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INTRODUCTION: The notion that species 
boundaries can be porous to introgression 
is increasingly accepted. Yet the broader role 
of introgression in evolution remains con-
tentious and poorly documented, partly be-
cause of the challenges involved in accurately 
identifying introgression in the very groups 
where it is most likely to occur. Recently di-
verged species often have incomplete repro-
ductive barriers and may hybridize where 
they overlap. However, because of retention 
and stochastic sorting of ancestral polymor-
phisms, inference of the correct species branch-
ing order is notoriously challenging for recent 
speciation events, especially those closely 

spaced in time. Without knowledge of species 
relationships, it is impossible to identify in-
stances of introgression. 

RATIONALE: Since the discovery that the 
single mosquito taxon described in 1902 as 
Anopheles gambiae was actually a complex of 
several closely related and morphologically in-
distinguishable sibling species, the correct spe-
cies branching order has remained controversial 
and unresolved. This Afrotropical complex con-
tains the world’s most important vectors of 
human malaria, owing to their close association 
with humans, as well as minor vectors and 
species that do not bite humans. On the basis of 

ecology and behavior, one might predict phy-
logenetic clustering of the three highly anthro-
pophilic vector species. However, previous 
phylogenetic analyses of the complex based 
on a limited number of markers strongly dis-
agree about relationships between the major 
vectors, potentially because of historical intro-
gression between them. To investigate the history 
of the species complex, we used whole-genome 
reference assemblies, as well as dozens of re-
sequenced individuals from the field. 

RESULTS: We observed a large amount of 
phylogenetic discordance between trees gener-
ated from the autosomes and X chromosome. 
The autosomes, which make up the majority of 
the genome, overwhelmingly supported the 
grouping of the three major vectors of malaria, 
An. gambiae, An. coluzzii, and  An. arabiensis. In  
stark contrast, the X chromosome strongly sup-
ported the grouping of An. arabiensis with a 
species that plays no role in malaria trans-
mission, An. quadriannulatus. Although the 

whole-genome consensus 
phylogeny unequivocally 
agrees with the autosomal 
topology, we found that 
the topology most often 
located on the X chro-
mosome follows the his-

torical species branching order, with pervasive 
introgression on the autosomes producing re-
lationships that group the three highly an-
thropophilic species together. With knowledge 
of the correct species branching order, we are 
further able to uncover introgression between 
another species pair, as well as a complex his-
tory of balancing selection, introgression, and 
local adaptation of a large autosomal inversion 
that confers aridity tolerance. 

CONCLUSION: We identify the correct spe-
cies branching order of the An. gambiae species 
complex, resolving a contentious phylogeny. No-
tably, lineages leading to the principal vectors 
of human malaria were among the first in the 
complex to radiate and are not most closely 
related to each other. Pervasive autosomal 
introgression between these human malaria 
vectors, including nonsister vector species, 
suggests that traits enhancing vectorial capac-
ity can be acquired not only through de novo 
mutation but also through a more rapid pro-
cess of interspecific genetic exchange. 
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Introgressive hybridization is now recognized as a widespread phenomenon, but its role 
in evolution remains contested. Here, we use newly available reference genome assemblies 
to investigate phylogenetic relationships and introgression in a medically important group 
of Afrotropical mosquito sibling species. We have identified the correct species branching 
order to resolve a contentious phylogeny and show that lineages leading to the principal 
vectors of human malaria were among the first to split. Pervasive autosomal introgression 
between these malaria vectors means that only a small fraction of the genome, mainly on 
the X chromosome, has not crossed species boundaries. Our results suggest that traits 
enhancing vectorial capacity may be gained through interspecific gene flow, including 
between nonsister species. 

T 
he notion that species boundaries can be 
porous to introgression is increasingly ac-
cepted. Charismatic cases, such as gene flow 
between Neanderthals and anatomically 
modern humans (1) or between Heliconius 

butterflies (2, 3), show that introgression can 
transfer beneficial alleles between closely related 
species. Yet the broader role of introgression in 

evolution remains contentious and poorly docu-
mented, partly because of the challenges in-
volved in accurately identifying introgression in 
the very groups where it is most likely to occur. 
Recently diverged species often have incomplete 
reproductive barriers, hence, may hybridize in 
sympatry. However, another feature of rapid ra-
diations is that ancestral polymorphism predat-
ing lineage splitting may be sorted stochastically 
among descendant lineages in a process known 
as incomplete lineage sorting (ILS). Alleles shared 
through ILS can be difficult to distinguish from 
those shared through secondary contact and in-
trogression. Newly developed methods can differ-
entiate these two processes (1, 4) but  only  if  the  
correct species branching order is known. Because 
both introgression and ILS cause discordance be-
tween gene trees and the species tree, inference of 
the correct  species phylogeny  (i.e.,  the historical  
branching order of the taxa) is notoriously chal-
lenging for recent radiations (5–7). 
Since the discovery that the single mosquito 

taxon described in 1902 as Anopheles gambiae 
(8) was actually a complex of several closely re-
lated and morphologically indistinguishable sib-
ling species (known as the An. gambiae complex) 
(9),  the correct  species branching  order has  re-
mained controversial and unresolved. This Afro-
tropical complex (10–13) contains three  widely  
distributed and extensively sympatric species that 
rank among the world’s most important vectors 
of human malaria, owing to their association 
with humans (An. gambiae sensu stricto, its  closest  
relative and sister species, Anopheles coluzzii, and  
Anopheles arabiensis) (Fig.  1A).  Anopheles merus 
and Anopheles melas, salt-tolerant species that 

breed in brackish coastal waters of eastern and 
western Africa, respectively, are minor vectors. 
Anopheles quadriannulatus plays no role in ma-
laria transmission despite vector competence for 
Plasmodium falciparum, as it tends to bite ani-
mals other than humans. On the basis of ecology 
and behavior, one might predict phylogenetic 
clustering of the highly anthropophilic vector 
species. Yet such clustering has not been sup-
ported by chromosomal inversion phylogenies 
(10, 14). The apparent phylogenetic affinity be-
tween An. arabiensis and An. gambiae supported 
by molecular markers and shared chromosomal 
inversion polymorphisms was instead attributed 
to introgression (15, 16). Introgression is plausible 
between any geographically overlapping pair of 
species in the complex, as reproductive isolation 
is incomplete: Adult female F1 hybrids—although 
uncommon in nature—are fertile and vigorous 
(only F1 hybrid males are sterile) (10). Nonethe-
less, comprehensive evidence for introgression 
between An. arabiensis and the other major vec-
tor lineage (An. gambiae + An. coluzzii) has been 
lacking, until now, because of insufficient ge-
nomic resources. 
Important malaria vectors make up a small 

fraction of the genus Anopheles but almost in-
variably are embedded in species complexes sim-
ilar to that of An. gambiae sensu lato (17). Thus, 
resolving the phylogeny of the An. gambiae com-
plex has the potential to yield insights into the 
origin and evolution of traits that are associated 
with highly successful malaria vectors across the 
genus as a whole.  Here, we have used newly  avail-
able whole-genome reference assemblies (18) to  
infer the species phylogeny. We found that the 
two most important malaria vector lineages in 
the complex  are not  the most closely  related,  and  
we have uncovered pervasive introgression be-
tween them. The extent of introgression is such 
that the phylogenetic tree inferred from whole-
genome alignments supports the incorrect spe-
cies branching order with high confidence. 

The X chromosome reflects the species 
branching order 

As a first step in phylogenomic analysis, align-
ments were generated for existing (19, 20) and 
newly available genome assemblies, represent-
ing six species of the An. gambiae complex and 
two Pyretophorus out-group species (An. christyi 
and An. epiroticus) (supplementary text S1 and 
fig. S1) (21). Among the in-group species, the align-
ment included ~60% of nongap and nonmasked 
base pairs of the An. gambiae PEST reference 
assembly. Across all assemblies, the proportion 
of aligned base pairs was lower (~53%) but, never-
theless, spanned more than 93 megabase pairs 
(Mb) (~40% of the euchromatic genome). 
As the An. gambiae complex reference ge-

nomes were assembled from laboratory colony– 
derived sequencing template [except for An. melas 
(18)], we also performed whole-genome shot-
gun sequencing of individual field-collected speci-
mens sampled from at least one population of 
each of the six in-group species (supplementary 
text S2). Sequencing reads were aligned to the 
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species-appropriate reference assembly to avoid 
considerable interspecific mapping bias (supple-
mentary  text  S2, figs.  S3  to  S4, and  table S3), and  
single-nucleotide variant positions were converted 
to a common coordinate system relative to the 
reference genome alignment (supplementary texts 
S2 and S3 and fig. S2). The results presented 
below are based on the field-collected samples, 
but analyses were performed in parallel on the 
reference genome assemblies, and our findings 
were consistent in all cases. 
To infer the correct species branching order 

in the face of anticipated ILS and introgression, 
maximum-likelihood (ML) phylogenies were con-
structed from 50-kilobase (kb) nonoverlapping 
windows across the alignments (referred to here 
as “gene trees” regardless of their protein-coding 
content), considering six in-group species rooted 
alternatively with An. christyi or An. epiroticus 

(n =  4063 windows) (supplementary text S3). As 
the choice of out-group  did  not  materially  alter  
our results, we present  our findings based  on  the  
more closely related species, An. christyi. When  
the 85 tree topologies observed at least once across 
the genome were sorted by chromosome arm and 
relative frequency, the most commonly observed 
trees were strongly discordant between the X chro-
mosome and the autosomes (Fig. 2, table S9, and 
fig. S16). Although weak disagreement among 
tree topologies concerning the branching order 
of basal nodes was a consequence of poor res-
olution due to ILS (Fig. 1C and fig. S16B), the 
striking discordance between the X chromosome 
and the autosomes was not a trivial consequence 
of lack of phylogenetic signal; conflicting topolo-
gies  had strong bootstrap  support  (fig. S16B).  
Because the major disagreement between the X 
chromosome and the autosomes concerned the 

relative phylogenetic positions of An. arabiensis 
and An. quadriannulatus, for simplicity, we 
grouped the most frequently observed topologies 
into three sets (Fig. 2 and fig. S16), (i) A+CG: 
those that supported An. arabiensis clustering 
with An. coluzzii + An. gambiae; (ii) A+CG,  R+Q:  
those that supported both An. arabiensis (An. 
coluzzii + An. gambiae) and An. merus + An. 
quadriannulatus; and (iii) A+Q: those that sup-
ported the clustering of An. arabiensis and  An. 
quadriannulatus. On the X chromosome, all three 
of the most frequently observed topologies (in-
ferred from 64% of windows) strongly supported the 
relationship [melas (arabiensis, quadriannulatus)], 
which indicated a sister-taxon relationship between 
An. arabiensis and An. quadriannulatus (i.e., A+Q) 
(orange shades in Fig. 2). This relationship was 
shared among all field-collected samples (Fig. 1D). 
Notably, the X chromosomal windows supporting 
these topologies are concentrated distal to the cen-
tromere (Fig. 3D and supplementary text S3), in 
an ~15-Mb region corresponding to the Xag in-
version whose orientation is ancestral to the An. 
gambiae complex and shared by An. gambiae, 
An. coluzzii, and  An. merus (see supplementary 
text S5). 
In stark contrast to the X chromosome, the 

overwhelming majority of window-based topolo-
gies across the autosomes supported An. arabiensis 
as sister to An. gambiae + An. coluzzii (green 
and purple shades in Fig. 2). On chromosomes 
3 and 2R, a subset of these topologies also sup-
ported a sister-taxon relationship between An. 
quadriannulatus and An. merus, in further dis-
agreement with the X chromosome (purple shades, 
Fig. 2). 
Autosomal introgression betweenAn. arabiensis 

and the ancestor of An. gambiae + An. coluzzii 
has long been postulated (10, 22) and could ex-
plain the strong discordance between the dom-
inant tree topologies of the X and autosomes. 
However, before this study, the correct species 
branching order was unresolved, which precluded 
definitive interpretation of these conflicting sig-
nals. To infer the correct historical branching 
order, we applied a strategy based on sequence 
divergence (supplementary text S3 and fig. S16). 
Because introgression will reduce sequence di-
vergence between the species exchanging genes, 
we expect that the correct species branching order 
revealed by gene trees constructed from non-
introgressed sequences will show deeper diver-
gences than those constructed from introgressed 
sequences. If the hypothesis of autosomal intro-
gression is correct, this implies that the topolo-
gies supported by the X chromosome should 
show significantly higher divergence times be-
tween An. arabiensis and either An. gambiae or 
An. coluzzii than topologies supported by the 
autosomes. 
To test this hypothesis, we used An. arabiensis, 

An. gambiae, and  An. melas, as  these  three species  
show strongly discordant trees on the X and auto-
somes. For this trio, there are three possible phy-
logenetic relationships and two divergence times 
for each, T1 and T2 (Fig. 3A). Using the metrics T1 
and T2, we conducted two different tests. Initially, 
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Fig. 1. Distribution and phylogenetic relationships of sequenced members of the An. gambiae 
complex. (A) Schematic geographic distribution of An. gambiae (gam, formerly An. gambiae S form),  
An. coluzzii [col, formerly An. gambiae M form (13)], An. arabiensis (ara), An. quadriannulatus (qua), An. 
merus (mer), and An. melas (mel). (B) Species topology as estimated from a ML phylogeny of the X 
chromosome (see text) compared with the ML phylogeny estimated from the whole-genome sequence 
alignment. The scale-bar denotes nucleotide divergence as calculated by RAxML. Red branches of the 
latter tree highlight topological differences with the species tree. (C) Schematic of the species topology 
rooted by An. christyi (An. chr) and  An. epiroticus (An. epi), showing the major introgression events 
(green arrows) and the approximate divergence and introgression times [Ma T 1 standard deviation 
(SD)], if one assumes a substitution rate of 1.1 × 10−9 per site, per generation, and 10 generations per 
year. The gray bar surrounding each node shows T2 SD. Nodes marked by asterisks are not fully 
resolved owing to high levels of ILS. (D) Neighbor-joining tree displaying the Euclidian distance between 
individuals from population samples of each species, calculated using sequence data from the X 
chromosome. Each species is represented by a distinct symbol shape or shade. 
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we compared mean sequence divergence between 
X chromosome–based versus autosome-based 
topologies. As predicted, the estimated mean values 
of T1 and T2 for trees inferred from 10-kb win-
dows on the X chromosome were significantly 
higher than their counterparts on the autosomes 
(both P < 1.0  × 10−40) (Fig. 3B). However, the pos-
sibility exists that this result was confounded 
or entirely driven by other factors that differ be-
tween the X and autosomes, including a faster 
rate of evolution on the X (23). Indeed, we found 

evidence supporting faster evolution of genes on 
the X chromosome (supplementary text S3 and 
fig. S23). To avoid this problem, we conducted 
a second test on the autosomes alone, focusing 
on trees inferred from 10-kb windows and the 
mean divergence levels among those supporting 
the three possible phylogenetic relationships il-
lustrated in Fig. 3A. The result, congruent with 
the first test but providing unequivocal evidence 
for the correct species branching order, was that 
the set of autosomal trees supporting the major-

ity X chromosome topology [gambiae (melas, 
arabiensis)] again had the highest mean values 
of T1 and T2 (both P < 1.0  × 10−40) (Fig. 3C). This 
indicates that the species branching order in-
ferred from the X chromosome is the correct 
one (Fig. 1B), despite extensive amounts of An. 
gambiae–An. arabiensis autosomal introgres-
sion (Fig. 3D and fig. S16). 
The total-evidence approach to phylogenetic 

reconstruction (24) is premised on the  notion  that  
the best estimate of species  relationships  arises  
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Fig. 2. Phylogenies inferred from regions on the autosomes differ strongly 
from phylogenies inferred from regions on the X chromosome. ML-rooted 
phylogenies were inferred from n =  4063 50-kb genomic windows for An. 
arabiensis (A), An. coluzzii (C), An. gambiae (G), An. melas (L), An. merus (R), 
and An. quadriannulatus (Q), with An. christyi as out-group. The nine most 
commonly observed topologies across the genome (trees i to ix) are indicated 
on each of the five chromosome arms (if found) by correspondingly colored 
blocks whose length represents the proportion of all 50-kb windows on that 
arm that support the topology. Topologies specific to 2La are represented by 
the dark gray block on 2L; all other topologies observed on each chromosome 
arm were pooled, and their combined frequencies are indicated by the light 
gray blocks. The X chromosome most often indicates that A and Q are sister 

taxa (trees vii to ix), whereas the autosomes indicate that A and C+G are sister 
groups (trees i to vi). Large portions of the autosomes (particularly 3L and 3R) 
indicate that R and Q are sister taxa (trees iv to vi). Additional diversity in inferred 
trees is the result of rearrangement of three groups (R, C+G, and L+A+Q) 
because of ILS. The most common phylogeny on the X chromosome (vii) 
represents the most likely species branching order. The 2L arm has a markedly 
different distribution of phylogenies because of the unique history of the 
2La inversion region (see Fig. 5), which creates unusual phylogenetic topolo-
gies found nowhere else in the genome.The autosome-like trees on the X chro-
mosome (i and ii) are entirely found in the pericentromeric region (15 to 24 Mb) 
(see Fig. 3D), where introgression between An. arabiensis and An. gambiae + 
An. coluzzi has previously been implicated. 

Fig. 3.Tree height reveals the true species branching order in the face of 
introgression. (A) Color-coded trees show the three possible rooted phylo-
genetic relationships for An. arabiensis (A), An. gambiae s.s. (G), and An. melas 
(L), with out-group An. christyi. For any group of three taxa, there are two 
species divergence times (T1 and T2). When introgression has occurred, a 
strong decrease is expected in these divergence times. (B) Trees  on  the X  
chromosome have significantly higher mean values of T1 and T2 than the 
autosomes, which indicates that introgression is more likely to have occurred 
on the autosomes than the X chromosome (diamond for mean, whiskers T SEM 
offset to the right for visual clarity; **P < 1.0  × 10−40). (C) Even among only 
autosomal loci, regions with the X majority relationship G(LA) (orange) have 
significantly higher T1 and T2 (**P < 1.0  ×  10−40), which indicates that the 

autosomal majority topology (green) is the result of widespread introgression 
between An. arabiensis and An. gambiae. The X majority relationship G(LA) 
therefore represents the true species branching relationships. (D) The gene 
tree distributions or “chromoplots” for all five chromosomal arms show that 
the autosomal and X chromosome phylogenies strongly disagree. Three-taxon 
phylogenies were inferred from 10-kb chromosomal windows across the ge-
nome, and colored vertical bars represent the relative abundance of the three 
alternative topologies (A) in a 200-kb window.The proportions of the three 10-kb 
gene trees for each chromosome arm (left) indicate that the autosomes all 
strongly show a closer relationship between An. gambiae and An. arabiensis 
(green); the X indicates a closer relationship between An. arabiensis and 
An. melas (orange). Black semicircles indicate the location of centromeres. 
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from character congruence when all available 
data are considered simultaneously. Alternative 
approaches seek taxonomic congruence between 
different data sets or data partitions, analyzed 
separately (25). Either way, standard phylogenomic 

practice entails some form of “majority rule,” based 
on the assumption that as the amount of data 
increases so will the probability of converging on 
the correct species branching order [apart from 
exceptional cases (26)]. Because of both ILS and 

introgression, the historical species branching 
order for the An. gambiae complex is represented 
by only 1.9% of 50-kb windows across the entire 
genome (Fig. 2). As a result, when we inferred a 
ML tree for the An. gambiae complex on the 
basis of whole-genome alignments, we recovered 
the wrong species branching order supported by 
100% of the bootstrap replicates at each node 
(Fig. 1B, supplementary text S3, and figs. S17A 
and S18A). The extent of autosomal introgression 
in the An. gambiae complex has the paradoxical 
effect that, as an increasing amount of the ge-
nome is sampled, support for the incorrect species 
branching order is maximized. 

Autosomal permeability of 
species boundaries 

Early cytotaxonomic evidence (10, 12, 27), as well 
as more recent ribosomal DNA–based evidence 
(28, 29), supports rare occurrences (<0.1%) of nat-
ural female F1 hybrids between An. arabiensis– 
An. gambiae + An. coluzzii, An. arabiensis–An. 
quadriannulatus, and  An. melas–An. gambiae + 
An. coluzzii, although there are no reports of hybrids 
involving An. merus. The evolutionary importance 
of these rare hybrids as bridges to interspecific 
gene flow has remained controversial. Inference 
of the correct species branching order for the An. 
gambiae complex (Fig. 1B) allowed a systematic 
analysis of introgression across the genomes of 
six members of this complex using the D (1, 4) 
and DFOIL (30) statistics (supplementary text S4). 
As expected, such tests revealed pervasive intro-

gression across all autosomes between An. arabiensis 
and the ancestor of An. gambiae + An. coluzzii 
(figs. S24 and S25). Although introgression was 
detected in both directions, the majority involved 
genetic transfer from An. arabiensis into the an-
cestor of An. gambiae + An. coluzzii. This recent  
and massive episode of introgression impedes our 
ability to detect older introgression events be-
tween these species. Unexpectedly, we also found 
evidence of extensive autosomal introgression 
between another species pair, An. merus and An. 
quadriannulatus (Fig. 4, supplementary text S3, 
and figs. S24 and S25). One of the most striking 
of the introgressed regions was a contiguous 
block of genes coincident with the ~22-Mb 3La 
chromosomal inversion (31). The corresponding 
sequence originally present in ancestral popula-
tions of An. quadriannulatus has been entirely 
replaced by its counterpart from An. merus, a  
conclusion supported by the clustering of An. 
merus with An. quadriannulatus in gene trees 
constructed from sequences in the 3La inversion 
(figs. S19, C and D, and S21B). Extant populations 
of both of these species, and indeed all recog-
nized species in the An. gambiae complex, are 
fixed for the standard (3L+a) orientation except 
An. melas and its putative sister species An. 
bwambae, both fixed for the 3La orientation (31). 
Considering that the exact ~22-Mb 3La region 
was replaced betweenspecieswhose contemporary 
populations are collinear for 3L+a, it is conceivable  
that ancestral An. quadriannulatus populations 
originally carried 3La before the 3L+a introgres-
sion. The expected reduced recombination between 
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inverted and standard arrangements in inversion 
heterozygotes may explain why the introgressed 
region is coincident with the entire 22-Mb 3La 
region. 
The introgression profile was consistent between 

samples from natural populations and the refer-
ence genome assemblies, involving the same spe-
cies pairs and the same chromosomal locations 
(supplementary text S4 and fig. S24). Moreover, 
based on population samples from multiple geo-
graphic locations in Africa, patterns of introgres-
sion between An. arabiensis and An. gambiae + 
An. coluzzii, and between An. merus and An. 
quadriannulatus, are  similar  across their  geo-
graphic range (fig. S25 and table S10). These find-
ings refute the possibility that introgression was 
an unnatural artifact of colonization and labora-
tory maintenance of multiple species. The lack of 
geographic variation in patterns of introgression 
also suggests that autosomal introgression oc-
curred sufficiently long ago to have spread across 
subpopulations. By contrast, mitochondrial DNA 
(mtDNA) revealed patterns consistent with on-
going gene flow between An. arabiensis and An. 
gambiae or An. coluzzii (supplementary text 3.3 
and fig. S22). 

Transspecific inversion polymorphism 

The unusually high sequence divergence between 
alternative orientations of a chromosomal inver-
sion polymorphic within An. gambiae and An. 
coluzzii (2La and 2L+a) has been noted previously 
(32, 33) but has not been adequately explained. 
Other species in the complex are fixed for either 
2La (An. arabiensis and An. merus) or 2L+a (An. 
quadriannulatus and An. melas) (31) (Fig.  5A).  In  
An. gambiae and An. coluzzii, the  2La arrange-
ment has been shown to confer superior resistance 
to desiccating environments (34, 35) relative to  
2L+a, and its frequency correlates with environ-
mental gradients of aridity (10, 32). It has been 
argued that 2La introgressed from An. arabiensis 
into the presumed 2L+a ancestor of An. gambiae + 
An. coluzzii (36), a crucial step facilitating the range 
expansion of a presumed forest-adapted species 
into drier savannas. Sequence divergence-based 
estimates of the age of 2La and 2L+a arrange-
ments relative to the age of the species complex 
(Fig. 1C) suggest a radically different scenario in 
which 2La/2L+a is an ancient inversion polymor-
phism that predates the initial diversification of 
the entire complex but is maintained as polymor-
phic only in An. gambiae and An. coluzzii (Fig. 5). 
Consistent with this scenario, the topology of the 
gene tree built from sequences inside the inver-
sion boundaries indicates that species  are grouped  
by their 2La or 2L+a karyotype (Fig. 5B). Further-
more, contrary to the longstanding assumption 
(36), our data suggest that 2La introgressed from 
ancestral An. gambiae into An. arabiensis, not  
the other way around—eventually replacing the 
An. arabiensis 2L+a arrangement (Fig. 5A). Our 
inference about  the direction  of  2La introgres-
sion, as well as the underlying phylogenetic hypo-
thesis for the An. gambiae complex, are consistent 
with the genome-enabled chromosomal inversion 
phylogeny of the An. gambiae complex recon-

structed from ancestral and derived gene orders 
at the breakpoints of 10 fixed chromosomal inver-
sions (supplementary text S5 and fig. S27). 

Functional insights from differential 
genetic exchange 

We found that introgression mainly involved the 
autosomes. Our data suggest that the X chromo-
some is largely resistant to introgression, consistent 
with studies in this and other systems indicating 
that the X (or Z) disproportionately harbors factors 
responsible for reproductive isolation (3, 6, 37–41). 
The nature, number, and chromosomal organiza-
tion of these X-linked factors are unsolved puzzles 
for future research, but our data offer one tantaliz-
ing clue. An. gambiae males deliver to females 
large amounts of 20-hydroxyecdysone (20E) (42), 
a steroid hormone that increases female fertility 
(43) and fecundity (44) and  regulates mating be-
havior and success (45). The cytochrome p450 gene 
CYP315A1 (AGAP000284) that synthesizes the 20E 
precursor ecdysone is located near the distal end 
of the X chromosome. Furthermore, this region is 
associated with male hybrid sterility between An. 
gambiae and An. arabiensis, with  the  An. gambiae 
X chromosome causing inviability in an An. 
arabiensis genetic background (40). Combined 
with our data showing that male An. arabiensis 
produce significantly less 20E than An. gambiae 
(supplementary text S6 and fig. S28), these ob-
servations prompt the hypothesis that diver-
gence in 20E function between the two species 
may have a role in speciation through possible 
effects on the reproductive fitness of hybrid males. 
Pervasive autosomal introgression between 

An. arabiensis and the An. gambiae–clade an-
cestor is consistent with the paucity of sterility 
factors across much of the autosomes, although 
several autosomal quantitative trait loci have been 
mapped in both species (40). Accordingly, we 
explored the small subset of autosomal genes 
(n = 485) that showed no indication of intro-
gression (supplementary text S6), as these are 
candidates contributing to reproductive isola-
tion. We found a remarkable overrepresentation 
of genes encoding cyclic-nucleotide phosphodies-
terases, enzymes that regulate the levels of the 
messengers cyclic adenosine monophosphate 
and cyclic guanosine monophosphate (46), which 
in turn control (among other processes) ecdy-
sone synthesis (47, 48) (table S16).  

Implications for the evolution of 
vectorial capacity 

Initial radiation of the An. gambiae complex 
was both recent and rapid. Counter to the tradi-
tional view (49), it is now clear that the ancestor 
of the principal malaria vectors An. gambiae and 
An. coluzzii separated from other species in the 
group approximately 2 million years ago (Ma) 
and that An. gambiae and An. coluzzii are dis-
tantly related to the other primary vector in the 
group, An. arabiensis. Extant populations of 
An. gambiae and An. coluzzii are highly anthro-
pophilic vectors, dependent upon humans for 
blood meals, adult shelter, and larval breeding 
sites, yet anthropogenic influences are unlikely 

to have triggered their cladogenesis an estimated 
0.5 Ma. Instead, anthropophilic traits are likely 
to have developed in conjunction with the ex-
pansion of Neolithic  human populations  that  
occurred more recently. Despite a history of ex-
tensive introgression with An. arabiensis, An. 
gambiae and An. coluzzii are behaviorally, phys-
iologically, ecologically, and epidemiologically 
distinct from An. arabiensis; the  same  is  true  for  
An. merus and An. quadriannulatus. Notably, 
experimental introgressions of certain autosomal 
inversions result in stable heterotic polymor-
phisms, whereas other introgressed autosomal 
and X chromosome inversions are rapidly elimi-
nated (22), consistent with a role for natural se-
lection in the fate of introgressed regions. Given 
evidence that the 2La inversion polymorphism is 
maintained by selection in An. gambiae and An. 
coluzzii (32, 50), it seems likely that its introgres-
sion into An. arabiensis was adaptive, and bidi-
rectional introgressions across the genome between 
these species probably contributed to their wide 
ecological flexibility and their vectorial capacity. 
Broad overlap exists between geographic ranges 
of these species, and the potential for ongoing 
hybridization and introgression remains, includ-
ing the opportunity for introgression of insecti-
cide resistance alleles (51). Our study establishes 
a foundation for further study of adaptive intro-
gression in this species complex and its role in 
shaping vectorial capacity in this and other ma-
laria vector species complexes. 
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