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Gibbon genome and the fast karyotype 
evolution of small apes 
A list of authors and their affiliations appears at the end of the paper 

Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy 
a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis  
of a northern white-cheeked gibbon (Nomascus leucogenys) genome.  We  describe  the  propensity  for  a  gibbon-specific  
retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature 
termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further 
show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous 
radiation 5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat 
compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb develop-
ment (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal 
habitat. 

Gibbons (Hylobatidae) are critically endangered1 small apes that inhabit 
the tropical forests of southeast Asia (Fig. 1) and belong to the super-
family Hominoidea along with great apes and humans. In the primate 
phylogeny, gibbons diverged between Old World monkeys and great 
apes, providing a unique perspective from which to study the origins 
of hominoid characteristics. 

Gibbons have several distinctive traits, the most striking of which is 
the unusually high number of large-scale chromosomal rearrangements 
in comparison to the inferred ancestral ape karyotype2 . The four gibbon 
genera (Nomascus, Hylobates, Hoolock and Symphalangus) occupy dif-
ferent regions of southeast Asia and bear distinctive karyotypes, with 
diploid chromosome numbers ranging from 38 to 52 (Fig. 1). Given the 
relatively recent differentiation of these genera (4–6 million years ago 
(Myr ago), this constitutes an extraordinarily fast rate of karyotype change. 

In order to investigate the mechanisms behind the plasticity of the 
gibbon genome, understand the evolutionary relationships among the 
four extant gibbon genera and study the evolution of putatively func-
tional sequences related to gibbon-specific adaptations, we sequenced 
and assembled the genome of a female northern white-cheeked gibbon 
(Nomascus leucogenys) named ‘Asia’. The reference assembly (Nleu1.0) 
provides on average 5.7-fold Sanger read coverage over 2.9 gigabase pairs 
(Gb) (Table 1 and Supplementary Table ST1.1). Our quality assessment 
(Extended Data Fig. 1) confirmed its equivalence to other Sanger sequence-
based non-human primate draft assemblies (such as the orangutan or 
rhesus macaque3,4) (Supplementary  Information  section  S1,  Supplemen-
tary Data Files 1 and 2). We also obtained ,153 whole-genome shotgun 
(WGS) short-read data (Illumina) for two individuals of each gibbon 
genus and high-coverage exome data (.603) for two of the same 
individuals in order to derive error models for single nucleotide poly-
morphism (SNP) calls (Supplementary Information section S2; Sup-
plementary Tables ST2.1–2.3). 

Gibbon–human synteny breakpoints 
Nleu1.0 scaffolds were aligned against the human reference (GRCh37) 
to be ordered and oriented into 26 chromosomes (Nleu3.0) under ex-
tensive guidance by cytogenetic data. The reshuffled nature of the gib-
bon genome was especially evident when human–gibbon chromosome 
alignments were compared with those between human and great apes, 
rhesus macaque (Old World monkey) and marmoset (NewWorld monkey) 
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Figure 1 | Geographic distribution of gibbon species used in the study. We 
sequenced two individuals from each gibbon genus and two different species 
(H. moloch and H. pileatus) for the genus Hylobates. The extant geographic 
localization for each genus is illustrated on the map. Individuals in the photos 
are the ones sequenced in this study. The asterisk symbol indicates a deceased 
animal. 
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(Fig. 2a). This higher rate of reshuffling applied only to large-scale chro-
mosomal rearrangements (.10 megabases (Mb)), whereas smaller-
scale rearrangements (10–100 kilobases (kb))  were  comparable  with  other  
species (Fig. 2b) (Supplementary Information section S1). 

We identified 96 gibbon–human synteny breakpoints in Nleu1.0 and 
classified them as to whether they could be defined at the base-pair level 
(class I, n 5 42) or only narrowed to an interval due to greater complex-
ity (class II, n 5 54). As previously reported5 , breakpoints were signifi-
cantly depleted of genes (Supplementary Fig. SF5.2 and Supplementary 
Data File 3) and breakpoint intervals contained a mixture of repetitive 

sequences that inserted exclusively into the gibbon genome2,5,6 (Fig. 2c). 
To assess breakpoint segmental duplication content, we identified gibbon-
specific segmental duplication using in silico methods followed by exper-
imental validation (Extended Data Fig. 2, Supplementary Fig. SF3.1, 
Supplementary Information section S3 and Supplementary Data File 4). 
Of note, both gibbon-specific segmental duplication and gene family 
expansion analyses suggested the gibbon genome has not undergone a 
greater rate of duplication than other hominoids, further supporting a 
model in which accelerated evolution has been limited to gross chro-
mosomal rearrangements (Supplementary Information section S6, Sup-
plementary Fig. SF6.1). 

Segmental duplication enrichment was the best predictor of gibbon– 
human synteny breakpoints, as shown through permutation analyses 
(P value , 0.0001); however, breakpoints were also enriched for Alu 
elements (Supplementary Table ST5.1; Supplementary Information sec-
tion S5; Supplementary Fig. SF5.2). Although non-allelic homologous 
recombination between highly similar sequences can mediate large-
scale rearrangements7 , the majority of gibbon chromosomal breakpoints 
bore signatures of non-homology based mechanisms (Fig. 2c). These 
included the insertion of non-templated sequences (2–51 nucleotides 

Table 1 | Gibbon assembly statistics 
Assembly (Nleu1.0/nomLeu1) 

Total sequence length 2,936,052,603 bp 
Ungapped length 2,756,591,777 bp 
Total contig length 2.77 Gb (92.36%) 
Number of contigs .1 kb  197,908 
N50 contig length 35,148 bp 
Number of scaffolds .3 kb  17,976 
N50 scaffold length 22,692,035 bp 
Average read depth 5.63 
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Figure 2 | Analysis of gibbon–human synteny and breakpoints. a, Oxford 
plots for human chromosomes (y axis) vs. chimpanzee, gorilla, orangutan, 
gibbon, rhesus macaque and marmoset chromosomes (x axis). Each line 
represents a collinear block larger than 10 Mb. The gibbon genome displays a 
significantly larger number of large-scale rearrangements than all the other 
species. In the gorilla plot, chromosomes 4 and 19 stand out as the product 
of a reciprocal translocation between chromosomes syntenic to human 
chromosomes 5 and 17. b, The graph shows the number of collinear blocks in 
primate genomes with respect to the human genome. The number of collinear 
blocks is a proxy for the number of rearrangements and decreases as the size 
of the blocks becomes larger. The gibbon genome has undergone a greater 
number of large-scale rearrangements; however, the number of small-scale 

rearrangements is comparable with the other species. The extremely low 
number of large rearrangements in the gorilla genome (dotted green line) is a 
reflection of the use of the human genome as a template in the assembly process. 
c, Examples of gibbon–human synteny breakpoints. The first two are class I 
breakpoints (that is, base-pair resolution) originated through non-homology 
based mechanisms. NLE12_1 is the result of an inversion in human 
chromosome 1 and NLE18_6 is the result of a translocation between human 
chromosomes 16 and 5 with an untemplated insertion in the gibbon sequence 
shown in purple; in both cases, micro-homologies in the human sequences 
are shown in red. The last example (NLE9_4) is a class II breakpoint (3.2 kb) 
containing a mixture of repetitive sequences. 
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(nt)) and/or the absence of identity, suggesting non-homologous end 
joining. The presence of micro-homologies (2–26 nt) in a small portion 
of the breakpoints (13/42) pointed to additional alternative mechanisms 
such as microhomology-mediated end joining8 or microhomology-
mediated break-induced replication9 . The origin of the complex struc-
ture of breakpoint intervals (class II) was less obvious and reinforced 
the observation that repeats have the tendency to accumulate at the 
breakpoints. 

To explore the possibility that chromatin conformation, rather than 
sequence, might predispose regions to breakage, we investigated the rela-
tionship between gibbon breakpoints and CCCTC-binding factor (CTCF), 
an evolutionarily conserved protein with multiple functions, including 
mediating intra- and interchromosomal interactions10. We performed 
chromatin immunoprecipitation followed by high-throughput sequenc-
ing (ChIP-seq) of CTCF-bound DNA using lymphoblast cell lines es-
tablished from eight gibbon individuals (Supplementary Information 
section S5). We observed an enrichment of gibbon–human breakpoints 
in CTCF-binding events (P value 5 0.0028), which increased when we 
considered a ,20 kb window centred around each breakpoint (P value 
of , 0.0001). Notably, this enrichment was maintained only for CTCF-
binding events shared with other primates (human, orangutan and rhesus 
macaque)11 but not those specific to gibbon (P value 5 0.0019) (Sup-
plementary Fig. SF5.4). 

Thus, gibbon–human breakpoints co-localized with distinct geno-
mic features and epigenetic marks; however, as many of these features 
were shared with other primates, other factors unique to the gibbon 
lineage must have been present to trigger the increased frequency of 
chromosomal rearrangements. 

LAVA insertions in the gibbon genome 
The gibbon genome contains all previously described classes of trans-
posable elements that are mostly also present in other primates. One 
exceptional addition is the LAVA element, a novel retrotransposon that 
emerged exclusively in gibbons12 and has a composite structure com-
prised of portions of other repeats (39-L1-AluS-VNTR-Alu-like-59) 
(Fig. 3a). Searches of Nleu1.0 retrieved 1,797 LAVA insertions, 1,256 
of which were 39 intact elements, many carrying signs of target-primed 
reverse transcription (TPRT)13. The distribution of 39 intact LAVA ele-
ments uncovered a significant overlap with genes (Pearson chi-squared, 
P 5 0.017) and Gene Ontology (GO) analyses using the database for 
annotation, visualization, and integrated discovery (DAVID)14 showed 
a significant functional enrichment exclusive to the ‘microtubule cyto-
skeleton’ category (false discovery rate 5 0.031, P value 5 0.001) (Sup-
plementary Information section S7 and Supplementary Data File 6) 
(Extended Data Fig. 3). Additional analyses with meta-pathway data-
base tools15,16 refined this enrichment to pathways related to chromosome 
segregation, including ‘establishment of sister chromatid cohesion’ and 
‘mitotic metaphase and anaphase’ (Supplementary Table ST7.3). Genes 
with LAVA insertions include proteins that function as checkpoints 
for cell division and for spindle integrity/architecture (such as MAP4, 
CEP164 and BUB1B)17–19, participate in kinetochore assembly and at-
tachment to the spindle (for example, MAD1L1 and CLASP2)20,21, and 
have a role in chromosome segregation during cell division (for example, 
KIFAP3 and KIF27)22 (Extended Data Table 1). 

Intragenic LAVA insertions were skewed toward introns (Pearson 
chi-squared, P 5 0.0001) and were less frequent than expected when 
within ,1 kb of the nearest exon junction (Extended Data Fig. 3). The 
majority (74%) of intronic LAVA elements were found in the antisense 
orientation. We speculated that intronic antisense LAVA insertions may 
cause early transcription termination by providing a polyadenylation 
site in the antisense orientation, as previously described for L1 elements23,24 

(Extended Data Fig. 3). Indeed, we found 84.1% of the 39-intact LAVA 
elements encoded a perfect polyadenylation signal at their 39 end in 
antisense orientation. 

To obtain experimental evidence that LAVA elements disrupt tran-
scription, we performed a reporter assay in which the 3’ end of a 

luciferase gene construct lacking a transcriptional termination site was 
fused to the 3’-terminal fragments of LAVA_E and LAVA_F elements, 
mimicking the arrangement observed in gibbon genes (Fig. 3b, left). 
Luciferase activity exceeding background level by ,50% was observed 
from the LAVA_F reporter construct (Fig. 3b, right), indicating faithful 
termination of luciferase transcription. Furthermore, 39 rapid ampli-
fication of cDNA ends (RACE) experiments confirmed that the tran-
scription termination site had been supplied from the LAVA element 
(Extended Data Fig. 3). Thus antisense intronic LAVA insertions can 
cause early transcription termination with some variability possibly due 
to the genomic context of the polyadenylation site, which explained 
the difference between the two reporter constructs. 

We also investigated LAVA induced early transcription termination 
in vivo by analyzing RNA-seq data generated for the gibbon named Asia 
(Supplementary Table ST2.4). Specifically, we looked for paired-end 
reads only partially aligning to an antisense LAVA element due to un-
templated residues and then identified cases for which the presence of 
a poly(A) tail was preventing full-length alignment. This analysis re-
vealed that elements from a variety of subfamilies have the potential to 

a 

b 

c 

pA 

pA 

luc2 

luc2PGK 

PGK 

PGK 

luc2pmiRGlo_LA_F 

pmiRGlo 

pmiRGlo_LA_E 

pmiRGlo_ΔAATAAA 

5′3′ ΔAATAAA 

ΔAATAAA 

pA 

0 
20 
40 
60 
80 

100 
120 
140 
160 
180 

ΔAATAAA LA_F LA_E 

** 

n = 5 

R
el

at
iv

e
lu

ci
fe

ra
se

 a
ct

iv
ity

 (%
) 

SVA-derived 
5′ 3′ 

LAVA_A 

LAVA_B 

LAVA_C 

LAVA_D 

LAVA_F 

LAVA_E 

ROOT 

B2C 

B2R1 

D2 

B1R2 
(139) 

A2 

A1 

B2R2 
(141) 

(33) 

(42) 

B2A 
(93) 

(46) 

(35) 

(38) 

(32) (49) 

(11) 

B1G 
(125) 

(72) 

B1F2 
(109) 

C4B 
(115) 

F0 

F1 
(116) 

F2 
(128) 

E 
(271) 

B1B 

C2 

C4A 

(13) 

(54) 

(52) 

D1 
(82) 

B1R1 

B1F1 

B1D 

TSD CT-rich Alu-like VNTR U1 AluSz U2 L1ME5 poly(A) TSD 

Figure 3 | The LAVA element and evidence for LAVA-mediated early 
transcription termination. a, Schematic view of the LAVA element highlights 
the main components that originated from common repeats (L1, Alu, VNTR  
and Alu-like). Target-site duplications (TSDs) and the poly(A) tail are also 
indicated. b, Luciferase reporter constructs used to assay for LAVA-mediated 
early transcriptional termination (left panel) and results of the luciferase 
reporter assay (right panel) showing increased luciferase activity by ,50% 
relative to the background for pmiRGlo_LA_F (*P 5 0.0013) (see 
Supplementary Information section S7.8) n 5 5, five biological replicates, from 
five independent transfections done for each experimental condition tested. 
The experiment shown was replicated twice in the laboratory. Statistics were 
carried out using a Student’s t-test (two sided), P values for all pairwise 
comparisons LA_F vs. LA_E, DPA vs. LA_F, and DPA vs. LA_E respectively 
(with 95% CI) were adjusted for multiple comparisons according to the 
Bonferroni method. Centre values show the average, error bars indicate 
standard deviation. c, A median-joining network showing the relationships 
among the 22 LAVA subfamilies generated by comparing the 39 intact LAVA 
elements. Coloured circles represent subfamilies and their size is proportional 
to the number of elements in the subfamily (numbers inside each circle). Black 
dots represent hypothetical sequences connecting adjacent subfamilies. All 
possible relationships are shown. Branch lengths are not drawn to scale. 
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cause early transcription termination, including those identified for LAVA 
elements inserted in the microtubule cytoskeleton genes (for example, 
LAVA_B2R2, LAVA_C4B, LAVA_B1R2) (Extended Data Table 1). 
We observed that early transcription termination occurred at relatively 
low levels as we identified a significant number of read pairs indicative 
of normal transcription and splicing for LAVA-terminated genes (Sup-
plementary Table ST7.5). This is to be expected, as full inactivation of 
many of these genes would be lethal. On the other hand, as alternative 
splicing and RNA pol II transcript termination/polyadenylation are 
tightly coupled processes, LAVA-mediated early transcription termi-
nation could also act by differently affecting distinct isoforms and/or 
influencing the ratio between isoforms. Finally, LAVA insertions may 
also affect gene expression by functioning as exon traps, as shown for 
SVA elements25. One putative example of an exon trapping event was 
identified for HORMAD2, a gene that monitors the formation of syn-
apsis during crossover26 (Supplementary Information section S7, Sup-
plementary Table ST7.6, Supplementary Fig. SF7.1–7.2). 

As genome reshuffling began in the common ancestor of all extant 
gibbon species, LAVA insertions must have occurred in key genes before 
the four genera diverged. We experimentally confirmed the mode and 
tempo of all 23 LAVA insertions in genes from the microtubule cytos-
keleton category using both site-specific PCR and in silico methods 
(Extended Data Figure 4) and found that most of the insertions (15/23) 
were shared by the four gibbon genera (Supplementary Data File 6). 
Eleven of the genes match the structural requirements for early transcrip-
tion termination and five of them are also shared. These genes include 
MAP4, involved in spindle architecture and CEP164, a G2/M check-
point gene whose inactivation results in an aberrant spindle during cell 
division18,19 (Extended Data Table 1). 

The complex evolutionary history of gibbons 
We explored the relationship between LAVA family expansion and evo-
lution of the gibbon lineage and, through analyses of diagnostic muta-
tions, identified 22 LAVA subfamilies (Fig. 3c). In addition, we tested 
for the presence or absence of 200 LAVA loci from among the evolu-
tionarily youngest elements in each subfamily (Extended Data Fig. 4) 
across 17 unrelated gibbon individuals and found that 52% of loci were 
shared among all four genera, whereas 27% were Nomascus specific. The 
remaining LAVA insertions showed a variety of confounding phylo-
genetic relationships consistent with incomplete lineage sorting (ILS) 
of ancestral polymorphisms, perhaps as a result of a rapid radiation of 
gibbon genera (Supplementary Information section S7; Supplementary 
Table ST7.1–7.2). We used a maximum likelihood method27 to obtain 
age estimates for the 22 LAVA subfamilies. In the case of the two oldest 
subfamilies, LAVA_A1 and LAVA_A2, we obtained estimates of ,18 Myr 
ago and ,17 Myr ago, respectively (Supplementary Table ST7.3). A 
coalescent-based methodology implemented in the software G-PhosCS28 

using Nleu1.0 estimated a gibbon–great ape population divergence time 
of ,16.8 Myr ago (95% confidence intervals (CI): 15.9–17.6 Myr ago) 
assuming a split time with macaque of 29 Myr ago (Supplementary 
Information section S4). Hence, the LAVA element probably originated 
around the time of the divergence of gibbons from the ancestral great 
ape/human lineage. 

The evolutionary history of the gibbon lineage and, in particular, the 
timing and order of splitting among the four genera, is still a subject of 
debate29 . To address this issue, we generated medium coverage (mean 
,153) WGS short read data for two individuals from each of the four 
genera, including two different Hylobates species (H. moloch and H. 
pileatus) (Supplementary  Table ST2.1–2.2).  Although  phylogenetic ana-
lysis of assembled whole mitochondrial DNA genomes using BEAST30 

strongly supported monophyletic groupings for each gibbon genus, the 
branching order of the four genera remained unresolved (Supplementary 
Fig. SF9.1–9.2; Supplementary Information S9). 

Neighbour-joining trees constructed from pairwise sequence diver-
gence, k, across ,11,000 genic (200 base pairs (bp)) and ,12,000 non-
genic (1 kilobase (kb)) autosomal loci supported a supermatrix sequence 

topology of (((Siamang (SSY), Hoolock (HLE)), Nomascus (NLE)), (H. 
pileatus (HPL)), H. moloch (HMO)) (Fig. 4a); nevertheless, bootstrap 
confidence for the node separating NLE and Hylobates was low (,52%). 
This topology was also the most frequently observed when constructing 
k-based unweighted pair group method with arithmetic mean (UPGMA) 
trees along the genome using non-overlapping 100-kb sliding windows. 
However, all 15 possible rooted topologies for the four genera were ob-
served at considerable frequencies (Extended Data Fig. 5), consistent 
with the extensive ILS observed in the LAVA element analysis. 

In order to infer the most likely bifurcating species topology amongst 
the four genera while taking into account ILS, we used a novel coalescent-
based ABC methodology using the autosomal non-genic and genic loci 
(Veeramah et al., in the press) (Supplementary Information section S8). 
The topology described above had the highest combined posterior pro-
bability, though support was relatively low (P (model) 5 17%) and other 
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Figure 4 | Gibbon phylogeny and demography. a, The three most frequently 
observed UPGMA gene trees (numbers at the top) constructed across the 
genome at 100-kb sliding windows and posterior probabilities (numbers at the 
bottom) for the same species topologies from a coalescent-based ABC analysis. 
The relatively low numbers observed suggest presence of substantial ILS 
amongst the gibbon genera. b, Parameters estimates describing gibbon 
population demography assuming an instant radiation for all four genera (left) 
and the most probable bifurcating species topology (right). Black, green and red 
numbers indicate divergence times and Ne as calculated by ABC, BEAST 
and G-PhoCS analysis, respectively (Supplementary Information section S9). 
c, PSMC analysis estimating changes in historical Ne. The large increase in Ne 

observed in our PSMC plot for SSY in recent times is probably exaggerated 
due to higher sequencing error and mapping biases in non-NLE samples 
(see details in Supplementary section S8). A generation time of 10 years45,46 

was used to obtain a per generation mutation rate of 1 3 1028 per year. 
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topologies, including one with NLE and Hylobates interchanged as the 
most external taxa, had comparable probabilities (Fig. 4a). 

The estimated internal branch lengths under the best species topo-
logy using our ABC framework and G-PhoCS were very short, sup-
porting a rapid speciation process for the four gibbon genera (Fig 4b, 
right). Given this observation and uncertainty in the best topology, we 
also estimated parameters under an instantaneous speciation model 
(Fig. 4b, left). Assuming an overall autosomal mutation rate of 1 3 
1029 per site per year, we placed the beginning of the speciation pro-
cess at ,5 Myr ago under both models, with the two Hylobates species 
diverging ,1.5 Myr ago. 

Consistent with the ABC analysis, SSY and HLE share the largest 
number of alleles across the whole genome (Supplementary Table ST8.5). 
However, NLE and the two Hylobates samples are both significantly 
closer to SSY than HLE as assessed by the D-statistic31 . This result could 
be explained by two independent gene flow events between SSY and both 
NLE and Hylobates. However, fertile intergenic hybrids have yet to 
be observed either in the wild or captivity32; an alternative explanation 
would be long-term population structure in the gibbon ancestral pop-
ulation. Both the ABC and G-PhoCS analyses suggest that the ances-
tral gibbon effective population size (Ne) was large (80,000–130,000), 
but neither of these frameworks can distinguish this from a structured 
ancestral population. 

The coalescent-based analysis (Fig. 4a), along with estimates of genome-
wide heterozygosity (Supplementary Fig. ST8.2), suggests a larger long-
term Ne for both N. leucogenys and H. moloch compared to the other 
species. Analysis using the pairwise sequentially Markovian coalescent 
(PSMC) model33 indicates that these two species underwent an increase 
in Ne during the Late Pleistocene era (500–100 thousand years ago (kyr 
ago) followed by a subsequent decrease in Ne 100–50 kyr ago (Fig. 4c) 
(Supplementary Information section S8). Fluctuation in Ne could result 
from changes in the actual number of individuals in the population, 
changes in population structure, and/or variable gene flow. 

Functional sequence evolution 
Accelerated substitution rates are a hallmark of adaptive evolution, and 
genomic regions with excess lineage-specific substitutions have been 
found to have functional roles34 . We identified 240 short (153 bp) med-
ian length) regions with accelerated substitution rates in the gibbon 
lineage (gibARs). We observed that gibARs were primarily intergenic 
(66%) and tended to co-localize near the same genes as LAVA elements 
(P value 5 81 3 1026; odds ratio of 2.74 (95% CI: 1.79–4.07)). Consis-
tent with this finding, a GO enrichment test for genes within 6 100 kb 
of each gibAR (in comparison with background genes) revealed enrich-
ment for the ‘chromosome organization’ category (Benjamini–Hochberg 
false discovery rate ,5%) (Extended Data Fig. 6). Given evidence of 
functional roles gathered for human accelerated regions35, we speculate 
that the gibARs may create functional elements (for example, enhancers 
or protein-binding domains) to modulate the transcriptional effect of 
local LAVA insertions (Supplementary Information section S12 and Sup-
plementary Data File 9). 

We assessed the potential presence of positive selection in 13,638 
human genes with one-to-one orthologues in gibbon using a branch-
site likelihood ratio test36 (Supplementary Information section S10). 
One of the most striking features of gibbons is their use of brachiation 
(arboreal locomotion using only the arms). We uncovered evidence re-
lated to traits possibly associated with this adaptation such as the gib-
bon’s longer arms, more powerful shoulder flexors, rotator muscles and 
elbow flexors37 . First, some genes whose functions relate to these ana-
tomical specializations appear to have undergone positive selection in 
gibbons. They include TBX5 (P value 5 0.00015), required for the de-
velopment of all forelimb elements38; COL1A1 (pro-alpha1 chains of 
type I collagen) (P value 5 3.39 3 10211), the fibril-forming collagen 
that is the main protein of bones, tendons and teeth39; and  CHRNA1 (ace-
tylcholine receptor subunit alpha precursor) (P value 5 0.00039), involved 
in skeletal muscle contraction40. These genes have not been identified 

as positively selected in other primates to date. We also observed that 
some genes involved in chondrogenesis (SNX19, ID2 and EXT1) were 
associated with gibARs. Finally, the chondroadherin gene (CHAD)41 

coding for a cartilage matrix protein is specifically duplicated in all gib-
bon genera (Extended Data Fig. 2). 

Discussion 
Our sequencing, assembling and analysis of the gibbon genome has pro-
vided numerous insights into the accelerated evolution of the gibbon 
karyotype and identified genetic signatures related to gibbon biology. 
First, segmental duplications and repetitive sequences were the best pre-
dictors of gibbon–human breakpoints, although we excluded a causal 
role given the predominance of non-homology-based repair signatures. 
Furthermore, accelerated rearrangement was confined to large-scale 
chromosomal events, pointing to a mechanism responsible for causing 
gross chromosomal changes, rather than global genomic instability. This 
is in line with our hypothesis that the high rate of chromosomal rear-
rangements may have been due to LAVA-induced premature tran-
scription termination of chromosome segregation genes. This effect may 
have occurred at a low enough level to be compatible with life but suf-
ficient to increase the frequency of chromosome segregation errors. The 
link between erroneous chromosome segregation and increased chro-
mosomal rearrangement has been recently demonstrated by others through 
in vitro experiments25,26. 

The question remains how such a high number of chromosomal re-
arrangements could become fixed in such a relatively short time. One 
possibility is that a combination of geographic isolation and post-mating 
reproductive barriers accelerated the radiation of the four gibbon genera. 
Our estimates dated the lineage-splitting event to the Miocene–Pliocene 
transition, when major changes in the distribution of tropical and sub-
tropical forests were caused by the elevation of the Yunnan plateau and 
rise in sea levels42,43 . Furthermore, fluctuation in sea levels beginning in 
the Early Pliocene appears to have brought about cycles of forest frag-
mentation and amalgamation, leading to alternating range compres-
sion and expansion for many mammalian groups44 . 

Together, these results advance our knowledge of the unique traits 
of the small apes and highlight the complex evolutionary history of these 
species. Moreover, our analyses of the rearranged gibbon genome help 
to provide insight into the mechanisms of chromosome evolution as 
well as uncovering a new source of genome plasticity. 

METHODS SUMMARY 
Sanger-based whole-genome sequencing was performed as described for other spe-
cies. The genome assembly was generated using the ARACHNE genome assembler 
assisted with alignment data from the human genome (Supplementary Information 
section S1). The source DNA for the sequencing was derived from a single female 
(Asia; studbook no. 0098, ISIS no. NLL605) housed at the Virginia Zoo in Norfolk, 
Virginia. Short-read libraries were constructed at the Oregon Health & Science 
University (OHSU) following standard Illumina protocols and sequenced on an 
Illumina HiSeq 2000. Analyses were performed with custom analysis pipelines. 
See Supplementary Information for additional information about the methods. 
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Extended Data Figure 1 | The gibbon assembly statistics and quality 
control. a, The table compares the gibbon assembly statistics to those of other 
primates sequenced with a similar strategy. b, The plot represents the 
percentage of the 10,734 single-copy gene HMMs (hidden Markov models) for 
which just one gene (blue) is found in the different mammalian genomes in 
Ensembl 70. Other HMMs match more than one gene (red). The missing 

HMMs (cyan) either do not match any protein or the score is within the range 
of what can be expected for unrelated proteins. The remaining category (green) 
represents HMMs for which the best matching gene scores better than 
unrelated proteins but not as well as expected. See Supplementary Information 
section 1.4 for more details. 
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Extended Data Figure 2 | Analysis of gibbon–human synteny blocks and 
identification and validation of gibbon segmental duplications. a, The 
image shows a representative gibbon-only whole-genome shotgun sequence 
detection (WSSD) call by Sanger read depth. The duplication identified in this 
case overlaps with the gene CHAD that codes for a cartilage matrix protein. 
b, Examples of fluorescence in situ hybridizations on gibbon metaphases using 
duplicated human fosmid clones that were identified by the (WGS) detection 

strategy (red signals). Left, interchromosomal duplication. Middle, interspersed 
intrachromosomal duplication. Right, intrachromosomal tandem duplication 
confirmed using co-hybridization with a single control probe (blue signals). 
c, Megabases of lineage-specific and shared duplications for primates based on 
GRChr37 read depth analysis. Copy-number corrected values by species are 
shown below. 
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Extended Data Figure 3 | Analysis of LAVA element insertion in genes and 
early termination of transcription. a, The histogram shows the results of 
permutation analyses. We find a significant association between LAVA 
elements and genes. Moreover, insertions are significantly enriched in introns 
and depleted in exons, most probably as a result of selection against insertions 
in exons. b, Schematic representation of the mechanism through which LAVA 
intronic insertions in antisense orientation might cause early termination of 
transcription. The truncated transcript is indicated on the diagram as A and 
normal transcript indicated on the diagram as B (pA 5 polyadenylation site). 
c, We calculated the distance to the nearest exon for each intronic LAVA and 

compared this to what would be expected for random insertions (that is, 
background). We found fewer insertions than expected by chance within 1 kb 
of the nearest exon. d, Identification of pmiRGlo_LA_F polyadenylation sites 
by 39 RACE. Alignment of thirteen 39 RACE PCR clone sequences and the 
pmiRGlo_LA_F sequence. LAVA_F 39 TSD is highlighted by dark green 
background; the major antisense LAVA_F polyadenylation signal (MAPS) is 
highlighted by red background. The termination sites are marked with arrows 
on the LAVA_F sequence. Poly(A) tails of the identified transcripts are in 
red text. 
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Extended Data Figure 4 | Evolution of the LAVA element. a, Screenshots 
from the Integrative Genomics Viewer (IGV) browser for loci MAP4, 
RABGAP1 and BBS9. Each column shows portions of the IGV visualization of a 
LAVA insertion locus identified in Nleu1.0 and its flanking sequence. Red 
rectangles indicate the margins of each LAVA insertion. Read pairs are 
coloured red when their insert size is larger than expected, indicating the 
presence of an unshared LAVA insertion. MAP4 is a shared LAVA insertion, 
whereas RABGAP1 and BBS9 are Nomascus specific. b, LAVA elements 

containing at least 300 bp of the LA section of LAVA were selected and 
reanalysed using RepeatMasker to determine subfamily affiliation and 
divergence from the consensus sequence. LAVA elements are grouped based 
upon their subfamily affiliations (see legend top right for colour scheme). 
The x axis shows the per cent divergence from the respective consensus 
sequence and the y axis shows the number of elements with a certain per cent 
divergence from the consensus sequence. 
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Extended Data Figure 5 | Analysis of the phylogenetic relationships 
between gibbon genera. a, Neighbour-joining trees for gibbons using non-
genic loci. b, UPGMA trees for 100 kb non-overlapping sliding windows 

moving along the gibbon genome reporting the top 15 topologies (see also 
Supplementary Table ST8.3). The percentage of total support for each topology 
is given within each subpanel. 
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Extended Data Figure 6 | Analysis of the relationship between gibbon 
accelerated regions (gibARs) and genes. a, Intergenic regions are enriched in 
gibARs. Different sequence types are shown on the x axis and the y axis displays 
the fraction of gibARs and candidate regions annotated to the respective class. 
gibARs are significantly enriched in intergenic regions (P 5 4.7 3 1026) and 
significantly depleted in exons (P 5 7.3 3 1026). P values for each class were 
calculated with the Fisher’s exact test. Introns are comparably prevalent in 

candidates and gibARs, whereas in the UTR and flanking region, counts are too 
low to draw meaningful conclusions (data not shown). b, TreeMap from 
REVIGO for GOslim Biological Process terms with a Benjamini–Hochberg 
false discovery rate of 5%. Each rectangle is a cluster representative; larger 
rectangles represent ‘superclusters’ including loosely related terms. The size of 
the rectangles reflects the P value. 
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Extended Data Table 1 | Genes from the ‘microtubule cytoskeleton’ GO category with LAVA insertions 

Genes highlighted in grey carry LAVA insertions that are shared, antisense, and carry a perfect antisense polyadenylation site. 
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