint graph consists of trivial multicycles, each
forming its own connected component. In the process of this trans-
formation MGRA can only break the connected components of
the breakpoint graph into smaller ones, which can be viewed as
a refinement of the original connected components. As a result,
MGRA can make possible for two vertices to obtain the uniqueness
property after a number of genome rearrangements (Fig. 5).

However, since the irregular edges in the breakpoint graph after
a number of genome rearrangements may no longer correspond to
fragment ends, the extremity condition does not anymore imply
that x and y are fragment ends. Therefore, to integrate the scaffold
assembly with MGRA, we modify the extremity condition to addi-
tionally test if xand y correspond to fragment ends in the genome P.
By similar reasons, the reliability condition for vertices x, y should
be tested in the original breakpoint graph. So if BG denotes the orig-

6 Under random fragmentation, it is more likely for two genomes to share a com-
mon chromosome end than a scaffold end, which is not a chromosome end. So, if
x or y is a scaffold end in two or more genomes, it is more likely for this vertex to
represent a chromosome end.

7 This condition is optional. It shall be utilized when the given genomes are closely
related; however if the genomes are rather diverse, this condition may result in only
small number of conservative assembly edges.

inal breakpoint graph, while BG’ denotes this graph after a number
of genome rearrangements performed by MGRA, then a matching
pair (x, y) in BG' should satisfy the following conditions:

connectivity’: x and y belong to the same connected component X
of BG';
extremity’: there are multiedges (x, co) and (y, co) of multicolor
{P} in both BG and BG/;
uniqueness’: for any vertex ze X such that z # x, z # y, and the
multiedge (z, oo) in BG' has multicolor {P}, the mul-
tiedge (z, oo) either is not present in BG or has
multicolor different from {P};
reliability’: there exists a multiedge (x, ¥) (of any multicolor) in
BG;

Integration with MGRA allows us to obtain more matching
vertices (as compared to what we can recover from the original
breakpoint graph). We also take into consideration all pairs of
vertices that are endpoints of fusions reported by MGRA. If such
vertices correspond to fragment ends, we interpret their fusion as
assembly the corresponding fragments.

3. Results and discussion
3.1. Artificially fragmented genomes

We start evaluation of the proposed scaffold assembly algorithm
with running it on artificially fragmented mammalian genomes.
We use the same set of six mammalian genomes and two differ-
ent approaches for fragmenting them: random fragmentation and
fragmentation based on repeats in the genomes. The random frag-
mentation allows us to overcome the lack of information about
genome fragmentation mechanism. However, we may have better
insight in the fragmentation model, if we assume that genome scaf-
folds were obtained from a conventional genome assembler having
difficulties in reconstruction of the order of long DNA repeats. In
this case, it becomes realistic to fragment the genomes based on
locations of such repeats.

Random fragmentation.

To create instances of randomly fragmented genomes, we
applied k random artificial “fissions” to each of the genomes. For
eachvalue of k, we created 10 different sets of fragmented genomes,
executed our algorithm on each of the sets (both with and without
MGRA integration), and reported the following normalized values
(averaged over the 10 sets):
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Table 3

Statistics on the number of fragments and coverage (in parenthesis) after removing all repeats of length at least L in the each of the six mammalian genomes.The column Orth accounts the fragments that contain at least one gene.
Column IDOrth accounts for fragments that contain at least one non-duplicated gene. Similarly, column UOrth accounts for fragments that contain at least one gene present in every genome exactly once.
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(48.51) (38.8%) (23.8%) (65.9%) (53.8%) (34.5%) (60.6%) (34.9%) (21.9%) (60.8%) (48.5%) (30.5%) (56.4%) (36.1%) (25.2%) (54.1%) (44.2%) (26.4%)
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on the robustness of the connected components of the breakpoint
graph. Integration with the MGRA framework further yields addi-
tional number of highly reliable fragment assemblies.

Repeat-based fragmentation.

To create instances of repeat-based fragmented genomes, we
removed all repeats longer that a fixed number of basepairs (from
1K to 4Kbp with the step of 0.5K) and partitioned the genomes
into fragments with no long repeats. We used the same set of six
mammalian genomes, for which we obtained the repeats locations
from RepeatMasker Smit et al. (2010) database. We performed the
following three experiments:

(i) de novo assembly of multiple genomes: all six genomes are
fragmented (Table 3).

(ii) assembly of multiple genomes with a single reference: all
genomes, but dog (the only representative of the carnivore
clade) are fragmented (Table 4).

(iii) assembly of a single genome with multiple references: only
dog genome is fragmented (Table 5).

In each experiment we considered only fragments that contain
genes that are present exactly once in each genome. We evaluated
the proposed algorithm in the same way as in the random frag-
mentation experiment, both with and without MGRA integration
(Fig. 7).

Experiments (i) and (ii) demonstrate that while in the presence
of a reference genome our algorithm yields more true fragment
adjacencies, it still performs relatively well in the case, when no
reference is known. Experiment (iii) shows that our algorithm can
be used as a highly reliable step for assembly of a single fragmented
genome, when several complete reference genomes are known.
Since DNA repeats are subject to genome rearrangements in the
course of evolution, integration with MGRA yields additional true
adjacencies.

3.2. Anophelinae genomes

The second evaluation of our scaffold assembly algorithm
was performed on highly fragmented genomes from anophelinae
subfamily, followed by comparison of the results to a reference-
based assembly approach. Namely, we considered six anophelinae
genomes: Anopheles gambiae, Anopheles arabiensis, An. quadri-
annulatus, An. merus, Anopheles dirus, and Anopheles albimanus,
for which we constructed gene families using orthologous gene
mapping from OrthoDB Waterhouse et al. (2013). We then fil-
tered out all gene families that are not present exactly once on
each given genome, thus limiting ourselves to the case of uni-
form gene content across the genomes. After such filtration each
genome was represented as sequences of the same 6837 genes.
We remark that filtration eliminated all genes from some scaffolds
and thus we exclude such scaffolds from assembly. Table 1 gives
the scaffold statistics for anophelinae genomes before and after
filtration.

Order and orientation of gene families in each given genome
was determined from the corresponding GFF3 annotation obtained
from VectorBase Megy et al. (2012), where a gene is represented by
a sequence of coding exons of various length. We define the gene
coordinate in a genomic fragment as the mean coordinate of all
its coding exons start/end coordinates (i.e., (start + end)/2 averaged
over all exons). Table 2 reports the number of scaffold assemblies
obtained by the proposed algorithm.

As mentioned above, we compared our assembly results to
another anophelinae study (comparison study) led by Dr. Igor
Sharakhov at Virginia Tech University. The comparison study per-
formed analysis of An. gambiae, An. arabiensis genomes from the
same source, where An. gambiae represents a complete genome,

Table 4

Statistics on the number of fragments and coverage (in parenthesis) after removing all repeats of length at least L in the each of the six mammalian genomes, except dog.The column Orth accounts the fragments that contain at

least one gene. Column IDOrth accounts for fragments that contain at least one non-duplicated gene. Similarly, column UOrth accounts for fragments that contain at least one gene present in every genome exactly once.

Rat

Mouse

Macaca

Human

Dog

Chimpanzee

IDOrth UOrth Orth IDOrth UOrth Orth IDOrth UOrth Orth IDOrth UOrth
1871 5334 4283 4988

5528

Orth

IDOrth UOrth

6223

Orth

1538

10399

1676

12975

1766

1055

20381

40

1728
(8.1%)

2015

10613

1K

(10.4%)
1728

(27.3%)
4230

(34.9%)
8742

(10.5%)
1937

(21.0%)
3988

(38.3%)
11088

(10.1%)
2013

(22.8%)
4878

(33.2%)
8586

(7.4%)
2221

(15.9%)
5252

(36.9%)

16835

(100%)
40

(19.6%)
5572

(26.1%)
8994

1.5K

(21.5%)
1805

(37.5%)
3671

(46.4%)

7527

(18.7%)
2113

(30.4%)
3691

(49.6%)
9845

(20.1%)

2034

(35.8%)
4209

(47.8%)
6865

(14.5%)
2312

(25.4%)
4767

(49.8%)

13797

(100%)
40

(16.1%)
2078

(30.2%)
4778

(39.1%)
7469

2K

(29.2%)
1796

(44.1%)
3260

(54.1%)
6651

(25.7%)
2232

(36.1%)
3525

(56.5%)
9061

(31.2%)
1891

(48.5%)
3460

(60.8%)
5385

(22.4%)
2361

(34.5%)
4424

(60.6%)
11727

(100%)
40

(24.3%)
2092

(38.8%)
4262

(48.5%)
6497

2.5K

(35.4%)
1762

(49.1%)
2990

(59.7%)
5997

(30.4%)
2236

(39.5%)
3363

(60.5%)
8448

(42.2%)
1712

(59.2%)
2893

(71.9%)
4723

(28.6%)
2340

(41.2%)
4120

(67.6%)
10226

(100%)
40

(30.9%)
2050

(45.5%)
3897

(55.9%)
5789

3K

(39.9%)
1690

(52.4%)
2723

(63.9%)
5350

(33.4%)
2215

(42.1%)
3201

(63.6%)
7909

(51.1%)
1509

(67.5%)
2376

(79.3%)
3368

(33.4%)
2307

(45.9%)
3875

(72.3%)
9005

(100%)

40

(39.3%)
1996

(54.6%)

3588

(69.9%)
5197

3.5K

(44.2%)
1625

(55.7%)
2501

(67.9%)
4779

(36.1%)
2247

(44.3%)
3122

(66.2%)
7538

(59.1%)
1298

(75.4%)
1940

(84.9%)
2635

(37.8%)
2249

(50.3%)
3630

(75.9%)
8007

(100%)
40

(43.8%)
1919

(58.6%)
3291

(69.2%)
4694

4K

(63.1%) (48.3%) (100%) (79.2%) (54%) (41.5%) (89.3%) (80%) (66.2%) (68.3%) (45.9%) (38.4%) (71.7%) (58.9%) (48.1%)

(73.6%)
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(a) Evaluation of the assembly results in the exper-
iment, where all genomes are fragmented.
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(b) Evaluation of the assembly results in the exper-
iment, where all, but one genome (dog) are frag-
mented.
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(C) Evaluation of the assembly results in the experi-
ment, where only one genome (dog) is fragmented.

Fig. 7. Accuracy of the proposed algorithm on artificially fragmented six mammalian genomes, that were broken at the positions of repeats of length at least L, with (blue
bars) and without (green bars) integration with MGRA. For each value of L (with step 500 bp) blue and green bars give the true positive rate, while red bars give false positive
rate for assembly results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

while An. arabiensis exposes rather high fragmentation. The
genome data preparation was similar to ours. The relationships
between these genes and their order on scaffold were visualized
in genoPlotR Guy et al. (2010) and further compared to the cyto-
genetic Holt et al. (2002) and physical George et al. (2010) maps

Table 5
Statistics on the number of fragments and coverage (in parenthesis) after removing all repeats of length at least L in the dog genome.The column Orth accounts the fragments
that contain at least one gene. Column IDOrth accounts for fragments that contain at least one non-duplicated gene. Similarly, column UOrth accounts for fragments that
contain at least one gene present in every genome exactly once.

identifying breakpoints of fixed reversals. The An. gambiae genome
assembly was used as a reference for scaffolding in An. arabiensis.
Among 10 assemblies in An. arabiensis genome identified by
our algorithm, the comparison study was able to identify and con-
firm 6. For example, our algorithm suggested assembly of scaffolds

L Chimpanzee Dog Human Macaca Mouse Rat
Orth IDOrth UOrth
1K 26 9067 4675 3933 24 22 21 22
(100%) (33.3%) (23.7%) (21.4%) (100%) (100%) (100%) (100%)
1.5K 26 7150 3990 3480 24 22 21 22
(100%) (52.1%) (40.1%) (37.4%) (100%) (100%) (100%) (100%)
2K 26 5579 3265 2886 24 22 21 22
(100%) (65.9%) (53.4%) (50.4%) (100%) (100%) (100%) (100%)
2.5K 26 4389 2628 2346 24 22 21 22
(100%) (75.8%) (63.8%) (60.9%) (100%) (100%) (100%) (100%)
3K 26 3605 2228 2013 24 22 21 22
(100%) (81.9%) (70.7%) (68.1%) (100%) (100%) (100%) (100%)
3.5K 26 3071 1896 1717 24 22 21 22
(100%) (85.6%) (74.5%) (72.3%) (100%) (100%) (100%) (100%)
4K 26 2683 1687 1533 24 22 21 22
(100%) (88.4%) (77.9%) (75.8%) (100%) (100%) (100%) (100%)
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Fig. 8. genoPlotR visualization of gene order on scaffolds KB704374, KB704562, KB704518, and KB704685 for A. arabiensis genome. Courtesy of Dr. Igor Sharakhov.

(AT

KB704562 and KB704374 as well as of scaffolds KB704518 and
KB704685 in the A. arabiensis genome, which was also identified
by the comparison study with the gene reference-based (Fig. 8).

4. Conclusions

In current study, we proposed a scaffold assembly algorithm
based on the genome rearrangement analysis, which can be
used to assemble highly fragment genomes. The proposed algo-
rithm relies on the properties of breakpoint graph of multiple
genomes and can be further integrated with the MGRA frame-
work. We evaluated the proposed algorithm by testing it on both
real and simulated genomic data. In both cases, it significantly
reduced fragmentation of the genomes and demonstrated high
reliability.

While the proposed algorithm relies on unique gene content, we
are currently expanding the algorithm with support of non-unique
(inserted/deleted or duplicated) genes, which will potentially lead
to even better quantity and quality of the scaffold assembly results.
We implemented the proposed algorithm in a prototype software,
which we plan to make user-friendly and publicly available in near
future.
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