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Abstract 
Despite the increasing abundance of whole transcriptome data, few methods are available to analyze global gene 
expression across phylogenies. Here, we present a new software package (Computational Analysis of Gene 
Expression Evolution [CAGEE]) for inferring patterns of increases and decreases in gene expression across a phylo-
genetic tree, as well as the rate at which these changes occur. In contrast to previous methods that treat each gene 
independently, CAGEE can calculate genome-wide rates of gene expression, along with ancestral states for each gene. 
The statistical approach developed here makes it possible to infer lineage-specific shifts in rates of evolution across 
the genome, in addition to possible differences in rates among multiple tissues sampled from the same species. We 
demonstrate the accuracy and robustness of our method on simulated data and apply it to a data set of ovule gene 
expression collected from multiple self-compatible and self-incompatible species in the genus Solanum to test hy-
potheses about the evolutionary forces acting during mating system shifts. These comparisons allow us to highlight 
the power of CAGEE, demonstrating its utility for use in any empirical system and for the analysis of most morpho-
logical traits. Our software is available at https://github.com/hahnlab/CAGEE/. 
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Introduction 
Early studies of gene expression in single genes revealed 
widespread and frequent changes in the levels, timing, 
and breadth of expression across species (reviewed in 
Wray et al. 2003; Fay and Wittkopp 2008; Hill et al. 
2021). Such changes in gene expression have been shown 
to be responsible for many differences between species 
and may be a major driver of evolution (King and 
Wilson 1975). Advances in sequencing technologies (i.e., 
RNA-seq) have transformed research into gene expression, 
allowing researchers to cheaply and accurately measure 
transcript levels for every gene in a genome, in multiple tis-
sues, and across several timepoints or conditions (Wang 
et al. 2009). There is now a flood of interest in applying 
RNA-seq to whole clades of organisms in order to identify 
the genetic changes and evolutionary forces driving species 
differences (e.g., Brawand et al. 2011; Meisel et al. 2012; 
Coolon et al. 2014; Harrison et al. 2015; Berthelot et al. 
2018; Catalan et al. 2019; Blake et al. 2020; El Taher et al. 
2021). 

To better understand the importance of changes in 
gene expression, researchers must be able to characterize 
the mechanisms and modes by which gene expression 

evolves. Such work entails understanding the role of nat-
ural selection in driving species differences, the stages of 
development or the tissues that evolve most rapidly, as 
well as the environments most likely to generate changes 
in gene expression (Dunn et al. 2013; Hill et al. 2021; 
Price et al. 2022). Phylogenetic comparative methods en-
able the rigorous study of traits like gene expression across 
a species tree (Revell and Harmon 2022). These methods 
can be used for testing hypotheses about natural selection, 
the inference of ancestral states (allowing us to polarize 
the direction of changes), and the estimation of evolution-
ary rates. Multiple software packages are available that im-
plement a wide variety of comparative methods (e.g., 
Pennell et al. 2014), including models specifically intended 
for studying gene expression across a tree (Bedford and 
Hartl 2009; Rohlfs et al. 2014; Rohlfs and Nielsen 2015; 
Catalán et al. 2019; Chen et al. 2019; Yang et al. 2019). 

However, as far as we are aware, all existing comparative 
methods for analyzing gene expression implement funda-
mentally single-gene analyses. Each gene is considered a 
separate trait, such that evolutionary parameters for 
each gene are estimated separately. Single-gene analyses 
can be used to identify tissue-specific or lineage-specific 
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shifts in evolutionary rates, but their power is quite low 
(Beaulieu et al. 2012). As a result, identifying trends in evo-
lution must be carried out post hoc by summing the num-
ber of genes found to be individually significant (e.g., 
Harrison et al. 2015; El Taher et al. 2021). This approach 
is less than ideal, especially when carrying out comparisons 
between branches of different lengths or between tissues 
with different average expression levels (both of which 
can result in differential statistical power). 

Therefore, to better characterize the forces affecting 
gene expression evolution, we must be able to model ef-
fects shared along a lineage, experienced by many genes 
in the same tissue, or experienced by all genes found in 
the same environment. In this article, we present a 
genome-scale platform for the analysis of gene expression 
data that allows for such shared factors. Our software, 
Computational Analysis of Gene Expression Evolution 
(CAGEE), provides a robust set of methods for analyzing 
expression data across a species tree. CAGEE estimates an-
cestral states and rates, with rates shared by all or subsets 
of genes (single-gene analyses can also be carried out). We 
show that lineage-specific and tissue-specific (or 
condition-specific) rates can be accurately inferred, and 
we provide principled statistical approaches for model se-
lection. Our current implementation uses a bounded 
Brownian motion (BBM) model and assumes expression 
data are accurate, but the architecture and codebase will 
easily allow for future extensions that relax these and other 
assumptions. 

New Approaches 
We model gene expression evolution as a BBM process on 
a known species tree (cf. Boucher and Démery 2016). Our 
model has a single bound: trait values must be greater than 
or equal to zero; there is no upper bound (fig. 1). Previous 
researchers have often modeled gene expression using an 
Ornstein–Uhlenbeck (OU) process (e.g., Bedford and 
Hartl 2009; Rohlfs et al. 2014; Rohlfs and Nielsen 2015; 
Chen et al. 2019), a model that includes a force constrain-
ing traits about the mean. However, to our knowledge, the 
OU model has only been compared against an unbounded 
Brownian motion model (i.e., one that allows negative ex-
pression values), making fair comparisons difficult. In add-
ition, OU models may be frequently and incorrectly 
favored over simpler models due to several biases (e.g., 
measurement error), especially when the number of tips 
in a tree is small (Pennell et al. 2015; Silvestro et al. 2015; 
Boucher and Démery 2016; Cooper et al. 2016; Catalán 
et al. 2019). Therefore, the initial version of our software 
models gene expression with the BBM process, which nat-
urally bounds possible values without invoking an add-
itional constraining force. 

Let Eij ≥ 0 be the expression level of gene i in species j. 
We assume that log-transformed expression Xij = 
ln (Eij + emin) evolves as a Brownian motion process with 
variance σ2 per unit time, where emin is a small offset (con-
stant across genes and species) that prevents Xij from 

taking infinite values if measured values of Eij are zero. 
We log-transform before assuming Brownian motion be-
cause we expect the variance in the evolutionary process 
to scale with expression level. Assuming that Eij is itself 
Brownian would unrealistically assume that the rate of 
evolution is constant across expression levels, even 
though expression levels vary by many orders of magni-
tude. We impose a reflecting lower boundary at 
xmin = ln (emin), meaning that the Brownian walk imme-
diately bounces back if it reaches xmin. Expression can 
therefore effectively never reach zero, our theoretical 
lower bound (fig. 1). 

The second major feature of our model (as implemen-
ted in CAGEE) is that many genes can share the evolution-
ary rate parameter, σ2 . This rate may be shared among 
genes expressed in the same tissue or sample, among genes 
located on the same chromosome, or among genes evolv-
ing along the same lineage of the phylogenetic tree. The 
simplest model allows σ2 to be shared among all genes, 
providing an average rate of evolution across the genome 
and over time; this average may include genes that vary in 
their individual rates of evolution. We explain this model 
briefly here, with more detail provided in the Materials 
and Methods. 

CAGEE infers the most likely value(s) of σ2 consistent 
with an ultrametric tree, T, and a set E{ij} of measured ex-
pression values at the tips of the tree; that is, it maximizes 
the likelihood L(σ2|E{ij}, T). Each gene is assumed to evolve 
independently, and so the likelihood for each gene 
Li(σ2|Ei{j}, T) is computed independently. The overall 

FIG. 1. BBM model. An example trait is shown in the bottom graph, 
evolving along the tree shown above. Although the data inputs to 
CAGEE are linear expression levels, internally, it logs expression to 
ensure higher variance among more highly expressed genes. There 
is also a minimum value, xmin, added to all tips. 
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likelihood is obtained as the product L(σ2|E{ij}, T) = 
ΠiLi(σ2|Ei{j}, T) across genes. The likelihood for each gene 
Li(σ2|Ei{j}, T) is computed using the pruning algorithm 
(Felsenstein 1973). The key ingredient needed to apply 
the pruning algorithm is the transition probability density 
p(xt|xt0 ) = Pr[X(t) = xt|X(t0) = xt0 ] for log expression at 
time t conditional on having log expression xt0 at time t0 
along a lineage. CAGEE computes the transition density 
by solving the standard Brownian diffusion equation 
with reflecting boundary conditions (Materials and 
Methods). The transition density is used to propagate ex-
pression probabilities along the tree: if the probability 
density of log expression at time t0 is f(xt0 ), then the prob-
ability density at time t on the same lineage is 
f(xt) = ∫p(xt|xt0 )f(xt0 )dxt0 . At each tip, the probability dens-
ity f(xt0 ) is a delta function centered at the corresponding 
measured value of Xij. 

Starting with the known tip distributions, the pruning 
algorithm propagates back to the tips’ parent nodes. The 
distribution at the parent node is then the product of 
the two backward-propagated child node distributions. 
Proceeding iteratively across the tree, we ultimately obtain 
the gene-specific probability density for expression value 
at the root fi(xR). Viewed as a likelihood for σ2 , fi(xR) is 
the gene-specific likelihood conditional on the unknown 
ancestral root value; that is, fi(xR) = Li(σ2|Ei{j}, T, xR). 
Therefore, we integrate over all possible xR to obtain, 

Li(σ2|Ei{j}, T) = ∫Li(σ2|Ei{j}, T, xR)ρ(xR)dxR, (1) 

where ρ(xR) is the prior distribution for the root value of a 
randomly selected gene. 

The default prior ρ(xR) is assumed to be a gamma distri-
bution with k = 0.375 and θ = 1600, though this distribu-
tion can also be set by the user in CAGEE. This choice is 
based on estimated expression distributions across genes 
in individual species, which we take as our baseline for 
the ancestral distribution. CAGEE uses the Nelder–Mead 
simplex method to find the optimal value(s) of σ2 . 

Results 
Using CAGEE 
The required inputs for CAGEE are a Newick-formatted, 
rooted, ultrametric tree (with branch lengths) and a tab- 
delimited data file containing the expression levels of all 
species or taxa being studied. The data file can consist of 
data on one gene/transcript or thousands of different 
genes. The first line of the data file should contain the spe-
cies’ names (matching those used in the Newick tree). In 
addition, headers for gene names, gene descriptions, 
and sample IDs (see next section for an explanation of 
“samples” in CAGEE) can be used. Subsequent lines each 
correspond to a single gene and contain expression levels 
for each species. Missing data can be denoted using mul-
tiple characters (-/?/N). Examples of Newick trees and cor-
responding data files can be found in the online user 

manual (https://github.com/hahnlab/CAGEE/blob/main/ 
docs/manual/troubleshooting_and_technical.md). 

We expect that CAGEE will most often be used to cal-
culate the following outputs: one or more σ2 values, ances-
tral states at each internal node (including 95% credible 
intervals around these states), and the final likelihood as-
sociated with a model. However, users do not have to 
search for σ2: if a value for this parameter is specified, 
then the output of CAGEE will just be the ancestral states 
and a likelihood. In addition to the raw outputs provided 
in multiple formats (both tab-delimited files and 
NEXUS-formatted files), CAGEE computes basic statistics 
about changes in expression levels by comparing values 
at parent and child nodes. Summaries of these inferred 
changes for every gene and for every branch of the tree 
are output, so that the evolutionary history of gene expres-
sion changes in every gene is accessible to users. To avoid 
overinterpretation of small changes in inferred expression 
levels—especially when there is uncertainty in ancestral 
states—CAGEE will also compare the credible intervals 
at parent and child nodes to note if a change is “credible” 
(i.e., the intervals do not overlap). Credible intervals are 
calculated by summing the probabilities across possible 
ancestral states at each node, so that 95% of the probabil-
ity density is included. Credible changes on each branch 
are annotated as such in the output. 

We most often expect that an ultrametric species tree 
will be used as the input topology, but this is not required 
by CAGEE. If users wish to specify a gene tree, or some 
other bifurcating tree, as input, those can be used in 
CAGEE as well. However, the major advantage of CAGEE 
—incorporating information from multiple genes to ac-
curately estimate genome-wide rates—will rapidly dimin-
ish for trees that represent the history of only a minority 
of the genome. Trees that include duplication events 
should provide suitable estimates for any genes that follow 
this topology, but CAGEE does not have a way to further 
combine disparate gene trees. 

There are multiple options available for running CAGEE. 
Users who can take advantage of multiple threads can spe-
cify the number to use on the command line. Complex 
models can also take a long time to converge; by default, 
CAGEE runs a maximum of 300 iterations of the Nelder– 
Mead search, but users can increase this number in subse-
quent runs if the likelihood is still improving when the 
limit is hit. As mentioned above, the default prior distribu-
tion for the root state is a gamma distribution with k = 
0.375 and θ = 1600. This distribution can also be specified 
by the user if desired. Information on how to run more 
complex evolutionary models, beyond a single σ2 , is given 
in the next section. 

Estimating Evolutionary Rates in CAGEE 
We tested CAGEE’s ability to accurately estimate σ2 by 
varying this rate parameter and the number of genes 
used for inference, as well as the amount of missing data 
in each data set. We simulated different single values of 
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σ2 across a tree with constant branch lengths 
(supplementary fig. S1, Supplementary Material online) 
using the simulation tool available within CAGEE. (Note 
that the total amount of evolution in a tree is determined 
by the product σ2 · t, such that changes in branch lengths 
will have an effect commensurate with changes in σ2.) 
Figure 2 shows the average error associated with estimates 
of different σ2 values and using different numbers of genes 
within each data set. As can be seen, the error across all 
parameter values and data set sizes is quite small (generally 
<2.5%) and is less variable for larger data set sizes. 
Fortunately, we expect that most empirical data sets will 
contain closer to 10,000 genes than 1,000 genes. The re-
sults in figure 2 are for an ancestral state vector of length 
N = 200 (the default setting in CAGEE; Materials and 
Methods); we also estimated σ2 when allowing the ances-
tral state vector to have length N = 500 (supplementary 
fig. S2A, Supplementary Material online). There appears 
to be minimal gain from increasing the resolution in this 
vector, though the computational time is greatly increased 
(similar to results in Boucher and Démery 2016). We eval-
uated the accuracy of CAGEE when different amounts of 
data were randomly missing: from 0% to 75% for a data 
set of 1,000 genes. As shown in supplementary figure 
S2B, Supplementary Material online, CAGEE has high ac-
curacy even when large amounts of data are missing (at 
random) from a data set. 

One major advantage of using CAGEE is that it com-
bines information from multiple genes to infer a rate of 
evolution: This is why it can return estimates with high ac-
curacy even when a large fraction of the data are missing. 
To further demonstrate this advantage, we simulated evo-
lution in 1,000 genes using the same parameter value 
(σ2 = 1) and then estimated σ2 for each of the 1,000 genes 
individually. Supplementary figure S2C, Supplementary 
Material online, shows that these individual estimates of 
σ2 are quite error-prone: although the mean of all genes 
is close to the true value, individual estimates can be 

7–8 ×  higher or lower, and there is a large amount of vari-
ance. Although we have not shown it here, we do expect 
that the accuracy of σ2 will be greater for trees with larger 
numbers of tips, even for estimates derived from single 
genes (cf. O’Meara et al. 2006). On the other hand, 
CAGEE is combining information from multiple genes to 
infer an average rate of evolution, even when the under-
lying rate may be quite variable. To explore any effect of 
underlying rate variation, we carried out further simula-
tions that combined 3 simulations of 1,000 genes each 
with σ2 equal to 0.5, 3, and 9, respectively (we repeated 
these simulations 10 times). When analyzed as single 
data sets with 3,000 genes total, the average σ2 inferred 
was 3.76, ∼9% lower than the arithmetic mean rate 
(supplementary fig. S2D, Supplementary Material online). 
It is well-known that single-rate phylogenetic likelihood 
models tend to underestimate rates of evolution when 
there is underlying variation (Golding 1983; Gillespie 
1986; Yang 1996; Mendes et al. 2020), and we see this effect 
here. Fortunately, the bias is small and can be corrected in 
the future by including gamma-distributed rate variation 
into CAGEE. Overall, inferences of σ2 should be quite ac-
curate when a single rate parameter is shared across the 
tree and across all genes and lineages. 

Variation in the rate of expression can currently be ac-
commodated by CAGEE in a number of ways, using multi- 
rate σ2 models. One type of model allows users to specify 
that their data come from different “samples”: these sam-
ples can represent tissues, conditions, timepoints, and 
even subsets of the genome (e.g., the X chromosome or 
a specific functional class of genes). In the input data file, 
the “SAMPLETYPE” column is used to indicate which sam-
ple each gene is a member of; a separate σ2 value will be 
calculated for each sample or set of samples (these values 
are assumed to be shared among all lineages in the tree). 
Specifying more than one sample means that an individual 
gene or transcript name can be used more than once (i.e., 
once for each sample), but there is no requirement that 

FIG. 2. Accuracy of CAGEE. For 
five different values of σ2 , we si-
mulated 1,000 data sets, with 
each data set comprised of ei-
ther 1,000 genes or 10,000 
genes. All genes in a data set 
shared the same σ2 , but their 
values at the root were drawn 
independently from the prior. 
We then provided each simu-
lated data set to CAGEE in or-
der to infer σ2 . Each 
box-and-whisker plot shows 
the mean (horizontal line), 
50% interquartile range (box), 
1.5 ×  the interquartile range 
(vertical lines), and outliers 
(dots). 
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genes are measured in each sample. For instance, assigning 
all autosomal genes to sample 1 and all X-linked genes to 
sample 2 would not permit for any overlap in gene assign-
ment but is perfectly allowable in CAGEE. 

Each additional sample requires another σ2 parameter 
to be estimated, and often researchers would like to 
know if fitting this extra parameter is justified by the 
data. Under standard information–theoretic criteria 
(Burnham and Anderson 2002), twice the difference in 
log likelihoods between nested models should be 
χ2-distributed with degrees of freedom equal to the differ-
ence in the number of parameters between models. To 
test this expectation, we simulated 1,000 data sets with a 
single σ2 value but fit models with two σ2 values (assigning 
1,000 genes to two equal-sized samples at random; the 
relative size of the samples should not affect the false posi-
tive rate). As anticipated, the results fit a χ2 distribution 
with one degree of freedom, with 4.4% of data sets having 
a difference in 2*log-likelihood >3.84 (5% are expected by 
chance). This indicates that standard statistical procedures 
should adequately control the false positive rate when fit-
ting multi-sample σ2 models. 

CAGEE also allows models in which σ2 varies across 
branches of the species tree. It does so by fitting separate 
σ2 parameters for different parts of the tree. On the com-
mand line, CAGEE enables users to specify how multiple σ2 

parameters should be assigned to branches. For n taxa, 
from 1 to 2n-2 parameters can be specified, and branches 
can be grouped together in any way. For instance, a two- 
parameter model can have all branches that share a rate 

adjacent to one another in the tree (supplementary fig. 
S3A, Supplementary Material online) or spread out across 
the tree (supplementary fig. S3B, Supplementary Material 
online). Similar to the analyses carried out above for the 
false positive rate associated with multiple samples, we si-
mulated data with a single σ2 value and then fit models 
with multiple σ2 parameters. Regardless of how we distrib-
uted the two rate classes across the tree, we observed good 
control of the false positive rate: 4.5% and 5.4% of 1,000 si-
mulated data sets were significant at the P = 0.05 level (for 
the trees shown in supplementary fig. S3A and B, 
Supplementary Material online, respectively). More lim-
ited simulations also showed that we could accurately es-
timate multiple σ2 parameters when the data were 
simulated with multiple rates (supplementary table S1, 
Supplementary Material online). Together, our results sug-
gest that we can estimate multiple types of multi-rate 
models and can accurately control the false positive rate 
when doing so. 

Analysis of Wild Tomato Transcriptome Data 
To demonstrate the utility of CAGEE in an empirical sys-
tem, we analyzed data from a clade that includes domes-
ticated tomato, Solanum lycopersicum. This data set 
contains gene expression levels in unfertilized ovules 
from the flowers of six species, one of which (Solanum pen-
nellii) has two different populations represented (fig. 3). 
There are 14,556 genes with expression levels measured 
in all 7 accessions. RNA-seq data for five of the seven 

FIG. 3. Changes in gene expression along the tomato phylogeny. Given the set of relationships among the seven Solanum accessions used here, we 
tested multiple models that had branches assigned as different σ2 parameters (table 1). In model A, all branches share σ2

1. In model B, all black 
branches share σ2

1, whereas all red branches share σ2
2. In model C, all black branches and the dashed red branch share σ2 

1, whereas all solid red 
branches share σ2

2. In model D, all black branches share σ2 
1, all solid red branches share σ2

2, and the dashed red branch is assigned σ2 
3. Using the 

results from model D, we inferred the number of genes that had credible increases or decreases in expression level along each branch (results for 
all changes are shown in supplementary fig. S4, Supplementary Material online). Numbers are reported as +increases/−decreases for each 
branch. 
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accessions have been published previously (Hibbins and 
Hahn 2021; Moyle et al. 2021), whereas two others are pre-
sented here for the first time (Materials and Methods). 
Note, however, that all data were collected from all sam-
ples at the same time (Materials and Methods). 

Most species within the tomato clade are self- 
incompatible (SI), the ancestral state in the family 
Solanaceae (Igić et al. 2006). Self-incompatibility means 
that plants must outcross in order to successfully fertilize 
ovules. However, self-compatibility (SC) has evolved mul-
tiple times both within the Solanaceae and within the 
genus Solanum (Goldberg et al. 2010; Bedinger et al. 
2011). Self-compatible individuals are able to successfully 
fertilize ovules using their own pollen, though many also 
still outcross (Whitehead et al 2018; including in 
Solanum: Vosters et al. 2014 and references therein). 
Importantly, we have a priori expectations about the 
rate at which reproductive traits—including ovule gene 
expression—might evolve between groups with different 
mating systems. Due to conflict within and between the 
sexes, it is generally expected that reproductive traits in 
species that outcross more (i.e., SI taxa) should evolve 
more rapidly than in species that inbreed more (i.e., SC 
taxa; Clark et al. 2006). Such patterns are found in some 
analyses of the rate of protein evolution (e.g., Gossmann 
et al. 2016; Harrison et al. 2019) but are equivocal in other 
comparisons (e.g., Gossmann et al. 2014, Moyle et al. 2021). 
These complex patterns might reflect additional effects 
that also accompany mating system shifts; for instance, 
such shifts often lead to reductions in effective population 
size in more selfing lineages (Charlesworth and Wright 
2001). Mating system shifts could also alter global patterns 
of molecular evolution (including gene expression) by 
changing the strength and pattern of purifying selection, 
as morphological changes often accompany mating sys-
tem changes. The exact effect of shifts in mating system 
on molecular evolution remains an open question. 

The Solanum species sampled here represent two inde-
pendent transitions from SI to SC, with one of the transi-
tions (in accession S. pennellii LA0716) occurring recently 
enough that different populations within this species 
have different incompatibility systems (fig. 3). We there-
fore fit a series of nested models within CAGEE to test 
two related hypotheses about ovule gene expression evo-
lution. First, we would like to know whether the rate of 
evolution of ovule gene expression is different in SI species 
than in SC species. Second, given the recent transition 
to SC within accession S. pennellii LA0716, we wanted to 
know if it shows a pattern of evolution more similar to 
SI or to SC species. In total, we fit four separate evolution-
ary models (table 1 and fig. 3). Model A has a single rate 
parameter for the entire tree. Model B has two rate para-
meters, one for SI species and one for SC species. This mod-
el assigns the branch leading to S. pennellii LA0716 as SC. 
Model C also has two rate parameters, one for SI and 
one for SC, but assigns S. pennellii LA0716 as SI. Model D 
has three rate parameters: one for SI species, one for 
longer-term SC species, and one for S. pennellii LA0716. 

Estimated results from the different models are shown 
in table 1. Model A has a worse fit than any other model, 
with a single σ2 value of 0.102. For context, this value 
means that the BBM process the data are fit to has a vari-
ance of 0.102 per million years (of log-transformed expres-
sion values). This is the average rate across all 14,556 genes 
and across all branches of the tree. In contrast to a single- 
rate model, both models B and C are significantly better 
fits to the data. Contrary to some hypotheses, both models 
find that SI lineages (σ2

1) have a lower rate of evolution 
than SC lineages (σ2

2; table 1). There is also a difference be-
tween the models, with model C (the one in which S. pen-
nellii LA0716 shares a rate with SI species) fitting 
significantly better. To further examine the evolution of 
S. pennellii LA0716, model D fits a three-parameter model, 
with this lineage assigned its own rate of evolution. This 
model is a significantly better fit than model C (P <  
0.00001; χ2 test with 1 degree of freedom) and demon-
strates that S. pennellii LA0716 has a rate of evolution 
(σ2 

3 in table 1) that is slightly lower than other SI species. 
This highly similar rate to SI species implies that it has 
only recently transitioned to SC, which is consistent with 
previous inferences about the timing of transition to SC 
in this particular accession (e.g., Rick and Tanksley 1981). 

CAGEE also allows users to infer the number and direc-
tion of changes in gene expression levels along each branch 
of the tree. Figure 3 reports the number of genes that had 
“credible” increases and decreases in expression level un-
der model D. Credible changes require that the credible in-
tervals around states at parent and daughter nodes do not 
overlap, in order to account for uncertainty in our infer-
ences. However, because of this, fewer credible changes 
will be inferred deeper in the tree, where credible intervals 
get wider. Therefore, although inferences about the iden-
tity of the genes changing along each branch are greatly 
strengthened by using credible changes (these genes are 
noted in the raw output from CAGEE), the absolute num-
bers of credible changes cannot be compared across 
branches, except for sister branches of equal length. For 
completeness, we show the total numbers of increases 
and decreases of gene expression in supplementary 
figure S4, Supplementary Material online; as expected, 
these total numbers are more uniformly distributed across 
older and younger branches. 

We assessed whether the genes identified as having 
credible increases or decreases in expression specifically 
on any SC branch (solid red branches in fig. 3) were signifi-
cantly enriched for any biological process or molecular 
function gene ontology (GO) categories compared with 
genes with credible changes on any SI branch (black 

Table 1. Model Parameters Estimated from the Tomato Data. 

Model Number of rates −ln L σ2
1 σ2

2 σ2
3 

A 1 67,252.4 0.102 
B 2 65,883.9 0.074 0.134 
C 2 65,124.5 0.075 0.152 
D 3 65,108.6 0.077 0.152 0.067 
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branches in fig. 3). This comparison specifically assesses 
gene expression evolution associated with a transition to 
SC, over and above “background” rates of expression evo-
lution across the rest of the clade. Although fold enrich-
ment was modest 1.20–1.36X (supplementary table S2, 
Supplementary Material online), there were 11 terms sig-
nificantly enriched (false discovery rate [FDR] < 0.05) spe-
cifically on SC branches; these terms primarily focused on 
regulation of transcription, metabolic processes, and bio-
synthesis (supplementary table S2, Supplementary 
Material online). Among the genes in these overrepre-
sented categories, a large fraction are transcription factors 
associated with development (e.g., WRKY and MADS-box), 
hormonal responses (including ethylene- and auxin- 
responsive transcription factors), and regulation of cell cy-
cle (e.g., cyclins), in addition to protein kinases 
(supplementary table S2, Supplementary Material online). 
This enrichment is consistent with increased expression 
changes in genes involved in cell division, differentiation, 
and development that could follow transitions to SC. 

Discussion 
Here, we have developed a new software package that en-
ables the estimation of rates of gene expression evolution 
across a tree, CAGEE. Gene expression levels are much like 
many other continuous traits, and multiple papers have in-
troduced phylogenetic comparative methods for studying 
gene expression (Bedford and Hartl 2009; Rohlfs et al. 2014; 
Rohlfs and Nielsen 2015; Catalán et al. 2019; Chen et al. 
2019). However, as far as we are aware, none of these meth-
ods allows genes to share evolutionary parameters, which 
precludes the analysis of genome-wide trends, either along 
the branches of a tree or between tissues/samples/condi-
tions. To overcome this limitation, CAGEE calculates the 
likelihood of the data using the pruning algorithm 
(Felsenstein 1973) to facilitate the sharing of evolutionary 
parameters along branches of the species tree, providing 
more statistical power to test evolutionary hypotheses. 
Fortunately, we were able to take advantage of much of 
the codebase of our existing software, CAFE (Hahn et al. 
2005, 2007; De Bie et al. 2006; Han et al. 2013; Mendes 
et al. 2020), which implements the pruning algorithm for 
the analysis of gene family sizes across a tree. Although 
gene expression levels and gene family sizes differ in the 
type of data they represent (continuous vs. discrete) and 
their underlying evolutionary models (BBM vs. birth- 
death), many of the required likelihood calculations and 
software components are the same. 

An important thing to consider for the input to CAGEE 
is the normalization used to make gene expression levels 
comparable across species. The data from wild tomatoes 
used here were normalized using transcripts per million 
(TPM; Wagner et al. 2012); other published data sets also 
use this normalization (Berthelot et al. 2018; Chen et al. 
2019; El Taher et al. 2021). However, multiple other nor-
malizations have also been used in comparative analyses, 
including reads per kilobase of transcript per million 

mapped reads (RPKM) (Brawand et al. 2011), fragments 
per kilobase of transcript per million mapped fragments 
(FPKM) (Catalán et al. 2019), and both trimmed mean of 
M values (TMM) and counts per million (CPM) (Blake 
et al. 2020). Each normalization approach has its advan-
tages and disadvantages, and we cannot yet strongly rec-
ommend one specific approach as input to CAGEE. The 
normalization method used will likely depend on the con-
ditions under which samples are collected: if all species can 
be raised simultaneously in a greenhouse, vivarium, or 
growth chamber, we expect many fewer batch effects 
than in samples collected from the field, which will there-
fore necessitate different normalizations. However, even 
animals raised in a common environment—but fed differ-
ent diets—can show many differences in gene expression 
not due to heritable change (e.g., Somel et al. 2008). 
Conversely, many between-sample normalization ap-
proaches (e.g., TMM; Robinson and Oshlack 2010) make 
the assumption that differences in gene expression be-
tween samples are rare. Although such normalization is 
sensible in the context of testing for differential expression 
between samples from the same species, for a set of species 
that have been evolving independently for millions of years 
this is likely not an appropriate assumption. 

CAGEE currently has multiple limitations, both in the 
available models that can be applied and in the types of 
data that can be analyzed. As mentioned earlier, many re-
searchers have modeled gene expression using an OU pro-
cess (Bedford and Hartl 2009; Rohlfs et al. 2014; Chen et al. 
2019; Yang et al. 2019). Although OU models may be arti-
factually preferred over unbounded Brownian motion 
models due to a number of nonbiological factors (see dis-
cussion in New Approaches), it would still be helpful to be 
able to compare such a model with the BBM model used 
here. However, fitting such a model to genome-wide data 
is nontrivial: each gene must have its own mean expression 
value (μ) but possibly shared constraint parameters (α) 
across genes. We have the goal of implementing such a 
model in the near future, as well as other models common-
ly used in comparative methods research (e.g., Landis and 
Schraiber 2017; Boucher et al. 2018). Implementation of 
multiple models will not only allow for the analysis of dif-
ferent types of traits—each of which may be evolving un-
der different regimes—but will also allow users to test the 
sensitivity of their analyses to model choice. For instance, it 
is not currently clear how different the inferred ancestral 
states or rates of evolution will be under different models 
(e.g., BBM vs. OU) and therefore how different the conclu-
sions drawn from any such analyses might be. Ideally, 
qualitative results will be similar, even when there are 
slight quantitative differences. 

Beyond the evolutionary model applied to any data set, 
there are multiple additional sources of variation that 
could be modeled. For instance, we have previously ac-
counted for measurement error in a likelihood framework, 
using an empirically parameterized error model (Han et al. 
2013). We can imagine both applying a similar model here 
to RNA-seq data, as well as extending CAGEE to more 
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error-prone data such as single-cell sequencing. Such an 
extension would treat the level of expression in each cell 
within a cell type as an error-prone draw from an under-
lying distribution; one would then be able to infer the 
rate of evolution within and across cell types across mul-
tiple species. The biggest obstacle to this approach may 
be in identifying homologous cell types across species 
(e.g., Tarashansky et al. 2021). In addition, not all genes ne-
cessarily share the same average rate of evolution; gamma- 
distributed rate categories can be used to model this vari-
ation among genes (cf. Ames et al. 2012; Mendes et al. 
2020). As shown above, not accounting for this rate vari-
ation leads to a slight underestimate of σ2 but also ob-
scures interesting patterns of evolution among genes. 
Finally, the gene tree discordance found in many phyloge-
nomic data sets implies that complex traits (such as ex-
pression levels) will also be controlled by discordant 
gene trees (Hahn and Nakhleh 2016; Hibbins and Hahn 
2021). This underlying discordance can cause evolutionary 
rates to be overestimated (Mendes et al. 2018) and should 
be taken into account when seeking accurate parameter 
estimates (see discussion of wild tomato data below). 
Our goal is to include methods for dealing with all these 
sources of variation in future versions of CAGEE. 

In terms of the types of data that can be analyzed, at 
present, CAGEE is limited to positive, continuously varying 
traits (i.e., the BBM model). However, we also envision dif-
ferent ways to represent and model gene expression data, 
including as a ratio (e.g., male/female expression). Such a 
ratio, after log2-transformation, would be most appropri-
ately modeled by an unbounded Brownian motion model 
since both negative and positive values are possible. This 
and other data types will be supported in future releases. 
Moreover, CAGEE does not have to analyze whole-genome 
or even molecular data: it can be applied to any single trait 
for which the BBM model is appropriate, even morpho-
logical traits. One intriguing application of CAGEE could 
be to suites of morphological traits that are hypothesized 
to share a common evolutionary rate parameter. If, for in-
stance, there is a shift in body plan along some lineages, 
then multiple traits may all increase or decrease their 
rate of evolution at once, and CAGEE can be used to esti-
mate these shared parameters. Even in the context of 
single-trait analyses, the pruning algorithm has been hailed 
as a solution for large-scale comparative analyses 
(Freckleton 2012). Importantly, the number of branches 
in a rooted, bifurcating tree with n tips is 2n-2, so that 
the number of calculations scales linearly with the number 
of species. This makes the pruning algorithm ideal for com-
parative data sets with large numbers of taxa (e.g., Hahn 
et al. 2005; FitzJohn 2012; Hiscott et al. 2016; Caetano 
and Harmon 2018; Mitov et al. 2020). 

The analysis of data from a clade of wild tomatoes re-
vealed a possibly unexpected result: the rate of ovule 
gene expression evolution among SC species is twice as 
high as the rate among SI species (table 1). This finding 
is contrary to some prior expectations—informed by re-
search focused on male–female interactions, especially 

between interacting proteins in the reproductive tract 
(e.g., Swanson and Vacquier 2002; Clark et al. 2006)— 
that suggest that lineages might experience slower evolu-
tion after transitioning to SC. However, it is possible that 
global gene expression levels do not evolve in the same 
sort of tit-for-tat manner as interacting protein sequences, 
such that increases/decreases in male-expressed genes are 
not matched by increases/decreases in interacting 
female-expressed genes (or vice versa). Alternatively, only 
a very small subset of genes may evolve in this manner. 
Indeed, even prior studies comparing protein evolution 
have failed to find clear evidence of slower global evolu-
tionary rates in more inbreeding species (e.g., Wong 
2011). One caveat to the observed rate differences in our 
data is that underlying gene tree discordance, whether 
due to incomplete lineage sorting or introgression, can 
lead to artifactually higher rate estimates (Mendes et al. 
2018; Hibbins and Hahn 2021). However, there is in fact 
less discordance among the SC lineages sampled here 
(Pease et al. 2016), which is the reverse of the pattern 
that would be required to explain our results. 

If not due to underlying bias in our estimates, these 
findings still raise the question: why is ovule gene expres-
sion evolving more rapidly in SC than SI species? One pos-
sibility is that this increased rate is due to a relaxation of 
selection in SC species, possibly because genes involved 
in male–female interactions are no longer needed. If this 
were the case, we might expect to see a general decrease 
in expression levels in SC species; however, there appears 
to be no consistent directionality to the changes along 
SC branches (fig. 3 and supplementary fig. S4, 
Supplementary Material online). Instead, an alternative hy-
pothesis is that transitions to SC involve adaptation to new 
optima of ovule gene expression, compared with SI species 
that tend to maintain ancestral optima. For example, tran-
sitions to SC might favor greater investment in fewer 
ovules, because SC decreases the probability that each 
ovule within a flower will go unfertilized—an otherwise 
wasted investment under conditions (like SI) where receiv-
ing sufficient compatible pollen to fertilize each ovule is 
less predictable (Burd et al. 2009). The nature of these 
new optima might be even more complex, as traits like 
ovule size and number can vary with multiple reproductive 
and ecological conditions and often trade-off with each 
other (Greenway and Harder 2007). Of the species exam-
ine here, for example, two SC lineages (Solanum pimpinel-
lifolium and Solanum lycopersicon—domesticated tomato) 
have significantly larger seeds than most of the SI lineages 
and SC S. pennellii (unpubl. data). Indeed, individual genes 
identified in our GO analysis are known to directly influ-
ence ovule and/or seed size in Solanum (e.g., NOR-like1 
[SOLYC07G063420.3.1; Han et al. 2014], GRAS2 
[SOLYC07G063940.2.1; Li et al. 2018], and CRY2 
[SOLYC09G090100.3.1; Fantini et al. 2019]). Some of our 
hypotheses could be evaluated with matching gene ex-
pression data from other (nonovule) reproductive tissues. 
Analyses including pollen in the same SI and SC lineages, 
and/or data addressing alternative constraints and 
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conditions shaping ovule evolution including ovule size 
and number (e.g., Mione and Anderson 1992), would be 
useful in teasing apart these hypotheses. 

Materials and Methods 
BBM Model of Expression Evolution 
The probability density of expression, p(x, t), at time t for 
evolutionary trajectories following a Brownian motion 
process starting at value xt0 at time t0 is governed by the 
diffusion equation: 

∂p(x, t) 
∂t 

= 
σ2 

2 
∂ 2 p(x, t) 

∂x2 , (2) 

with initial condition p(x, t0) = δ(x − xt0 ) where δ is the 
Dirac delta function. The reflective boundary condition 
at x = xmin implies that the probability fluxes into and 
out of the boundary are balanced, imposing the boundary 
condition: 

∂p(x = xmin, t) 
∂x 

= 0. (3) 

Note that p(x, t) is identical to the transition density 
p(xt|xt0 ). 

Without the reflecting boundary, p(x, t) ∝ 
e−(x−xt0 )

2 /2σ2(t−t0) is a normal distribution with variance 
σ2(t − t0). The variance therefore scales linearly with elapsed 
time, t − t0. With the reflecting boundary, p(x, t) is the sum 
of this spreading normal and its mirror image centered at 
2xmin − xt0 . The analytical solution to this bounded process 
is helpful for understanding the behavior of p(x, t) but is not 
used in CAGEE. In anticipation of implementing additional 
(and possibly more complicated) processes into CAGEE, 
we instead solve Eq. (2) numerically using the approach de-
scribed in Boucher and Démery (2016). Briefly, the continu-
ous diffusion equation is converted into a matrix equation 
by discretizing expression values into N equal bins of width 
δ = xmax−xmin 

N−1 . Following Boucher and Démery (2016), we 
have used a default N = 200, but this number can be set 
by the user (see Results). This approach gives, 

∂P(t) 
∂t 

= 
σ2 

2δ2 M · P(t) (4) 

where P(t) is the vector obtained by discretizing p(x, t) and 
xmax is the largest expression value accounted for. The matrix 
M is tridiagonal with −2 on the diagonal except at the first 
and last diagonal entries which are −1. The sub- and supra-
diagonal entries are 1. This equation has the matrix exponen-
tial solution: 

P(t) = exp 
σ2(t − t0 ) 

2δ2 M 
􏼒 􏼓 

(5) 

which is evaluated by diagonalizing M. 

Implementation of CAGEE 
CAGEE is written in C++ and is compatible with the C+ 
+11 standard. A comprehensive manual and extensive 
unit tests facilitate further code development and main-
tenance. CAGEE is organized into modular components. 
A “clade” class, with references to a parent clade and any 
number of descendant clades, represents a tree structure, 
and a “gene_transcript” class represents the expression le-
vels observed in the various species. These two classes 
comprise the fundamental data structures upon which 
CAGEE performs its analysis (supplementary fig. S5, 
Supplementary Material online). 

Calculations are carried out by additional classes. The 
“optimizer” class has the responsibility of determining 
the σ2 value with the highest likelihood, by comparing 
the likelihood of candidate values and searching the likeli-
hood surface using the Nelder–Mead optimization algo-
rithm. The work of computing the likelihood of a given 
σ2 value is performed by a subclass of the “model” class, 
which for now is limited to a single “Base” model (allowing 
for further development in the future). After appropriate 
estimated values are found, the “transcript_reconstructor” 
class builds a possible set of transcript values for the entire 
tree (supplementary fig. S5, Supplementary Material 
online). 

Performing the likelihood calculations requires exten-
sive matrix operations; it is recommended (though not re-
quired) that these be passed off to a specialized library 
such as Intel’s MKL or Nvidia’s CUBLAS. If no external li-
brary is available, CAGEE will carry out these calculations 
(slowly) by itself. Creating the diffusion matrix (M) requires 
calculation of eigenvalues and eigenvectors and is compu-
tationally expensive. This work is performed by the Eigen 
linear algebra library (https://eigen.tuxfamily.org); various 
internal data structures also take advantage of Eigen 
classes. To enable faster searching, the matrix for an ances-
tral state vector of length 200 (the default in CAGEE) has 
been precomputed and is included with CAGEE. Users 
who wish to use vectors of different lengths can specify 
this as an option. 

Unit-testing is performed using the doctest testing 
framework (https://github.com/doctest/doctest). At the 
time of writing, more than 200 unit tests had been created, 
comprising more than 1,200 individual assertions. For 
complex logging and debugging cases, CAGEE uses the 
EasyLogging framework (https://github.com/amrayn/ 
easyloggingpp). C++ development is always made easier 
by using the Boost C++ libraries (https://www.boost.org/), 
so we include them as well in CAGEE. 

RNA-seq Data from Wild Tomatoes 
We briefly describe here the data collected from seven ac-
cessions of wild tomatoes (S. lycopersicum LA3475, 
Solanum chmielewskii LA1316, S. pimpinellifolium 
LA1589, Solanum habrochaites LA1777, Solanum chilense 
LA4117A, S. pennellii LA3778, and S. pennellii LA0716; all 
accession ID numbers from tgrc.ucdavis.edu). Further 
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details are given in Moyle et al. (2021). Ovule RNA-seq was 
performed on between one and four (usually three) bio-
logical replicates (individual plants) from each accession. 
Plants were germinated from seed and cultivated until 
flowering. For each replicate individual, ovules were dis-
sected from mature, unpollinated flowers, flash frozen, 
and maintained at −80 °C until extraction. For each indi-
vidual, all ovule collections were pooled into a single sam-
ple prior to library construction and sequencing on an 
Illumina HiSeq 2000. Reads were mapped against the to-
mato reference genome (ITAG 2.4), and the number of 
reads mapped onto genic regions was estimated with 
featureCounts (Liao et al. 2014). We normalized the read 
counts from each library by calculating TPM (Wagner 
et al. 2012) and then calculated the mean normalized 
read counts across all samples (individuals) within each ac-
cession. These means per accession were used as input to 
CAGEE. 

To construct a species tree for use with CAGEE, we started 
with the topology given in Pease et al. (2016). Specifically, we 
used the tree found in the supplementary file 
Pease_etal_TomatoPhylo_RAxMLConcatTree_no1360_Fig 
2A.nwk and pruned it to include only the accessions in our 
study using the software ETE (Huerta-Cepas et al. 2016). 
Using the “extend” method found in ETE, we converted 
this tree to ultrametric (same root-to-tip distance for all 
taxa). Setting the root age to 2.48 million years ago (follow-
ing Pease et al. 2016), we were able to express all branches 
in millions of years. Analyses of GO enrichment were car-
ried out using ShinyGO (Ge et al. 2020) with an FDR of 0.05. 

Supplementary material 
Supplementary data are available at Molecular Biology and 
Evolution online. 
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