## Supplementary Materials for

## Extensive Introgression In A Malaria Vector Species Complex Revealed By Phylogenomics

Michael C. Fontaine, James B. Pease, Aaron Steele, Robert M. Waterhouse, Daniel E. Neafsey, Igor V. Sharakhov, Xiaofang Jiang, Andrew B. Hall, Flaminia Catteruccia, Evdoxia Kakani, Sara N. Mitchell, Yi-Chieh Wu, Hilary A. Smith, R. Rebecca Love, Mara K. Lawniczak, Michel A. Slotman, Scott J. Emrich, Matthew W. Hahn*, Nora J. Besansky*

*correspondence to: mwh@indiana.edu (M.W.H.); nbesansk@nd.edu (N.J.B.)

## This PDF file includes:

Supplementary Text S1 to S6
Figs. S1 to S28
Tables S1 to S16
References (51-110)

## Supplementary Online Materials

Table of Contents

S1. Reference assembly alignments (Fig. S1, Table S1)
S2. Whole genome re-sequencing from natural populations (Figs. S2-S14, Tables S2-S8)
S2.1. Single individual per species sequenced at high depth
S2.1.1. Sample processing, sequencing
S2.1.2. Variant calling and conversion of genomic coordinates
S2.1.3. Improvement of data quality when using a conspecific reference assembly instead of PEST for read mapping and SNP calling

S2.2. Multiple individuals per species sequenced at lower depth
S2.2.1. Sample collection and sequencing
S2.2.2. Read mapping and variant calling
S2.2.3. Polymorphism and divergence of nuclear genomes
S2.2.4. Mitochondrial genome assembly
S3. Phylogenomic analysis of the An. gambiae complex (Figs. S15-S23, Table S9)
S3.1. Whole genome alignments of single field-collected mosquitoes of each species.
S3.2. Window-based phylogenies and identification of the species branching order
S3.3. Molecular phylogeny reconstruction by chromosome arm, chromosomal inversions, and across the entire genome

S3.4. Higher molecular evolutionary rate of the X chromosome versus the autosomes
S4. Formal tests of introgression between species (Figs. S24-S25, Table S10)
S4.1. Chromosomal patterns of introgression from $D$ and $D_{\text {FOIL }}$ statistics for field samples.

S4.2. Geographic pattern of introgression
S5. Chromosomal inversion phylogeny of the An. gambiae complex (Figs. S26-S27, Table S11)

S5.1. Genomic coordinates for breakpoints of fixed inversions
S5.2. Ancestral and derived genome arrangements
S5.3. Rooted inversion phylogeny of the An. gambiae complex
S5.4. Dating the initial radiation of the An. gambiae complex

S6. Functional analysis of differentially introgressed regions (Fig. S28, Tables S12-S16) S6.1. Ecdysteroid quantification in An. gambiae and An. arabiensis.
S6.2. Functional Enrichment analyses of (non-) introgressed genes
S6.2.1. An. merus and An. quadriannulatus introgression
S6.2.2. Autosomal genes resistant to introgression between An. arabiensis and An. gambiae

## S1. Reference assembly alignments

Genome assemblies of six members of the Anopheles gambiae species complex and two outgroup Pyretophorus species (Table S1) were retrieved from VectorBase, www.vectorbase.org. Other relatively rare and narrowly distributed species in the complex have not been colonized (Anopheles amharicus, Anopheles bwambae) and were not sequenced due to the lack of suitable DNA template available at the time. In addition to the species sequenced as part of the Anopheles 16 genomes project (52), the genome assemblies of An. gambiae PEST (19), An. gambiae Pimperena S (20), and An. coluzzii (20) (formerly An. gambiae M molecular form) were employed. Before computing the multiple whole genome alignments, repetitive regions of the input genome assemblies were first masked to reduce the total number of potential genomic anchors formed by the many matches that occur among regions of repetitive DNA. Assemblies were analyzed using RepeatModeler (53) to build libraries of repetitive elements that were then combined and compared with known repeats from An. gambiae (from VectorBase). The combined library made up of repeats from all species was filtered to remove matches to known protein-coding repetitive sequences. Each genome assembly was subsequently masked with RepeatMasker (54).

A similar whole genome alignment strategy was employed to that used for other multi-species whole genome alignments such as the 12 Drosophila (55) and 29 mammal (50) genomes. Multiple whole genome alignments of the 9 Anopheles assemblies were built using the MULTIZ feature of the Threaded-Blockset Aligner (TBA) suite of tools (57). The progressive alignment approach of MULTIZ requires an input dendrogram of the expected relationships between the species so that the closest pairs are aligned first
followed by progressively stepping along the phylogeny to the most distant clades. While the position of the outgroup species was clear, the ordering of the species within the complex was initially unknown. Thus, simple ladder-ordered topologies were selected, and alternative orders made little difference to the overall results (data not shown). The topology arbitrarily chosen for the alignment employed for analyses was:
(((()(((AgamP3,AgamS1),AgamM1),AmerM1),AaraD1),AquaS1),AmelC1),AchrA1),Ae piE1). The first step of the MULTIZ approach consists of running all-against-all pairwise LASTZ alignments, followed by a projection to ensure that each pair of species is "single-coverage", i.e. regions of both species may only be present once. Following the TBA alignment strategy, subsequent projection steps are then performed as guided by the species dendrogram to progressively combine the single-coverage pairwise alignments, and then the multiple alignments, until they encompass the complete dendrogram of all assemblies. Statistics of alignment coverage (Table S1) and density (Fig. S1) were computed using custom Perl scripts. The resulting TBA alignment (available in DRYAD, doi:10.5061/dryad.f4114) was the basis for all of our phylogenomic analyses based directly on the reference genome assemblies and the whole genome resequencing of single individuals per species from natural populations (S2.1).

For practical reasons, additional analyses using whole genome sequences from population samples of multiple individuals per species (S2.2) were based on a very similar but earlier whole genome alignment generated by ROAST (reference dependent multiple alignment tool). In this strategy the pairwise LASTZ alignments are projected to ensure that the reference species is "single-coverage" (unlike TBA where both species must be "single-coverage"), i.e. in any pairwise alignment, regions of the reference
species may only be present once. Subsequent projection steps are then performed as for TBA - guided by the species dendrogram to progressively combine alignments until they encompass the complete dendrogram.


Fig. S1. Whole genome TBA alignment densities.
(A) Density of the whole genome alignment in 2 kb windows along chromosomes 2, 3, and X. Alignment density (AlnDen) ranges from 1 (not aligned to any other assembly) to 9 (aligned to all other assemblies). (B) Density of Ns (NDen, gaps in the assembly or masked regions) in 2 kb windows along chromosomes 2, 3, and X of An. gambiae PEST assembly. Density ranges from 0.00 (no Ns) to 1.00 (all Ns). Regions with the lowest alignment density (A) correspond to regions with the highest density of Ns (B).

Table S1. Whole genome TBA alignment statistics.
Statistics of the alignment of nine Anopheles genomes showing percentage aligned overall and percentage aligned to the $A n$. gambiae PEST assembly (AgamP3) for all base-pairs and for non-gap and non-masked base-pairs.

| Assembly | AgamP3 | AgamS1 | AgamM1 | AaraD1 | AquaS1 | AmerM1 | AmelC1 | AchrA1 | AepiE1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assembly total (bp) | $273,093,681$ | $236,403,076$ | $224,455,335$ | $246,567,867$ | $283,828,998$ | $251,805,912$ | $227,407,517$ | $172,658,580$ | $223,486,714$ |
| Aligned total (bp) | $118,653,735$ | $117,538,135$ | $117,370,515$ | $117,268,219$ | $117,025,650$ | $116,391,161$ | $116,310,762$ | $106,604,092$ | $104,792,338$ |
| \% total aligned | 43.45 | 49.72 | 52.29 | 47.56 | 41.23 | 46.22 | 51.15 | 61.74 | 46.89 |
| \% AgamP3 total aligned | 43.45 | 43.04 | 42.98 | 42.94 | 42.85 | 42.62 | 42.59 | 39.04 | 38.37 |
| Gaps (bp) | $20,654,948$ | $8,362,861$ | $14,926,268$ | $35,124,750$ | $74,862,329$ | $33,613,976$ | $20,677,584$ | $2,671,395$ | $20,854,535$ |
| Masked (bp) | $55,247,274$ | $41,205,745$ | $33,114,661$ | $30,887,257$ | $30,062,727$ | $36,451,174$ | $26,733,654$ | $11,802,245$ | $21,157,887$ |
| Assembly non-N ${ }^{\S} \mathbf{( b p )}$ | $197,191,459$ | $186,834,470$ | $176,414,406$ | $180,555,860$ | $178,903,942$ | $181,740,762$ | $179,996,279$ | $158,184,940$ | $181,474,292$ |
| Aligned non- $\mathbf{N}^{\S} \mathbf{( b p )}$ | $118,819,805$ | $117,399,459$ | $117,280,089$ | $117,158,705$ | $116,901,945$ | $116,280,288$ | $116,156,111$ | $106,510,444$ | $104,704,559$ |
| \% non-N $\mathbf{N a l i g n e d}^{\S}$ | 60.26 | 62.84 | 66.48 | 64.89 | 65.34 | 63.98 | 64.53 | 67.33 | 57.70 |
| \% AgamP3 non-N $\mathbf{N}^{\S}$ aligned | 60.26 | 59.54 | 59.48 | 59.41 | 59.28 | 58.97 | 58.91 | 54.01 | 53.10 |

${ }^{\text {s }}$ non-N: non-gap and non-masked base pairs; An. gambiae: AgamP3, AgamS1; An. coluzzii: AgamM1; An. arabiensis: AaraD1; An. quadriannulatus: AquaS1; An. merus: AmerM1; An. melas: AmelC1; An. christyi: AchrA1; An. epiroticus: AepiE1

## S2. Whole genome re-sequencing from natural populations

## S2.1. Single individual per species sequenced at high depth

One individual from each of six species of the An. gambiae complex (AGC) included in this study was sampled from field populations (Table S2) and sequenced at high depth (Table S3) for validation of the results obtained from the colony-based reference assemblies.

## S2.1.1. Sample processing, sequencing

DNA extraction. Genomic DNA was extracted from whole individual female mosquitoes using a CTAB DNA extraction protocol (58). Species identification was ascertained from rDNA-based PCR diagnostic assays (59-61). For An. gambiae and An. coluzzii whose populations are polymorphic for the 2 La inversion, the karyotype was determined molecularly using a PCR diagnostic assay (62).

Library construction and Sequencing. All samples were sequenced on an Illumina sequencing platform (HiSeq 2000 or 2500 ) with data production at two different sequencing centers, BGI at the University of California, Davis, or the Broad Institute of MIT and Harvard.

For samples sequenced at BGI (An. gambiae, An. coluzzii, and An. arabiensis), genomic fragment libraries were constructed in the laboratory of NJB, using the Illumina TruSeq ${ }^{\circledR}$ DNA Sample Preparation kit (Illumina) and 300 ng DNA per sample following the manufacturer's protocol. Final mean fragment library sizes were $\sim 500$ base-pairs (bp), corresponding to an insert size of $\sim 340 \mathrm{bp}$. Paired-end 101 bp whole genome sequencing was performed using an Illumina HiSeq 2000 with one sample per lane.

For samples sequenced at the Broad Institute (An. quadriannulatus, An. merus and An. melas), genomic fragment libraries of 200 bp inserts were prepared. For each fragment library, 100 ng of genomic DNA was sheared to $\sim 250 \mathrm{bp}$ using a Covaris LE instrument and prepared for sequencing as previously described (63). Sequencing was performed with an Illumina HiSeq 2500 platform with v3 chemistry and a $2 \times 101 \mathrm{bp}$ run configuration, and the indexed samples were pooled and sequenced across a total of four lanes. All sequencing datasets were processed through the Broad Institute's Picard sequencing analysis pipeline to demultiplex reads, generate standard sequencing metrics (e.g. read counts) and mark duplicate reads.

## S2.1.2. Variant calling and conversion of genomic coordinates

The pipeline used for variant calling was based on the Broad Institute's best practices for GATK (64). Details on specific command line parameters for all steps can be found here: https://bitbucket.org/steelea/16genometoolkit/wiki/Pipeline
(a) Illumina Read Quality Control. Short reads from each individual sample were first analyzed using FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc/) to detect poor quality and overrepresented sequences in the raw sequencing data. If FastQC identified a bias at a given location in all of the reads, special care was taken to remove the bias by removing the lower quality regions or by hard-clipping all reads in the problematic region. Otherwise, Trimmomatic (65) was used to remove low quality regions along with any lingering Illumina adapters using the "IlluminaClip" option. Low quality regions were identified at the edges of the read if bases at the beginning or end had a quality less than 5 . Subsequently, any 4-base sections of the reads that had an
average quality less than 15 were also removed. Only mated reads that passed these trimming processes and were at least 50 bases long were used for the remaining analysis, i.e., all singleton reads post-trimming were removed. (Example of the Trimmomatic parameters: ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:5 TRAILING:5 SLIDINGWINDOW:4:15 MINLEN:50)
(b) Read mapping. We used BWA 0.5.9-r16 (60) to map the paired-end reads for all species to a reference assembly (Fig. S2). Reads from An. gambiae and An. coluzzii were mapped to the An. gambiae PEST (AgamP3) reference assembly (19, 67). For the other species, reads were mapped both to the An. gambiae PEST (AgamP3) reference assembly and to the conspecific reference assembly produced in the framework of the 16 Anopheles genomes project (18,52). The specific parameters used with the BWA aln algorithm (-o 1, -q 5, -1 32, -k 2) permitted only a single open gap, and a minimum basequality of 5 for each base mapped. For performance reasons, the first 32 bases of a read were used as a seed with a maximum edit distance of two in the seed. These more stringent parameters minimize the number of gaps and mismatches that exist in the final alignment.

## Pest Based Pipeline



## Reference based Pipeline



Fig. S2. Diagram of the two methods used for mapping reads and calling variants.
The first method used the An. gambiae PEST genome as a reference to map reads and call variants. The alternative method used the conspecific reference assembly to map reads and call variants for sequences derived from species other than An. gambiae and An. coluzzii. To maintain consistency and allow interspecific comparisons, genomic coordinates of variants called using Method 2 were converted to PEST reference assembly coordinates prior to filtering (see S2.1.2f).
(c) Preprocessing. Further processing was performed on paired reads to ensure high quality alignments and compatibility with downstream tools. First, Picard Tools' CleanSam.jar (http://picard.sourceforge.net) was used to soft clip any reads where part of the read extended beyond the end of the sequence it was aligned to. Next, Picard Tools' SortSam.jar (http://picard.sourceforge.net) was used to sort reads based on alignment location, to facilitate compatibility with the Genome Analysis Toolkit (GATK). Third, Picard Tools' MarkDuplicates.jar (http://picard.sourceforge.net) was used to locate and mark duplicate molecules prior to SNP calling. Marked duplicates were retained in the dataset for consistency. Finally, reads were locally realigned with GATK's Indel Realignment tool (64, 68), which performs de-novo realignment in regions where a suspected indel exists. Combined, these additional preprocessing steps reduce the effects of indels on close-proximity SNPs.
(d) Variant Calling. For calling variants, we used both the UnifiedGenotyper and HaplotypeCaller tools that are packaged in GATK v2.8 and 3.1 (64, 68). For both variant callers the default parameters were used. Because these samples were of moderate coverage (Table S3), no downsampling was performed when calling variants. Additionally, calls were emitted for all sites (variant or otherwise) in the case where reads were mapped to the conspecific reference assembly to facilitate conversion from one coordinate system to another (see step f).
(e) Variant Annotation and filtering. To aid in quality assessment of variants, we added annotations (mapping quality, quality by depth, allelic balance, distance from a homopolymer run, and genotype quality) to the VCF file using GATK's

VariantAnnotator. We applied hard filters on the variants to keep only those that were of
highest quality. The hard filters included a minimum depth of 10 x , sites with quality score $\mathrm{Q} \geq 30$, a quality by depth $\mathrm{QD} \geq 5$, and allelic balance for heterozygote sites AB between 0.2 and 0.8 .
(f) Coordinate Conversion. The second method of calling variants (Fig. S2) used the conspecific reference assemblies for sequences derived from species other than $A n$. gambiae and An. coluzzii. To maintain consistency and to allow comparisons to Method 1, Method 2 biallelic SNPs were converted to An. gambiae PEST (AgamP3) coordinates prior to filtering. This was done using the whole genome alignments (S1), which provided conversion information, and base variant call format (VCF) files (2.1.2d). Specifically, the VCF file for each focal species was first filtered such that indels and multiallelic SNPs were removed for the sake of simplicity. Next, the specific alignment region of a scaffold $X$ in a non-PEST genome to the PEST chromosome reference imposed a simple common coordinate system once indels were ignored. As a concrete example, if a position $a$ on scaffold $X$ aligns to a non-gap position $b$ on arm $W$ in PEST, this specific line of the VCF file ( $a$ on scaffold $X$ ) is converted to position $b$ (arm $W$ ). We developed custom Java code (https://bitbucket.org/steelea/vcfmap) to implement this conversion. Although only biallelic SNPs were used as input, it is possible to have three alleles in the converted VCF if the PEST allele is different. By emitting all positions (see 2.1.2d) we were able to uncover invariant positions in the target species that differed from the reference (i.e., fixed differences). See also SOM Text S3.1.

## (g) Comparison of HaplotypeCaller and UnifiedGenotyper caller.

As recommended by GATK best practice (64), and unless stated otherwise, we used SNP calls from HaplotypeCaller (HC). However, we took the opportunity to compare SNP
calls from HC to those called from UnifiedGenotyper (UG), basing the comparison on SNPs that had a quality score $\mathrm{Q} \geq 30$, a map quality $\geq 30$, and a sequencing depth (DP) $1 / 4$ (mode depth) $\geq \mathrm{DP} \leq 2 \mathrm{X}$ (mode depth).

The total number of high quality SNPs discovered (Fig. S3) was always higher from UG than HC. However, HC produced SNP calls with an overall higher genotype quality as measured by the genotype quality (GQ) and likelihood (PL) statistics (result not shown).

## S2.1.3. Improvement of data quality when using a conspecific reference assembly instead of PEST for read mapping and SNP calling.

We investigated whether using the new reference assemblies of each focal species (other than An. gambiae or coluzzii) significantly improved the data quality relative to using a single reference (An. gambiae PEST, AgamP3) for all species irrespective of their genetic divergence from PEST.

## Improvement in read mapping quality.

Short reads from An. quadriannulatus, An. merus and An. melas samples mapped considerably better to their own reference assemblies as compared to the An. gambiae PEST reference (Fig. S4 and Table S3). In contrast to those three species, short reads from An. arabiensis mapped reasonably well to the PEST reference (Fig. S4B), yet the coverage and the number of bases mapped improved if An. arabiensis reads were mapped to its own reference (Fig. S5A). Indeed, when reads from any species outside of the $A n$. gambiae clade (An. gambiae and An. coluzzii) were mapped to the conspecific reference as opposed to PEST, the increase in average depth coverage was substantial: $17 \%$ in $A n$. arabiensis, $16 \%$ in An. merus, $11 \%$ in An. melas, and 5\% in An. quadriannulatus. The
proportion of sites with $\geq 10 \mathrm{X}$ coverage also increased measurably: by $4 \%$ in $A n$. arabiensis, 3\% in An. quadriannulatus, and 32\% in An. merus and An. melas (Table S3). The mapping quality (MQ) also increased by a factor of 1.2 in An. arabiensis and An. quadriannulatus, and 1.5 in An. merus and An. melas (Table S3).

## Improvement in SNP quality

The quality of the SNP calls also improved when using a species-specific reference, as reflected by the depth coverage (DP), mapping quality (MQ) and genotype quality (GQ) statistics (Fig. S5). Choice of reference had an especially marked impact on the results for the X chromosome.


Fig. S3.
Venn diagram showing the total number of high quality SNPs discovered in individual high-depth genomic sequences from each species using the HaplotypeCaller (HC) or the UnifiedGenotyper (UG) algorithms.


Fig. S4.
Bases mapped as a function of sequencing depth when short reads are mapped to (A) the species reference assemblies or (B) the An. gambiae PEST reference genome

Table S2.
Single individuals per species sequenced at high depth.

| Species | ID | Country | Village | Coordinates | Year | 2La karyotype | BioSample | BioProjects |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| An. gambiae | 40.2 | Burkina Faso | Pala | $11^{\circ} 09{ }^{\prime} \mathrm{N}, 04^{\circ} 14^{\prime} \mathrm{W}$ | 2012 | a/+ | SAMN02899205 | PRJNA254046 |
| An. coluzzii | C27.2 | Burkina Faso | Bana | $11^{\circ} 14^{\prime} \mathrm{N}, 04^{\circ} 28^{\prime} \mathrm{W}$ | 2012 | a | SAMN02899195 | PRJNA254046 |
| An. arabiensis | 4080 | Burkina Faso | Monomtenga | $12^{\circ} 06^{\prime} \mathrm{N}, 01^{\circ} 17^{\prime} \mathrm{W}$ | 2004 | a | SAMN03083367 | PRJNA262489 |
| An. quad* | 72 | Zimbabwe | Chilongo, Chiredzi | $21^{\circ} 03{ }^{\prime} \mathrm{S}, 31^{\circ} 40^{\prime} \mathrm{E}$ | 1986 | + | SAMN01760635 | PRJNA177000 |
| An. merus | Mpug686i | South Africa | Mpumalanga, Koomatipoort | $25^{\circ} 26{ }^{\prime} \mathrm{S}, 31^{\circ} 57^{\prime} \mathrm{E}$ | 1988 | a | SAMN01760628 | PRJNA176993 |
| An. melas | CM1001067 | Cameroon | Campo | $02^{\circ} 22^{\prime} \mathrm{N}, 0949{ }^{\prime} \mathrm{E}$ | 2010 | + | SAMN01760621 | PRJNA176986 |

*An. quad : An. quadriannulatus.

## Table S3.

Statistics for read mapping to the conspecific reference or the An. gambiae PEST reference, calculated using QUALIMAP (69).

| Species | $\begin{gathered} \text { An. gambiae } \\ \text { " } S \text { " } \\ \hline \end{gathered}$ | $\begin{gathered} \text { An. coluzzii } \\ \text { "M" } \\ \hline \end{gathered}$ | An. arabiensis | An. arabiensis (PEST) | An. quad* | An. quad* (PEST) | An. merus | An. merus (PEST) | An. melas | An. melas (PEST) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reference size | 273,093,681 | 273,093,681 | 246,567,867 | 273,093,681 | 283,828,998 | 273,093,681 | 251,805,912 | 273,093,681 | 227,407,517 | 273,093,681 |
| \# Reads | 391,269,780 | 316,573,318 | 324,850,034 | 324,850,034 | 135,648,790 | 135,648,790 | 124,568,800 | 124,568,800 | 136,442,432 | 136,442,436 |
| \%, Reads mapped | 83.78\% | 84.8\% | 69.16\% | 62.67\% | 65.39\% | 56.05\% | 70.09\% | 41.99\% | 57.78\% | 48.45\% |
| Read length min/max/mean | 100/100/100 | 100/100/100 | 100/100/100 | 100/100/100 | 50/101/99.0 | 50/101/99.0 | 50/101/98.9 | 50/101/98.9 | 50/101/98.9 | 50/101/98.9 |
| $\begin{gathered} \text { Mean } \pm \text { SD } \\ \text { Coverage } \\ \hline \end{gathered}$ | $\begin{gathered} 118.34 \pm \\ 1,823.0 \end{gathered}$ | $96.7 \pm 691.0$ | $90.2 \pm 281.8$ | $73.1 \pm 357.0$ | $30.1 \pm 349.2$ | $26.4 \pm 149.8$ | $33.7 \pm 503.5$ | $17.9 \pm 217.8$ | $33.8 \pm 118.1$ | $22.8 \pm 386.2$ |
| \% reference covered with $\geq 10 \mathrm{X}$ | 87.8\% | 87.5\% | 84.7\% | 81.0\% | 69.7\% | 67.0\% | 84.8\% | 52.8\% | 88.9\% | 56.5\% |
| Mean MQ | 40.2 | 40.4 | 43.5 | 36.1 | 44.9 | 37.4 | 48.2 | 34.4 | 50.4 | 34.1 |
| \%GC | 43.7\% | 43.5\% | 43.8\% | 44.4\% | 45.1\% | 46.2\% | 44.3\% | 46.5\% | 44.8\% | 46.7\% |
| $\begin{gathered} \text { Insert sizes p25/ } \\ \text { median/p75 } \\ \hline \end{gathered}$ | 316/340/359 | 180/334/359 | 278/334/390 | 267/330/388 | 117/152/197 | 113/151/198 | 121/155/201 | 112/152/199 | 121/158/206 | 108/153/202 |

*An. quad: An. quadriannulatus.


Fig. S5.
Distribution along each chromosome arm of metrics of SNP quality depending upon the reference genome (conspecific, red ; PEST, blue). Metrics shown are depth (DP), mapping quality (MQ), genotype quality (GQ) and number of SNPs calculated in nonoverlapping 50 kb windows.

## S2.2. Multiple individuals per species sequenced at lower depth

We explored further the wide spectrum of diversity in each of the six sequenced species of the Anopheles gambiae complex by resequencing the whole genome of multiple individuals from each species at a lower depth of coverage.

## S2.2.1 Sample collection and sequencing

Sampling and DNA extraction. Overall, 74 individual female mosquitoes were obtained from natural populations of six species of the An. gambiae complex (Fig. S6, Table S4): 26 An. gambiae (S-form), 12 An. coluzzii (M-form), 12 An. arabiensis, 10 An. merus, 4 An. melas, and 10 An. quadriannulatus. Genomic DNA was extracted from individual female mosquitoes using either a DNeasy Qiagen extraction kit or a CTAB DNA extraction protocol (58). Species identification and karyotypes for the 2La inversion of An. gambiae and An. coluzzii were ascertained as described in section S2.1.1.

Library construction and sequencing. Protocols followed those employed for the samples sequenced to higher depth (section S2.1), with data production at two different sequencing centers (all An. gambiae and An. coluzzii sequences were sequenced by BGI; the remainder were sequenced by the Broad). Barcoded mosquito libraries were indexed at 7-12 per each lane of Illumina HiSeq.


Fig. S6.
Approximate locations (circles) and sample size per locality (numbers within circles) for mosquitoes used for population sampling. Color of circles indicates species (see map inset). Table S4 provides more detailed information.

Table S4.
Metadata pertaining to the 74 population samples from six species, sequenced at low coverage.

| Species | SampleID | SRA Identifier | BioProject | 2La karyotype | Location Code | Village | Coord. | Year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| An. arabiensis | BF0404094 | SRP020595 | PRJNA176974 | $2 \mathrm{La} / 2 \mathrm{La}$ | BF | Monomtenga | $\begin{aligned} & 12^{\circ} 06^{\prime} \mathrm{N}, \\ & 01^{\circ} 17^{\prime} \mathrm{W} \end{aligned}$ | 2004 |
| An. arabiensis | BF0405003 | SRP020603 | PRJNA176971 | $2 \mathrm{La} / 2 \mathrm{La}$ | BF | Monomtenga | $\begin{aligned} & 12^{\circ} 06^{\prime} \mathrm{N}, \\ & 01^{\circ} 17^{\prime} \mathrm{W} \end{aligned}$ | 2004 |
| $A n$. arabiensis | BF0405012 | SRP020600 | PRJNA176975 | $2 \mathrm{La} / 2 \mathrm{La}$ | BF | Monomtenga | $\begin{aligned} & 12^{\circ} 06^{\prime} \mathrm{N}, \\ & 01^{\circ} 17^{\prime} \mathrm{W} \end{aligned}$ | 2004 |
| $A n$. arabiensis | BF0405744 | SRP020521 | PRJNA176976 | $2 \mathrm{La} / 2 \mathrm{La}$ | BF | Monomtenga | $\begin{aligned} & 12^{\circ} 06^{\prime} \mathrm{N}, \\ & 01^{\circ} 17^{\prime} \mathrm{W} \end{aligned}$ | 2004 |
| $A n$. arabiensis | CM0501012 | SRP020594 | PRJNA176968 | $2 \mathrm{La} / 2 \mathrm{La}$ | CM | Moudawa | $\begin{aligned} & 10^{\circ} 21^{\prime} \mathrm{N}, \\ & 14^{\circ} 11^{\prime} \mathrm{E} \end{aligned}$ | 2005 |
| An. arabiensis | CM0501025 | SRP020580 | PRJNA176969 | $2 \mathrm{La} / 2 \mathrm{La}$ | CM | Moudawa | $\begin{aligned} & 10^{\circ} 21^{\prime} \mathrm{N}, \\ & 14^{\circ} 11^{\prime} \mathrm{E} \end{aligned}$ | 2005 |
| $A n$. arabiensis | CM0501026 | SRP020597 | PRJNA176970 | $2 \mathrm{La} / 2 \mathrm{La}$ | CM | Moudawa | $\begin{aligned} & 10^{\circ} 21^{\prime} \mathrm{N}, \\ & 14^{\circ} 11^{\prime} \mathrm{E} \end{aligned}$ | 2005 |
| $A n$. arabiensis | CM0501028 | SRP020599 | PRJNA176972 | $2 \mathrm{La} / 2 \mathrm{La}$ | CM | Moudawa | $\begin{aligned} & 10^{\circ} 21^{\prime} \mathrm{N}, \\ & 14^{\circ} 11^{\prime} \mathrm{E} \end{aligned}$ | 2005 |
| $A n$. arabiensis | TZ 71-158 | SRP020524 | PRJNA176978 | $2 \mathrm{La} / 2 \mathrm{La}$ | TZ | Mabogini | $\begin{aligned} & 03^{\circ} 24^{\prime} \mathrm{S}, \\ & 37^{\circ} 22^{\prime} \mathrm{E} \end{aligned}$ | 2009 |
| An. arabiensis | TZ 71-163 | SRP020601 | PRJNA176973 | $2 \mathrm{La} / 2 \mathrm{La}$ | TZ | Mabogini | $\begin{aligned} & 03^{\circ} 24^{\prime} \mathrm{S}, \\ & 37^{\circ} 22^{\prime} \mathrm{E} \end{aligned}$ | 2009 |
| $A n$. arabiensis | TZ 71-199 | SRP020529 | PRJNA176977 | $2 \mathrm{La} / 2 \mathrm{La}$ | TZ | Mabogini | $\begin{aligned} & 03^{\circ} 24^{\prime} \mathrm{S}, \\ & 37^{\circ} 22^{\prime} \mathrm{E} \end{aligned}$ | 2009 |
| An. arabiensis | TZ 71-211 | SRP020519 | PRJNA176979 | $2 \mathrm{La} / 2 \mathrm{La}$ | TZ | Mabogini | $\begin{aligned} & 03^{\circ} 24^{\prime} \mathrm{S}, \\ & 37^{\circ} 22^{\prime} \mathrm{E} \end{aligned}$ | 2009 |
| An. coluzzii | 44.2* | SAMN02899193 | PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{La}$ | BF | Sourkoudiguan | $\begin{aligned} & 11^{\circ} 14^{\prime} \mathrm{N}, \\ & 04^{\circ} 32^{\prime} \mathrm{W} \end{aligned}$ | 2012 |
| An. coluzzii | A7.4 | SAMN02899194 | PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{La}$ | BF | Sourkoudiguan | $\begin{aligned} & 11^{\circ} 14^{\prime} \mathrm{N}, \\ & 04^{\circ} 32^{\prime} \mathrm{W} \\ & \hline \end{aligned}$ | 2012 |
| An. coluzzii | C27.2† | SAMN02899195 | PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{La}$ | BF | Bana | $\begin{aligned} & 11^{\circ} 14^{\prime} \mathrm{N}, \\ & 04^{\circ} 28^{\prime} \mathrm{W} \\ & \hline \end{aligned}$ | 2012 |
| An. coluzzii | C27.3 | SAMN02899196 | PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{La}$ | BF | Bana | $\begin{aligned} & 11^{\circ} 14^{\prime} \mathrm{N}, \\ & 04^{\circ} 28^{\prime} \mathrm{W} \end{aligned}$ | 2012 |
| An. coluzzii | 4631 | SAMN02899197 | PRJNA254046 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Ahala | $\begin{gathered} 03^{\circ} 48^{\prime} \mathrm{N}, \\ 11^{\circ} 30^{\prime} \mathrm{E} \end{gathered}$ | 2005 |
| An. coluzzii | 4634 | SAMN02899198 | PRJNA254046 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Ahala | $\begin{gathered} 03^{\circ} 48^{\prime} \mathrm{N}, \\ 11^{\circ} 30^{\prime} \mathrm{E} \end{gathered}$ | 2005 |
| An. coluzzii | 4691 | SAMN02899199 | PRJNA254046 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Nkolbisson | $\begin{gathered} 03^{\circ} 52^{\prime} \mathrm{N}, \\ 11^{\circ} 27^{\prime} \mathrm{E} \end{gathered}$ | 2005 |
| An. coluzzii | 4697 | SAMN02899200 | PRJNA254046 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Nkolfoulou_II | $\begin{gathered} 03^{\circ} 55^{\prime} \mathrm{N}, \\ 11^{\circ} 34^{\prime} \mathrm{E} \end{gathered}$ | 2005 |
| An. coluzzii | 5090 | SAMN02899201 | PRJNA254046 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Boussibelika | $\begin{gathered} 02^{\circ} 43^{\prime} \mathrm{N}, \\ 09^{\circ} 52^{\prime} \mathrm{E} \end{gathered}$ | 2005 |
| An. coluzzii | 5107 | SAMN02899202 | PRJNA254046 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Boussibelika | $\begin{gathered} 02^{\circ} 43^{\prime} \mathrm{N}, \\ 09^{\circ} 52^{\prime} \mathrm{E} \end{gathered}$ | 2005 |
| An. coluzzii | 5108 | SAMN02899203 | PRJNA254046 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Boussibelika | $\begin{gathered} 02^{\circ} 43^{\prime} \mathrm{N}, \\ 09^{\circ} 52^{\prime} \mathrm{E} \end{gathered}$ | 2005 |
| An. coluzzii | 5113 | SAMN02899204 | PRJNA254046 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Boussibelika | $\begin{gathered} 02^{\circ} 43^{\prime} \mathrm{N}, \\ 09^{\circ} 52^{\prime} \mathrm{E} \end{gathered}$ | 2005 |
| An. gambiae | 40.2† | SAMN02899205 | PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{~L}+{ }^{\text {a }}$ | BF | Pala | $\begin{aligned} & 11^{\circ} 09^{\prime} \mathrm{N}, \\ & 04^{\circ} 14^{\prime} \mathrm{W} \\ & \hline \end{aligned}$ | 2012 |
| An. gambiae | 44.4 | SAMN02899206 | PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{La}$ | BF | Sourkoudiguan | $\begin{aligned} & 11^{\circ} 14^{\prime} \mathrm{N}, \\ & 04^{\circ} 32^{\prime} \mathrm{W} \\ & \hline \end{aligned}$ | 2012 |


| An. gambiae | 45.3 | SAMN02899207 PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{La}$ | BF | Sourkoudiguan | $\begin{aligned} & 11^{\circ} 14^{\prime} \mathrm{N}, \\ & 04^{\circ} 32^{\prime} \mathrm{W} \end{aligned}$ | 2012 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| An. gambiae | M20.7 | SAMN02899208 PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{~L}+{ }^{\text {a }}$ | BF | Pala | $\begin{aligned} & 11^{\circ} 09^{\prime} \mathrm{N}, \\ & 04^{\circ} 14^{\prime} \mathrm{W} \end{aligned}$ | 2012 |
| An. gambiae | 4696 | SAMN02899209 PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Nkolfoulou_II | $\begin{gathered} 03^{\circ} 55^{\prime} \mathrm{N}, \\ 11^{\circ} 34^{\prime} \mathrm{E} \end{gathered}$ | 2005 |
| An. gambiae | 4698 | SAMN02899210 PRJNA254046 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Nkolfoulou_II | $\begin{gathered} 03^{\circ} 55^{\prime} \mathrm{N}, \\ 11^{\circ} 34^{\prime} \mathrm{E} \end{gathered}$ | 2005 |
| An. gambiae | 4700 | SAMN02899211 PRJNA254046 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Nkolfoulou_II | $\begin{gathered} 03^{\circ} 55^{\prime} \mathrm{N}, \\ 11^{\circ} 34^{\prime} \mathrm{E} \end{gathered}$ | 2005 |
| An. gambiae | 4701 | SAMN02899212 PRJNA254046 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Nkolfoulou_II | $\begin{gathered} 03^{\circ} 55^{\prime} \mathrm{N}, \\ 11^{\circ} 34^{\prime} \mathrm{E} \end{gathered}$ | 2005 |
| An. gambiae | 5091 | SAMN02899213 PRJNA254046 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Boussibelika | $\begin{aligned} & 02^{\circ} 43^{\prime} \mathrm{N}, \\ & 09^{\circ} 52^{\prime} \mathrm{E} \end{aligned}$ | 2005 |
| An. gambiae | 5093 | SAMN02899214 PRJNA254046 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Boussibelika | $\begin{gathered} 02^{\circ} 43^{\prime} \mathrm{N}, \\ 09^{\circ} 52^{\prime} \mathrm{E} \end{gathered}$ | 2005 |
| An. gambiae | 5095 | SAMN02899215 PRJNA254046 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Boussibelika | $\begin{gathered} 02^{\circ} 43^{\prime} \mathrm{N}, \\ 09^{\circ} 52^{\prime} \mathrm{E} \end{gathered}$ | 2005 |
| An. gambiae | 5109 | SAMN02899216 PRJNA254046 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Boussibelika | $\begin{aligned} & 02^{\circ} 43^{\prime} \mathrm{N}, \\ & 09^{\circ} 52^{\prime} \mathrm{E} \end{aligned}$ | 2005 |
| An. gambiae | KL0218 | SAMN02899217 PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{La}$ | MI | Kela | $\begin{aligned} & 11^{\circ} 88^{\prime} \mathrm{N}, \\ & 8^{\circ} 45^{\prime} \mathrm{W} \end{aligned}$ | 2004 |
| An. gambiae | KL0220 | SAMN02899218 PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{La}$ | MI | Kela | $\begin{aligned} & 11^{\circ} 88^{\prime} \mathrm{N}, \\ & 8^{\circ} 45^{\prime} \mathrm{W} \end{aligned}$ | 2004 |
| An. gambiae | KL0231 | SAMN02899219 PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{La}$ | MI | Kela | $\begin{aligned} & 11^{\circ} 88^{\prime} \mathrm{N}, \\ & 8^{\circ} 45^{\prime} \mathrm{W} \end{aligned}$ | 2004 |
| An. gambiae | KL0333 | SAMN02899220 PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{La}$ | MI | Kela | $\begin{aligned} & 11^{\circ} 88^{\prime} \mathrm{N}, \\ & 8^{\circ} 45^{\prime} \mathrm{W} \end{aligned}$ | 2004 |
| An. gambiae | KL0341 | SAMN02899221 PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{La}$ | MI | Kela | $\begin{aligned} & 11^{\circ} 88^{\prime} \mathrm{N}, \\ & 8^{\circ} 45^{\prime} \mathrm{W} \end{aligned}$ | 2004 |
| An. gambiae | KL0370 | SAMN02899222 PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{La}$ | MI | Kela | $\begin{aligned} & 11^{\circ} 88^{\prime} \mathrm{N}, \\ & 8^{\circ} 45^{\prime} \mathrm{W} \end{aligned}$ | 2004 |
| An. gambiae | KL0671 | SAMN02899223 PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{La}$ | MI | Kela | $\begin{aligned} & 11^{\circ} 88^{\prime} \mathrm{N}, \\ & 8^{\circ} 45^{\prime} \mathrm{W} \end{aligned}$ | 2004 |
| An. gambiae | KL0899 | SAMN02899224 PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{La}$ | MI | Kela | $\begin{aligned} & 11^{\circ} 88^{\prime} \mathrm{N}, \\ & 8^{\circ} 45^{\prime} \mathrm{W} \end{aligned}$ | 2004 |
| An. gambiae | KL0028* | SAMN02899225 PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{La}$ | MI | Kela | $\begin{aligned} & 11^{\circ} 88^{\prime} \mathrm{N}, \\ & 8^{\circ} 45^{\prime} \mathrm{W} \end{aligned}$ | 2004 |
| An. gambiae | KL0829* | SAMN02899226 PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{La}$ | MI | Kela | $\begin{aligned} & 11^{\circ} 88^{\prime} \mathrm{N}, \\ & 8^{\circ} 45^{\prime} \mathrm{W} \end{aligned}$ | 2004 |
| An. gambiae | TZ22* | SAMN02899227 PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{~L}+{ }^{\text {a }}$ | TZ | Njage | $\begin{aligned} & 08^{\circ} 12^{\prime} \mathrm{S}, \\ & 36^{\circ} 11^{\prime} \mathrm{E} \end{aligned}$ | 2008 |
| An. gambiae | TZ102 | SAMN02899228 PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{~L}+{ }^{\text {a }}$ | TZ | Njage | $\begin{aligned} & 08^{\circ} 12^{\prime} \mathrm{S}, \\ & 36^{\circ} 11^{\prime} \mathrm{E} \end{aligned}$ | 2008 |
| An. gambiae | TZ65 | SAMN02899229 PRJNA254046 | $2 \mathrm{La} / 2 \mathrm{~L}+{ }^{\text {a }}$ | TZ | Njage | $\begin{aligned} & 08^{\circ} 12^{\prime} \mathrm{S}, \\ & 36^{\circ} 11^{\prime} \mathrm{E} \end{aligned}$ | 2008 |
| An. gambiae | TZ67 | SAMN02899230 PRJNA254046 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | TZ | Njage | $\begin{aligned} & 08^{\circ} 12^{\prime} \mathrm{S}, \\ & 36^{\circ} 11^{\prime} \mathrm{E} \end{aligned}$ | 2008 |
| An. melas | CM1001067† | SRP020530 PRJNA176986 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Campo | $\begin{gathered} 02^{\circ} 22^{\prime} \mathrm{N}, \\ 0949^{\prime} \mathrm{E} \\ \hline \end{gathered}$ | 2010 |
| An. melas | CM1001069* | SRP020515 PRJNA176987 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Campo | $\begin{gathered} 02^{\circ} 22^{\prime} \mathrm{N}, \\ 0949^{\prime} \mathrm{E} \end{gathered}$ | 2010 |
| An. melas | CM1001095 | SRP020520 PRJNA176984 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Campo | $\begin{gathered} 02^{\circ} 22^{\prime} \mathrm{N}, \\ 0949^{\prime} \mathrm{E} \end{gathered}$ | 2010 |
| An. melas | CM1002058 | SRP020604 PRJNA176983 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | CM | Campo | $\begin{gathered} 02^{\circ} 22^{\prime} \mathrm{N}, \\ 09 \\ 09 \\ \hline \end{gathered}$ | 2010 |
| An. merus | KN 00005 | SRP020674 PRJNA176989 | 2La/2La | KN | Garithe village | ? | 2007-8 |


| An. merus | KN 00006 | SRP020665 | PRJNA176996 | $2 \mathrm{La} / 2 \mathrm{La}$ | KN | Garithe village | ? | 2007-8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| An. merus | KN 00007 | SRP020675 | PRJNA176988 | $2 \mathrm{La} / 2 \mathrm{La}$ | KN | Garithe village | ? | 2007-8 |
| An. merus | KN 00035 | SRP022553 | PRJNA176994 | $2 \mathrm{La} / 2 \mathrm{La}$ | KN | Garithe village | ? | 2007-8 |
| An. merus | KN 00037 | SRP020673 | PRJNA176991 | $2 \mathrm{La} / 2 \mathrm{La}$ | KN | Garithe village | ? | 2007-8 |
| An. merus | Mpug 686g | SRP020531 | PRJNA176995 | $2 \mathrm{La} / 2 \mathrm{La}$ | SA | Mpumalanga, Koomatipoort | $\begin{aligned} & 25^{\circ} 26^{\prime} \mathrm{S} \\ & 31^{\circ} 57^{\prime} \mathrm{E} \end{aligned}$ | 1988 |
| An. merus | Mpug 686h | SRP020577 | PRJNA176990 | $2 \mathrm{La} / 2 \mathrm{La}$ | SA | Mpumalanga, Koomatipoort | $\begin{aligned} & 25^{\circ} 26^{\prime} \mathrm{S} \\ & 31^{\circ} 57^{\prime} \mathrm{E} \end{aligned}$ | 1988 |
| An. merus | Mpug 686i $\dagger$ | SRP020602 | PRJNA176993 | $2 \mathrm{La} / 2 \mathrm{La}$ | SA | Mpumalanga, Koomatipoort | $\begin{aligned} & 25^{\circ} 26^{\prime} \mathrm{S} \\ & 31^{\circ} 57^{\prime} \mathrm{E} \end{aligned}$ | 1988 |
| An. merus | Mpug 686j | SRP020584 | PRJNA176992 | $2 \mathrm{La} / 2 \mathrm{La}$ | SA | Mpumalanga, Koomatipoort | $\begin{aligned} & 25^{\circ} 26^{\prime} \mathrm{S} \\ & 31^{\circ} 57^{\prime} \mathrm{E} \end{aligned}$ | 1988 |
| An. merus | Mpug 803b | SRP020532 | PRJNA176997 | $2 \mathrm{La} / 2 \mathrm{La}$ | SA | Mpumalanga, Koomatipoort | $\begin{aligned} & 25^{\circ} 26^{\prime} \mathrm{S} \\ & 31^{\circ} 57^{\prime} \mathrm{E} \end{aligned}$ | 1988 |
| An. quad. | 24 | SRP020525 | PRJNA177007 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | ZM | Chilongo,Chiredzi | $\begin{aligned} & 21^{\circ} 03 ' \mathrm{~S}, \\ & 31^{\circ} 40^{\prime} \mathrm{E} \end{aligned}$ | 1986 |
| An. quad. | 41 | SRP022554 | PRJNA177003 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | ZM | Chilongo,Chiredzi | $\begin{aligned} & 21^{\circ} 03 ' \mathrm{~S} \\ & 31^{\circ} 40^{\prime} \mathrm{E} \end{aligned}$ | 1986 |
| An. quad. | 42 | SRP020583 | PRJNA177002 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | ZM | Chilongo,Chiredzi | $\begin{aligned} & 21^{\circ} 03 ' \mathrm{~S}, \\ & 31^{\circ} 40^{\prime} \mathrm{E} \end{aligned}$ | 1986 |
| An. quad. | 47 | SRP020582 | PRJNA176998 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | ZM | Chilongo,Chiredzi | $\begin{aligned} & 21^{\circ} 03 ' \mathrm{~S}, \\ & 31^{\circ} 40^{\prime} \mathrm{E} \end{aligned}$ | 1986 |
| An. quad. | 51 | SRP020579 | PRJNA176999 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | ZM | Chilongo,Chiredzi | $\begin{aligned} & 21^{\circ} 03 ' \mathrm{~S}, \\ & 31^{\circ} 40^{\prime} \mathrm{E} \end{aligned}$ | 1986 |
| An. quad. | 53 | SRP020518 | PRJNA177004 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | ZM | Chilongo,Chiredzi | $\begin{aligned} & 21^{\circ} 03 ' \mathrm{~S}, \\ & 31^{\circ} 40^{\prime} \mathrm{E} \end{aligned}$ | 1986 |
| An. quad. | 71 | SRP020576 | PRJNA177001 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | ZM | Chilongo,Chiredzi | $\begin{aligned} & 21^{\circ} 03 ' \mathrm{~S}, \\ & 31^{\circ} 40^{\prime} \mathrm{E} \end{aligned}$ | 1986 |
| An. quad. | $72 \dagger$ | SRP020593 | PRJNA177000 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | ZM | Chilongo,Chiredzi | $\begin{aligned} & 21^{\circ} 03 ' \mathrm{~S} \\ & 31^{\circ} 40^{\prime} \mathrm{E} \end{aligned}$ | 1986 |
| An. quad. | 84 | SRP020522 | PRJNA177005 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | ZM | Chilongo,Chiredzi | $\begin{aligned} & 21^{\circ} 03 ' \mathrm{~S}, \\ & 31^{\circ} 40^{\prime} \mathrm{E} \end{aligned}$ | 1986 |
| An. quad. | 154 | SRP020517 | PRJNA177006 | $2 \mathrm{~L}+{ }^{\text {a }} / 2 \mathrm{~L}+{ }^{\text {a }}$ | ZM | Chilongo,Chiredzi | $\begin{aligned} & 21^{\circ} 03 ' \mathrm{~S}, \\ & 31^{\circ} 40^{\prime} \mathrm{E} \end{aligned}$ | 1986 |
| An. christyi | ACHKN1017 | SRP020566 | PRJNA67213 | $2 \mathrm{La} / 2 \mathrm{La}$ | KN | Kikuyu town | ? | 2010 |
| $A n$. epiroticus | MR4 <br> An.epiroticus_1 | SRP028915 | PRJNA191562 | 2La/2La | VN | Can Gio district, Ho Chi Minh City | ? | 2011 |

$\overline{B F}$ : Burkina Faso; CM: Cameroon; KN: Kenya; MI: Mali; SA: South Africa; TZ: Tanzania; VN: Vietnam; ZM: Zimbabwe. Coord.: GPS coordinates. An. quad.: An. quadriannulatus.
*Excluded from the nuclear data analyses because of very poor data quality.
$\dagger$ Sample also used for resequencing at high coverage.

## S2.2.2. Read mapping and variant calling

Mapping, SNP calling, and QC filtering. Population samples were processed using steps $a$ to $f$ described in section S2.1.2. Each species was processed separately using its conspecific reference. Descriptive statistics of read mapping and sequencing depth are shown in Table S5. Intraspecific samples were combined for all steps following read mapping (i.e., indel-realignment and variant calling). All sites (variant or not) were emitted across the genome using the HaplotypeCaller tool of GATK v.2.8 and 3.1 (68, 70). Genomic coordinates of the focal species reference assembly were then converted into a common PEST reference system as described (S2.1.2f) to allow interspecific analyses.

High quality (HQ) sites were retained for data analyses using hard filters, including a depth coverage (DP) between 4 and $30 x$ (average per individual), a quality-by-depth ratio ( QD ) between 5.0 and 35.0 , a mapping quality $(\mathrm{MQ}) \geq 40.0$, a probability of strand bias (FS) $\geq 60.0$, and ReadPosRankSum $\leq-8.0$. The boundaries for DP and QD were determined empirically based on their distribution defining a space where the average transition-transversion (Ti/Tv) ratio was stable (Fig. S7).

After hard filtering, the VCF files were merged using GATK (CombineVariants tool). We restricted our analyses only to biallelic SNPs (using GATK-SelectVariant), keeping only genotypes that had genotype quality (GQ) of at least 30,4 reads to support the called genotype [vcftools v.1.0.12a (71), --minGQ $30-$-minDP 4], and at least four diploid individuals called at that site (VCFtools v.0.1.12a, -mac 7).

After QC filtering, we excluded any sample with a proportion of missing data higher than $80 \%$. This resulted in excluding 1 of 12 An. coluzzii samples, 3 of 26 An.
gambiae samples, and 1 of 4 An. melas samples. For analyses requiring an outgroup species, we also merged to the final VCF file two outgroups (An. christyi and An. epiroticus) taken from the haploid reference assemblies and converted to diploid homozygotes. The final data set (available in DRYAD, doi:10.5061/dryad.f4114) included 69 individual mosquitoes called for $7,531,874$ SNPs across all species (Table S6). The proportion of missing data strongly correlated with the average individual sequencing depth (Fig. S8).

## Table S5.

Descriptive statistics of the short-reads from intraspecific samples sequenced at low depth and mapped to their own reference assemblies. (An. quad., An. quadriannulatus).

| Species |  | \# Reads | Reads mapped | Reads paired | Reads MQ0 | Total length | Bases mapped | Average Read length | Average quality | Average insert size | Average depth |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| An. arabi$\mathrm{n}=12$ | mean | 52,444,520 | 37,561,080 | 36,503,360 | 2,364,613 | 5,096,041,000 | 3,634,230,000 | 97 | 35.4 | 165 | 14.8 |
|  | sd | 5,013,551 | 5,983,933 | 6,171,935 | 5,472,642 | 486,398,847 | 588,246,713 | 0 | 0.1 | 11 | 1.9 |
|  | min | 44,861,610 | 29,969,840 | 29,042,310 | 648,210 | 4,362,147,000 | 2,899,938,000 | 96 | 35.2 | 136 | 12.0 |
|  | max | 61,101,230 | 51,965,960 | 51,960,100 | 19,740,050 | 5,945,627,000 | 5,064,491,000 | 97 | 35.6 | 175 | 18.0 |
| An. coluzzii$\mathrm{n}=12$ | mean | 32,161,160 | 21,232,950 | 20,591,250 | 2,812,346 | 3,216,116,000 | 2,123,295,000 | 100 | 36.5 | 465 | 7.5 |
|  | sd | 7,897,420 | 4,398,670 | 4,300,782 | 569,943 | 789,742,015 | 439,866,954 | 0 | 0.2 | 19 | 1.7 |
|  | min | 27,564,380 | 9,347,087 | 8,761,407 | 1,411,210 | 2,756,438,000 | 934,708,700 | 100 | 36.4 | 438 | 3.0 |
|  | max | 56,608,680 | 26,719,940 | 25,731,240 | 3,584,974 | 5,660,868,000 | 2,671,994,000 | 100 | 36.9 | 509 | 10.0 |
| An. gambiae$\mathrm{n}=26$ | mean | 35,019,060 | 26,249,950 | 25,541,400 | 3,662,446 | 3,472,143,000 | 2,601,507,000 | 99 | 36.3 | 361 | 9.5 |
|  | sd | 6,111,850 | 6,250,016 | 6,102,560 | 874,187 | 606,962,448 | 628,332,996 | 1 | 0.2 | 114 | 2.7 |
|  | min | 23,357,480 | 14,756,620 | 14,462,250 | 1,815,586 | 2,283,864,000 | 1,441,088,000 | 97 | 35.9 | 200 | 5.0 |
|  | max | 48,480,770 | 38,237,250 | 37,127,080 | 5,560,724 | 4,848,077,000 | 3,823,725,000 | 100 | 36.6 | 487 | 15.0 |
| An. merus$\mathrm{n}=10$ | mean | 50,230,360 | 32,355,590 | 31,257,710 | 2,407,006 | 4,890,652,000 | 3,133,435,000 | 97 | 35.6 | 170 | 11.6 |
|  | sd | 6,683,652 | 5,280,179 | 5,155,522 | 351,060 | 651,421,770 | 511,869,616 | 0 | 0.1 | 3 | 2.4 |
|  | min | 40,276,500 | 22,940,130 | 22,067,790 | 2,042,568 | 3,924,597,000 | 2,222,083,000 | 97 | 35.5 | 166 | 7.0 |
|  | max | 57,941,170 | 39,146,720 | 37,949,300 | 3,058,085 | 5,645,641,000 | 3,793,025,000 | 97 | 35.6 | 175 | 15.0 |
| An. quad.$\mathrm{n}=10$ | mean | 49,678,780 | 31,458,700 | 30,020,370 | 1,286,656 | 4,825,148,000 | 3,038,138,000 | 97 | 35.4 | 170 | 12.6 |
|  | sd | 5,391,047 | 3,310,526 | 3,139,256 | 167,211 | 524,060,754 | 319,421,042 | 0 | 0.1 | 4 | 1.6 |
|  | min | 39,562,880 | 25,492,420 | 24,366,600 | 968,265 | 3,844,544,000 | 2,464,603,000 | 97 | 35.4 | 162 | 10.0 |
|  | max | 57,065,430 | 35,800,900 | 34,230,290 | 1,475,746 | 5,546,052,000 | 3,460,880,000 | 97 | 35.5 | 177 | 15.0 |
| An. melas$\mathrm{n}=4$ | mean | 50,196,350 | 27,774,210 | 26,929,640 | 1,550,017 | 4,856,016,000 | 2,685,538,000 | 97 | 35.3 | 170 | 11.0 |
|  | sd | 6,608,560 | 10,669,430 | 10,369,110 | 583,740 | 680,195,200 | 1,034,676,000 | 1 | 0.4 | 8 | 5.4 |
|  | min | 40,901,620 | 11,797,350 | 11,406,550 | 675,427 | 3,894,107,000 | 1,136,199,000 | 95 | 34.7 | 159 | 3.0 |
|  | max | 55,715,860 | 33,610,350 | 32,584,270 | 1,868,764 | 5,413,520,000 | 3,253,929,000 | 97 | 35.5 | 176 | 14.0 |

Table S6.
Descriptive statistics of population samples including the average depth (DP), number of complete genotypes (\#SNP), number (\#N) and proportion ( $\% \mathrm{~N}$ ) of missing genotypes relative to the total number of SNPs across the six species $(7,531,874)$, and number of homozygous SNPs (Ho). Values are provided as per sample mean, median, SD, min, max and the total number of SNPs identified. An. quad., An. quadriannulatus; An. chris., An. christyi; An. epir., An. epiroticus.

| Species |  | DP | \#SNP | \#N | \%N | Ho |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| An. arabiensis | mean | 13.2 | 4,549,665 | 2,982,209 | 0.40 | 4,238,263 |
| $n=12$ | median | 13.7 | 4,833,064 | 2,698,811 | 0.36 | 4,513,941 |
|  | sd | 2.93 | 868,831 | 868,831 | 0.12 | 845,790 |
|  | min | 6.38 | 2,143,699 | 2,164,973 | 0.29 | 1,940,605 |
|  | max | 17.6 | 5,366,901 | 5,388,175 | 0.72 | 5,061,051 |
|  | Total |  | 6,590,579 |  |  |  |
| An. coluzzii | mean | 7.8 | 2,709,763 | 4,638,947 | 0.62 | 2,575,579 |
| $n=11$ | median | 7.6 | 2,671,365 | 4,680,358 | 0.62 | 2,538,979 |
|  | sd | 0.7 | 299,310 | 314,578 | 0.04 | 287,677 |
|  | min | 7.1 | 2,372,321 | 4,095,079 | 0.54 | 2,250,125 |
|  | max | 9.1 | $3,227,347$ | 4,990,931 | 0.66 | 3,074,715 |
|  | Total |  | 5,952,780 |  |  |  |
| An. gambiae | mean | 9.2 | 3,055,908 | 4,252,458 | 0.56 | 2,900,338 |
| $n=23$ | median | 8.6 | 3,004,926 | 4,323,433 | 0.57 | 2,854,780 |
|  | sd | 2.0 | 625,168 | 659,627 | $0.09$ | 612,047 |
|  | min | 6.9 | 2,251,971 | 3,088,960 | 0.41 | 2,132,620 |
|  | max | 13.3 | 4,186,380 | 5,115,458 | 0.68 | 4,032,878 |
|  | Total |  | 6,304,438 |  |  |  |
| An. melas | mean | 14.4 | 5,011,222 | 2,520,652 | 0.33 | 4,986,714 |
| $n=3$ | median | 14.5 | 4,978,302 | 2,553,572 | 0.34 | 4,953,343 |
|  | sd | 0.4 | 65,137 | 65,137 | 0.01 | 65,526 |
|  | min | 14.0 | 4,969,116 | 2,445,626 | 0.32 | 4,944,591 |
|  | max | 14.8 | 5,086,248 | 2,562,758 | 0.34 | 5,062,208 |
|  | Total |  | 5,862,737 |  |  |  |
| An. merus | mean | 11.3 | 4,650,290 | 2,881,584 | 0.38 | 4,468,566 |
| $n=10$ | median | 10.9 | 4,634,788 | 2,897,086 | 0.38 | 4,455,079 |
|  | sd | 2.1 | 730,837 | 730,837 | 0.10 | 716,496 |
|  | min | 7.7 | 3,091,674 | 2,044,942 | 0.27 | 2,941,962 |
|  | max | 14.2 | 5,486,932 | 4,440,200 | 0.59 | 5,287,031 |
|  | Total |  | 6,853,032 |  |  |  |


| Species |  | DP | \#SNP | \#N | \%N | Ho |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| An. quad. | mean | 12.3 | $4,496,797$ | $3,035,077$ | 0.40 | $4,210,498$ |
| $n=10$ | median | 12.4 | $4,564,492$ | $2,967,382$ | 0.39 | $4,277,650$ |
|  | sd | 1.3 | 294,890 | 294,890 | 0.04 | 284,490 |
|  | min | 10.1 | $3,939,870$ | $2,666,208$ | 0.35 | $3,670,941$ |
|  | max | 14.2 | $4,865,666$ | $3,592,004$ | 0.48 | $4,566,325$ |
|  | Total |  | $6,386,678$ |  |  |  |

An. chris.

| $n=1$ | - | $3,936,772$ | $3,595,102$ | 0.48 | $3,936,772$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| An. epir. |  |  |  |  |  |
| $n=1$ |  |  |  |  |  |




Fig. 57.
Two-dimensional histogram showing SNP counts (left panel) and Ti/Tv ratios (right panel) as a function of quality-by-depth ratio (QD) and the average depth (DP, summed over the individual in a focal species).


Fig. S8.
Proportion of missing data as a function of the sequencing depth for the 69 individual female mosquitoes ( +2 outgroups) shown by chromosome arm.

## S2.2.3 Polymorphism and divergence of nuclear genomes

Methodology. We analyzed intraspecific polymorphism and interspecific divergence using the SNP dataset derived from sequencing multiple individuals per species at lower coverage (see S2.2).

We used VCFtools v0.1.12a (71) to estimate the nucleotide diversity $(\pi)$ within 50 kb non-overlapping windows along the genome, and the SNP allelic frequency in each of the six species of the An. gambiae complex included in our study. We plotted the twodimensional allelic frequency spectrum between each pair of species using the ipair function of the IPDmisc v1.1.17 package in R v.3.0.2, using a $\log _{2}$ scale transformation. Linkage disequilibrium (LD), estimated as the $r^{2}$ correlation coefficient between pairs of SNPs that are at most 1 kb apart, was estimated in each species using PLINK v1.07 (72). We plotted the LD decay as a function of the distance between SNPs using ggplot2 R package (73), fitting a GLM function. Differences in allelic frequencies between pairs of species was estimated using the weighted Weir and Cockerham's estimator of $F_{S T}$ (74) calculated in 50 kb non-overlapping windows, using VCFtools.

Results. Descriptive statistics of the number of complete and missing genotypes in each species are shown in Table S6. The proportion of missing data was directly proportional to the sequencing depth (Fig. S8), which was highest in An. coluzzii and An. gambiae, and lowest in An. merus and An. melas (Table S6). Out of the total number of SNPs discovered (Table S6), only a fraction segregated in each species (from $1 \%$ in An . melas to 31\% in An. arabiensis and $35 \%$ in An. quadriannulatus). An. arabiensis and quadriannulatus had the highest genetic diversity both in terms of SNP density and heterozygosity (Fig. S9-S11). They are followed in order of decreasing
diversity by An. gambiae, An. coluzzii and An. merus. An. melas showed a markedly reduced level of genetic diversity (Fig. S9) and heterozygosity (Fig. S11). Reduced genetic diversity was also observed in the high depth samples (see section S2.1), and taken together, may suggest a severe bottleneck in the sampled population. This interpretation is consistent with the high level of linkage disequilibrium observed in An . melas compared to the other species, with the caveat that sample size is very small (Fig. S12). Another species displaying higher LD compared to the others was An. coluzzii, a result that is likely related to strong population structure, as observed previously within this taxon (75) and as shown in section S3.3.

With the caution that sample size is low in each species, differences in allelic frequencies, estimated by $F_{S T}$ (Fig. S13), were always very high between species, except between the two very closely related species An. gambiae and An. coluzzii. The only chromosomal regions showing very high levels of differentiation between the latter pair were centromere-proximal on the autosomes and the X chromosome, consistent with previous observations (76-78). While $F_{S T}$ values were very high on the autosomes for most species pairs, certain contrasts (An. arabiensis with An. coluzzii, An. gambiae and An. quadriannulatus; and An. quadriannulatus with An. coluzzii and An. gambiae) showed a slight reduction in $F_{S T}$ values on the autosomes, but not on the X chromosome. This effect may be at least partially explained by the significant level of shared polymorphism related to introgression between An. arabiensis, An. coluzzii and An. gambiae (see S4).


Fig. S9.
Nucleotide diversity $(\pi)$ estimated within 50 kb non-overlapping windows by chromosome arm for each studied species in the $A n$. gambiae complex.


Fig. S10.
Pairwise comparisons of the allelic frequency spectrum (AFS) by chromosome arm. The number (and proportion) of segregating sites (with a minor allelic frequency $\geq 0.01$ ) are shown in the box. $\mathrm{A}=$ An. arabiensis, $\mathrm{C}=$ An. coluzzii, $\mathrm{G}=$ An. gambiae, $\mathrm{L}=$ An. melas, $\mathrm{Q}=$ An. quadriannulatus, $\mathrm{R}=$ An. merus.


Fig. S11.
Proportion of heterozygous SNPs as a function of the mean sequencing depth by chromosome arm.


Fig. S12.
Linkage disequilibrium decay per chromosome arm in each species.


Chromosome position (MB)
Fig. S13.
Differences in allelic frequency expressed as $F_{S T}$ between each species in nonoverlapping 50 kb windows by chromosome arm. $\mathrm{A}=$ An. arabiensis, $\mathrm{C}=$ An. coluzzii, $\mathrm{G}=$ An. gambiae, $\mathrm{L}=$ An. melas, $\mathrm{Q}=$ An. quadriannulatus, $\mathrm{R}=$ An. merus.

## S2.2.4. Mitochondrial genome assembly

Methods. We used the whole genome resequencing (WGS) data from multiple individuals per species (section S3) to assemble the mitochondrial genome (mtDNA) of each of the six studied species in the An. gambiae complex. We used the previously published An. gambiae s.s. mitochondrial genome (79) as a reference (length: 15,363 base-pairs, bps). Major steps of the pipeline (Fig. S14) were adapted from (80). For each sample, we captured reads from the mitochondrial genome by mapping the trimmed reads using the BWA 'mem' algorithm to the previously published An. gambiae mitochondrial genome as well as a modified assembly with the ends joined and the middle split (Table S7). This second round of mapping is intended to increase the number of captured reads at the extremes of the assemblies and take advantage of the circularity of mtDNA (80). Reads that mapped to each assembly were extracted and randomly downsampled to 400x coverage. These downsampled sets of 400x coverage were replicated five times for both assemblies. This protocol reduces the probability of inadvertent capture of nuclearintegrated mitochondrial DNA. Contigs were constructed for each sample using Hapsembler (http://compbio.cs.toronto.edu/hapsembler), thus creating 10 assemblies per sample. Using Nucmer (81), the 10 assemblies were aligned to the original reference assembly to order and orient the contigs, from which a consensus sequence was formed representing the final mitochondrial assembly for the given sample. We removed the highly variable non-coding control region from this consensus.

Results. We were able to reconstruct the mtDNA genome of 75 samples including 73 individuals from each of the six ingroup species and the two outgroups, $A n$. christyi and An. epiroticus (Table S7). The mtDNA alignment is available in DRYAD
(doi:10.5061/dryad.f4114). Out of the $14,843 \mathrm{bp}$ ( 14,833 without gaps), 1341 sites were polymorphic, 722 were singletons and 619 were polymorphisms observed more than once, defining 72 haplotypes (Table S8). The mtDNA nucleotide diversity (estimated with $\pi$ and $\theta_{\mathrm{W}}$, Table S8) was highest in An. gambiae and An. arabiensis and lowest in $A n$. merus and An. melas. Measures of genetic diversity were computed using DNASP v5 (82).


Fig. S14.
Pipeline for mitochondrial genome assembly.

Table S7.
Descriptive statistics of the reads mapped to the An. gambiae mitochondrial genome in each of six Anopheles gambiae complex species and two outgroups.

| Statistics | Species | AARAB | ACOL | AGAMB | AMELA | AMERU | AQUAD | ACHRI | AEPI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N |  | 12 | 12 | 26 | 4 | 10 | 9 | 1 | 1 |
| Read Mapped to Ref. | mean | 131988.8 | 167845.2 | 141895.5 | 102731.5 | 213786.0 | 238871.2 | 214423.0 | 156267.0 |
|  | SD | 72034.2 | 146588.2 | 126094.6 | 62624.2 | 108416.0 | 100658.7 | - | - |
|  | median | 132715.0 | 99697.0 | 108674.0 | 118619.0 | 193144.0 | 223917.0 | - | - |
|  | min | 42429.0 | 47041.0 | 2303.0 | 19589.0 | 44043.0 | 104985.0 | - | - |
|  | max | 303213.0 | 460969.0 | 481115.0 | 154099.0 | 379115.0 | 382065.0 | - | - |
| Depth | mean | 859.1 | 1092.5 | 923.6 | 668.7 | 1391.6 | 1554.8 | 1395.7 | 1017.2 |
|  | SD | 468.9 | 954.2 | 820.8 | 407.6 | 705.7 | 655.2 | - | - |
|  | median | 863.9 | 648.9 | 707.4 | 772.1 | 1257.2 | 1457.5 | - | - |
|  | min | 276.2 | 306.2 | 15.0 | 127.5 | 286.7 | 683.4 | - | - |
|  | max | 1973.7 | 3000.5 | 3131.6 | 1003.1 | 2467.7 | 2486.9 | - | - |
| Read Mapped to modified Ref. | mean | 131112.3 | 166112.7 | 139904.7 | 101801.0 | 212242.6 | 236945.9 | 215667.0 | 153857.0 |
|  | SD | 71759.7 | 145184.5 | 124053.5 | 62101.3 | 107420.1 | 99918.1 | - | - |
|  | median | 131745.0 | 98553.0 | 107636.0 | 117496.0 | 192355.0 | 221555.0 | - | - |
|  | min | 42135.0 | 46653.0 | 2317.0 | 19459.0 | 43851.0 | 104191.0 | - | - |
|  | max | 301827.0 | 457717.0 | 473975.0 | 152753.0 | 376531.0 | 379287.0 | - | - |
| Depth modified Ref. | mean | 853.4 | 1081.3 | 910.7 | 662.6 | 1381.5 | 1542.3 | 1403.8 | 1001.5 |
|  | SD | 467.1 | 945.0 | 807.5 | 404.2 | 699.2 | 650.4 | - | - |
|  | median | 857.5 | 641.5 | 700.6 | 764.8 | 1252.1 | 1442.1 | - | - |
|  | min | 274.3 | 303.7 | 15.1 | 126.7 | 285.4 | 678.2 | - | - |
|  | max | 1964.6 | 2979.3 | 3085.2 | 994.3 | 2450.9 | 2468.8 | - | - |
| Sequence length | mean | 15362.0 | 15362.0 | 15361.9 | 15362.0 | 15362.0 | 15362.0 | 14862.0 | 14877.0 |
|  | SD | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | - | - |
|  | median | 15362.0 | 15362.0 | 15362.0 | 15362.0 | 15362.0 | 15362.0 | - | - |
|  | min | 15362.0 | 15362.0 | 15359.0 | 15362.0 | 15362.0 | 15362.0 | - | - |
|  | max | 15362.0 | 15362.0 | 15362.0 | 15362.0 | 15362.0 | 15362.0 | - | - |
| Non-N's sites | mean | 15362.0 | 15361.3 | 15361.3 | 15361.5 | 15362.0 | 15362.0 | 14858.0 | 14873.0 |
|  | SD | 0.0 | 0.9 | 0.9 | 0.6 | 0.0 | 0.0 | - | - |
|  | median | 15362.0 | 15361.5 | 15362.0 | 15361.5 | 15362.0 | 15362.0 | - | - |
|  | min | 15362.0 | 15360.0 | 15359.0 | 15361.0 | 15362.0 | 15362.0 | - | - |
|  | max | 15362.0 | 15362.0 | 15362.0 | 15362.0 | 15362.0 | 15362.0 | - | - |
| Non-N's w/o CR ( 14845 bps ) | mean | 14843.0 | 14842.8 | 14843.0 | 14842.5 | 14843.0 | 14843.0 | 14839.0 | 14839.0 |
|  |  | 0.0 | 0.4 | 0.2 | 0.6 | 0.0 | 0.0 | - | - |
|  | median | 14843.0 | 14843.0 | 14843.0 | 14842.5 | 14843.0 | 14843.0 | - | - |
|  | min | 14843.0 | 14842.0 | 14842.0 | 14842.0 | 14843.0 | 14843.0 | - | - |
|  | max | 14843.0 | 14843.0 | 14843.0 | 14843.0 | 14843.0 | 14843.0 | - | - |

AARAB: An. arabiensis; ACOL: An. coluzzii (M); AGAMB: An. gambiae (S); AMELA: An. melas; AMERU: An. merus; AQUAD:
An. quadriannulatus; ACHRI: An. christyi; AEPI: An. epiroticus.

Table S8.
Mitochondrial genome DNA polymorphism.

| Statistics | $A l l+2$ <br> outgroups | AARAB | ACOL | AGAMB | AQUAD | AMELA | AMERU |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | 75 | 12 | 12 | 26 | 9 | 4 | 10 |
| S | 1341 | 234 | 153 | 414 | 162 | 88 | 133 |
| h | 72 | 11 | 12 | 24 | 9 | 4 | 10 |
| Hd | 0.99 | 0.99 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 |
| $\pi$ | 0.00822 | 0.0037 | 0.0034 | 0.0039 | 0.0035 | 0.0031 | 0.0025 |
| $\theta_{\text {W }}$ | 0.0185 | 0.0052 | 0.0034 | 0.0075 | 0.0040 | 0.0032 | 0.0032 |
| K | 121.88 | 54.6 | 50.3 | 58.3 | 51.7 | 46.5 | 36.6 |
| D | - | -1.46 | -0.07 | -1.90 | -0.69 | -0.33 | -1.13 |
| $P$-value on D | - | 0.10 | 0.10 | 0.05 | 0.10 | 0.10 | 0.10 |
| D* | - | -1.70 | -0.31 | -2.31 | -0.74 | -0.33 | -1.24 |
| $P$-value on D* | - | 0.1 | 0.1 | . $1>\mathrm{P}>.05$ | 0.1 | 0.1 | 0.1 |
| F* | - | -1.86 | -0.03 | -2.57 | -0.82 | -0.35 | -1.37 |
| $P$-value on $\mathrm{F}^{*}$ | - | 0.1 | 0.1 | . $1>\mathrm{P}>.05$ | 0.1 | 0.1 | 0.1 |

AARAB: An. arabiensis; ACOL: An. coluzzii (M); AGAMB: An. gambiae (S); AMELA: An. melas; AMERU: An. merus, AQUAD: An. quadriannulatus; ACHRI: An: christyi; AEPI: An, epiroticus. Pi (per site); Theta (per site).

## S3. Phylogenomic analysis of the An. gambiae complex

## S3.1. Whole genome alignments of single field-collected mosquitoes of each species.

Our objective was to compare phylogenies reconstructed from alignments of the reference assemblies (S1), which were largely derived from colonized anopheline mosquitoes, to phylogenies reconstructed from single field caught mosquitoes sequenced at a high depth (S2.1). Realizing this objective required whole genome alignments based on sequencing reads from the field samples, rather than the original alignments based on reference assemblies. To this end, we generated haploid consensus sequences from the diploid samples, using variants called with the GATK UnifiedGenotyper (68). For every species, each site of its conspecific reference assembly was replaced with the majority allele in the corresponding diploid field-caught specimen, as determined by the filtered VCF file (see section 2.1.2e). This was achieved by leveraging positional information stored in association with the reference genome alignments (section S1). Encoded in the Multiple Alignment Format (MAF) (83) file is a scaffold and a starting position for every alignment block of a focal reference genome to the PEST reference. We leveraged this positional information to replace sequences in the original reference assembly with the "haploidified" consensus sequence from wild specimens. In the instance of a deletion or missing data in the field specimen, the allele in the updated MAF file was made into an "N." All insertions relative to PEST were ignored to simplify analysis in PEST coordinate space. In addition to 6 species of the An. gambiae complex, An. epiroticus and An. christyi were also added to the alignments as outgroups. As a point of reference given its wide use, we included An. gambiae PEST in the same alignment with the haploid consensus sequences from wild specimens. The final alignments for the reference
assemblies and the high-depth field samples are available in DRYAD
(doi:10.5061/dryad.f4114). Descriptive statistics in terms of nucleotide diversity and number of sites aligned in 50 kb windows are shown in Figure S15.


Fig. S15.
Chromosomal spatial plot for non-overlapping 50 kb genomic alignment windows for the high-depth genomic sequences determined from individual An. arabiensis, An. christyi, An. coluzzii, An. gambiae, An. melas, An. merus, and An. quadriannulatus. The two plots show the sequence diversity $(\pi)$ for all taxa and the number of full-depth aligned sites per 50 kb window.

## S3.2 Window-based phylogenies and identification of the species branching order

As expected for a clade with large population sizes, rapid divergence, and apparently widespread introgression, there is a high degree of discordance among the observed gene (locus) trees. The conclusions below are based on analysis of phylogenies inferred from 50 kb non-overlapping windows from the high-depth whole-genome alignment of the taxa $(\mathrm{A}=$ An. arabiensis, $\mathrm{C}=$ An. coluzzii, $\mathrm{G}=$ An. gambiae, $\mathrm{L}=$ An. melas, $\mathrm{Q}=$ An. quadriannulatus, $\mathrm{R}=$ An. merus, $\mathrm{O}=$ outgroup $=$ An. christyi). We will also refer to An. gambiae and An. coluzzii as the "gambiae group," and An. arabiensis, An. melas, and An. quadriannulatus, as the "melas group." Taking into account the relative abundance (Table S9), spatial distributions (Fig. S16), and relative divergence times (main text, Fig. 1c; Fig. 3; Fig. 5) of the various phylogenies inferred from 50 kb genomic regions we can infer the following model of the species phylogeny and its features.

Gene tree reconstruction. Gene trees (which do not require genic regions) were inferred from 50 kb non-overlapping windows of the alignment, using RAxML (v.7.2.8) with GTRGAMMA model and rapid bootstrapping for 100 replicates and specifying $A n$. christyi as the outgroup: "-m GTRGAMMA -f a -\# 100 -○ Achr" (84, 85). Only sites that were fully covered by sequence (i.e., without gaps in any aligned species) were considered in any 50 kb window. For a 50 kb window to be included in the analysis, at least $10 \%(5 \mathrm{~kb})$ of full-coverage sites were required. No correlation was found between sequence divergence and coverage, indicating that gaps in the coverage did not affect the results. Several other window sizes were also tested, with no substantive change in the results. All processing of MAF alignments into window alignments, automation of

RAxML, and postprocessing and counting of trees was handled by custom Python scripts. Chromosomal plots of gene tree distributions were generated using Veusz (v. 1.17.1 http://home.gna.org/veusz/).

The true species tree and phylogenies on the $X$ chromosome. The phylogeny $(\mathrm{O},((\mathrm{C}, \mathrm{G}),(\mathrm{R},(\mathrm{L},(\mathrm{A}, \mathrm{Q})))))$ is likely the true species phylogeny (tree vii in Fig. 2 and Fig. S16). It is the most common topology inferred in the Xag region (45.6\%), which has the oldest inferred divergence times in the whole genome (except ancient polymorphic inversion regions, see below). The second- and third-most common phylogenies in the Xag region (trees viii and ix in Fig. 2 and Fig. S16) are (O,((L,(A,Q)),(R,(C,G)))) and $(\mathrm{O},(\mathrm{R},((\mathrm{C}, \mathrm{G}),(\mathrm{L},(\mathrm{A}, \mathrm{Q})))))$ ). These are simply rearrangements due to ILS of the majority X tree, due to the short time in between speciation events separating the melas group, gambiae group, and An. merus. Together these three topologies make up $94.5 \%$ of the Xag region, and $63.9 \%$ of the X chromosome as a whole.

The proximal region of the X chromosome $(15-24 \mathrm{Mb})$ appears to have phylogenies similar to the autosomes, and $40 \%$ of inferred trees from the region are the most common autosomal trees (trees i and ii). This is in agreement with previous hypotheses that the X proximal region may be introgressed between An. arabiensis and the ancestor of An. gambiae + An. coluzzii (14).

Introgressed trees on the autosomes. The overall most common phylogeny genome-wide is $(\mathrm{O},((\mathrm{L}, \mathrm{R}),(\mathrm{Q},(\mathrm{A},(\mathrm{C}, \mathrm{G})))))$ inferred from $39.7 \%$ of total genomic windows and $41.8 \%$ of autosomal windows (tree i, Fig. 2 and Fig. S21). The two ILS rearrangements of the
melas group, gambiae group, and An. merus are $(\mathrm{O},(\mathrm{R},(\mathrm{L},(\mathrm{Q},(\mathrm{A},(\mathrm{C}, \mathrm{G}))))))$ and $(\mathrm{O},(\mathrm{L},(\mathrm{R},(\mathrm{Q},(\mathrm{A},(\mathrm{C}, \mathrm{G}))))))$, which make up $11 \%$ and $1 \%$ of the total trees, respectively (trees ii and iii). Under the proposed species phylogeny from the X , we conclude these autosomal phylogenies are the result of introgression between An. arabiensis and An. gambiae + An. coluzzii. This is especially apparent in the 2La region (see next section). As An. gambiae + An. coluzzii are placed on the tree within the melas group, rather than An. arabiensis being placed with An. gambiae + An. coluzzii, we conclude that the majority of autosomal introgression was from An. arabiensis into An. gambiae $+A n$. coluzzii (see also S4).

Introgression and the 2La inversion region. The 2La inversion region (2L coordinates: $20.5 \mathrm{Mb}-42.1 \mathrm{Mb})$ contains phylogenies not seen anywhere else in the genome due to two factors:

1. The apparent genetic sequence distance between taxa with the 2 La or $2 \mathrm{~L}+{ }^{\mathrm{a}}$ haplotypes exceeds that inferred from the species phylogeny on the X , indicating that these two haplotypes diverged prior to the root of the complex.
2. The field-collected An. gambiae s.s. (G) sample (S2.1) is heterokaryotypic $2 \mathrm{La} / 2 \mathrm{~L}+^{\mathrm{a}}$, so this region contains a mix of alleles from both haplotypes. This makes the placement of $G$ in the phylogeny highly variable.

The three most common phylogenies in this region- $(\mathrm{O},((\mathrm{R},(\mathrm{A}, \mathrm{C})),(\mathrm{L},(\mathrm{G}, \mathrm{Q}))))$, $(\mathrm{O},((\mathrm{L}, \mathrm{R}),(\mathrm{Q},(\mathrm{G},(\mathrm{A}, \mathrm{C})))))$ and $(\mathrm{O},((\mathrm{A}, \mathrm{C}),(\mathrm{R},(\mathrm{L},(\mathrm{G}, \mathrm{Q})))))$-together comprise $48.5 \%$ of trees inferred in the 2La region. These are three ILS variants of trees all showing a strong relationship of arabiensis and coluzzii (both homokaryotypic for 2La) due to strong
recent introgression of the 2La haplotype from the ancestor of An. gambiae $(\mathrm{G})+A n$. coluzzii (C) into arabiensis (A). The presence of this introgression is inferred by a sharp reduction of sequence divergence between A and C in this region. The direction of introgression is inferred both by a partial reduction of G-A divergence and considering the model of inversion gain and loss on the species phylogeny (S5). Since Q and L both have the $2 \mathrm{~L}+{ }^{\mathrm{a}}$ haplotype, we infer that the 2La haplotype was introgressed from the gambiae group into A .

## An. merus-quadriannulatus introgression, 3La inversion region, and 3 R enrichment.

 Genome wide, $24.8 \%$ of trees place Q and R as sister taxa, including 26.3\% of autosomal regions and $1.6 \%(n=4)$ regions on the X chromosome. From this evidence we infer that R and Q may also be introgressing on the autosomes (Fig. 4). This inference is further supported by their strongly overlapping current geographical ranges and strong local enrichment of trees that place R and Q in a sister taxon relationship within the 3La region (see also Fig. S19). The 3La inversion region (3L coordinates $\sim 15 \mathrm{Mb}-35 \mathrm{Mb}$ ) shows a strong enrichment of phylogenies that place R and Q as sister taxa ( $94.7 \%$, compared to $24.8 \%$ overall). Chromosome 3R also shows an enrichment of Q-R sister trees at the proximal end (coordinates $\sim 5-15 \mathrm{Mb}$ ).Determination of an introgressed phylogeny using divergence times: When introgression occurs between different species, the transfer of alleles causes the inferred time of divergence to be based on the time of introgression rather than the species divergence time. In a rooted three-taxon phylogeny there are two divergence times: the
earlier time when the first taxon diverges from the remaining sister pair $\left(T_{1}\right)$ and the time when the paired taxa diverge ( $T_{2}$, Fig. S16C,D; see also Fig. 3A). We use these times to determine which tree topologies represent those affected by introgression.

As the gambiae complex species have low divergence, we can measure the divergence times using simple pairwise distance measures. The vast majority of phylogenetically informative sites are biallelic, so allelic patterns can be represented as combinations of ancestral alleles (A) and derived alleles (B). For example, given the topology " $\left(\left(P_{1}, P_{2}\right), P_{3}\right), O$ " we can represent the allelic patterns in the order $P_{1} P_{2} P_{3} O$ (e.g. BBAA), where $O$ the outgroup always defines the ancestral allele (A). The counts of each pattern (e.g. $n_{\text {BBAA }}$ ) can be compared to the total number of sites in the sampled region ( $N$ ) to compute the divergence times. For the example tree, $T_{2}$ is the divergence of $P_{1}$ and $P_{2}$, and can be calculated as:

$$
\begin{equation*}
T_{2}=\frac{1}{N}\left(\frac{n_{\mathrm{ABAA}}+n_{\mathrm{BAAA}}}{2}\right) \tag{1}
\end{equation*}
$$

$T_{1}$ is calculated as $T_{2}$ plus the length of the branch ancestral to $P_{1}$ and $P_{2}$ :

$$
\begin{equation*}
T_{1}=\frac{1}{N}\left(\frac{n_{\mathrm{ABAA}}+n_{\mathrm{BAAA}}}{2}+n_{\mathrm{BBAA}}\right) \tag{2}
\end{equation*}
$$

When the non-paired taxon $\left(P_{3}\right)$ is the source of the introgression (i.e. the donor species), $T_{2}$ is predicted to be lower, since the observed $T_{2}$ will instead be the time of introgression rather than the true $T_{2}$ divergence time (Fig. S16C-D). When one of the two paired taxa $\left(P_{1}\right.$ or $\left.P_{2}\right)$ is the source of introgression, both $T_{1}$ and $T_{2}$ will be lowered, since: (1) the true $T_{1}$ will not be observed, (2) the true $T_{2}$ will instead be the observed $T_{1}$, and (3) the time of introgression will be the observed $T_{2}$. In the case of bidirectional introgression we also expect that the observed $T_{1}$ and $T_{2}$ will be lower than their true
values. Therefore, when deciding between two incompatible alternative majority phylogenies, the topology with the lowest average divergence times is more likely to have experienced introgression, leaving the true species tree with older divergence times.

Table S9.
Counts of bootstrapped tree topologies from non-overlapping 50 kb genomic windows per chromosomal arm and for inversion regions (italicized). Top tree for each chromosome/region is bolded. $(\mathrm{A}=$ An. arabiensis, $\mathrm{C}=$ An. coluzzii, $\mathrm{G}=$ An. gambiae, $\mathrm{L}=$ An. melas, $\mathrm{Q}=$ An. quadriannulatus, $\mathrm{R}=$ An. merus, $\mathrm{O}=$ outgroup $=$ An. christyi)

| Topology | 2L | 2La | 2R | 3L | 3La | 3R | X | Xag | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total | 918 | 437 | 1165 | 771 | 419 | 965 | 244 | 164 | 4063 |
| (O,((L,R),(Q,(A,(C,G))))) | 291 | 7 | 609 | 192 | 13 | 507 | 16 | 0 | 1615 |
| (O,(R,(L,(Q,(A,(C,G)))))) | 79 | 2 | 201 | 61 | 1 | 112 | 16 | 0 | 469 |
| $(\mathrm{O},((\mathrm{~A},(\mathrm{C}, \mathrm{G})),(\mathrm{L},(\mathrm{R}, \mathrm{Q}))))$ | 18 | 2 | 58 | 207 | 178 | 94 | 1 | 0 | 378 |
| $(\mathrm{O},((\mathrm{R}, \mathrm{Q}),(\mathrm{L},(\mathrm{~A},(\mathrm{C}, \mathrm{G})))))$ | 26 | 1 | 118 | 98 | 67 | 115 | 0 | 0 | 357 |
| $(\mathrm{O},(\mathrm{~L},((\mathrm{R}, \mathrm{Q}),(\mathrm{A},(\mathrm{C}, \mathrm{G})))))$ | 2 | 0 | 1 | 112 | 110 | 15 | 0 | 0 | 130 |
| (O,((A,(C,G)),(Q,(L,R)))) | 26 | 1 | 31 | 15 | 1 | 45 | 6 | 0 | 123 |
| $(\mathrm{O},((\mathrm{~L}, \mathrm{R}),(\mathrm{Q},(\mathrm{G},(\mathrm{~A}, \mathrm{C})))))$ | 77 | 76 | 4 | 1 | 0 | 1 | 0 | 0 | 83 |
| (O,((R,(A,C)),(L,(G,Q)))) | 82 | 82 | 0 | 0 | 0 | 0 | 0 | 0 | 82 |
| $(\mathrm{O},((\mathrm{C}, \mathrm{G}),(\mathrm{R},(\mathrm{~L},(\mathrm{~A}, \mathrm{Q})))))$ | 0 | 0 | 0 | 0 | 0 | 0 | 76 | 75 | 76 |
| $\left(\mathrm{O},((\mathrm{L}, \mathrm{R}),(\mathrm{Q},(\mathrm{C},(\mathrm{A}, \mathrm{G})) \mathrm{)}))^{\text {a }}\right.$ | 10 | 0 | 48 | 9 | 1 | 4 | 0 | 0 | 71 |
| $(\mathrm{O},((\mathrm{~A}, \mathrm{C}),(\mathrm{R},(\mathrm{~L},(\mathrm{G}, \mathrm{Q})))))$ | 54 | 54 | 0 | 0 | 0 | 0 | 0 | 0 | 54 |
| (O,((L, (A,Q)),(R,(C,G))) ) | 0 | 0 | 0 | 0 | 0 | 0 | 53 | 53 | 53 |
| (O,(L,(R,(Q,(A,(C,G)))))) | 6 | 0 | 20 | 4 | 1 | 13 | 1 | 0 | 44 |
| $\left(\mathrm{O},((\mathrm{R}, \mathrm{Q}),(\mathrm{L},(\mathrm{G},(\mathrm{A}, \mathrm{C})) \mathrm{)}))^{\text {a }}\right.$ | 29 | 29 | 0 | 3 | 2 | 1 | 0 | 0 | 33 |
| $(\mathrm{O},((\mathrm{R}, \mathrm{Q}),(\mathrm{L},(\mathrm{C},(\mathrm{~A}, \mathrm{G})))))$ | 5 | 0 | 15 | 9 | 7 | 1 | 0 | 0 | 30 |
| $(\mathrm{O},((\mathrm{C},(\mathrm{~A}, \mathrm{G})),(\mathrm{L},(\mathrm{R}, \mathrm{Q}))))$ | 0 | 0 | 9 | 19 | 17 | 2 | 0 | 0 | 30 |
| $(\mathrm{O},(\mathrm{R},(\mathrm{Q},(\mathrm{~L},(\mathrm{~A},(\mathrm{C}, \mathrm{G}))))))$ | 5 | 0 | 17 | 2 | 0 | 4 | 0 | 0 | 28 |
| $(\mathrm{O},(\mathrm{R},((\mathrm{C}, \mathrm{G}),(\mathrm{L},(\mathrm{A}, \mathrm{Q})) \mathrm{)}))$ | 0 | 0 | 0 | 0 | 0 | 0 | 27 | 27 | 27 |
| (O,(R,(L,(Q,(G,(A,C)))))) | 26 | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 26 |
| $(\mathrm{O},((\mathrm{~L}, \mathrm{R}),((\mathrm{A}, \mathrm{Q}),(\mathrm{C}, \mathrm{G}))))$ | 2 | 0 | 3 | 1 | 0 | 12 | 7 | 0 | 25 |
| $(\mathrm{O},((\mathrm{G},(\mathrm{~A}, \mathrm{C})),(\mathrm{R},(\mathrm{~L}, \mathrm{Q}))))$ | 24 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 24 |
| (O,((L,Q),(R,(G,(A,C))))) | 24 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 24 |
| (O,((G, (A,C)),(L, (R,Q))) ) | 20 | 20 | 0 | 1 | 1 | 1 | 0 | 0 | 22 |
| $(\mathrm{O},((\mathrm{~L}, \mathrm{R}),(\mathrm{A},(\mathrm{Q},(\mathrm{C}, \mathrm{G})))))$ | 4 | 0 | 1 | 7 | 1 | 7 | 2 | 0 | 21 |
| (O,((A,(C,G)),(R,(L,Q)))) | 7 | 1 | 4 | 4 | 0 | 4 | 0 | 0 | 19 |
| $(\mathrm{O},((\mathrm{R},(\mathrm{A}, \mathrm{C})),(\mathrm{G},(\mathrm{L}, \mathrm{Q})) \mathrm{)})$ | 18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 18 |
| (O,(R,(L,(Q,(C,(A,G)))))) | 1 | 0 | 13 | 1 | 1 | 2 | 0 | 0 | 17 |
| (O,(L,((R,Q),(C,(A,G))))) | 0 | 0 | 1 | 15 | 15 | 0 | 0 | 0 | 16 |
| $(\mathrm{O},(\mathrm{R},((\mathrm{~L}, \mathrm{Q}),(\mathrm{G},(\mathrm{~A}, \mathrm{C})))))$ | 15 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 15 |
| $(\mathrm{O},((\mathrm{~L}, \mathrm{R}),((\mathrm{A}, \mathrm{C}),(\mathrm{G}, \mathrm{Q}))))$ | 11 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |
| $(\mathrm{O},((\mathrm{C}, \mathrm{G}),(\mathrm{A},(\mathrm{Q},(\mathrm{~L}, \mathrm{R})))))$ | 1 | 0 | 1 | 1 | 1 | 3 | 4 | 0 | 10 |
| $(\mathrm{O},((\mathrm{G},(\mathrm{~A}, \mathrm{C})),(\mathrm{Q},(\mathrm{~L}, \mathrm{R}))))$ | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |
| $\left(\mathrm{O},((\mathrm{L}, \mathrm{Q}),(\mathrm{R},(\mathrm{A},(\mathrm{C}, \mathrm{G})) \mathrm{)}))^{\text {a }}\right.$ | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 8 |
| (O,(R,(L,(A,(Q,(C,G)))))) | 2 | 0 | 0 | 3 | 0 | 1 | 1 | 0 | 7 |

Table S9 (continued):

| Topology | 2L | 2 La | 2R | 3L | 3La | 3R | X |  | Xag | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (O,((A,C),((G,Q),(L,R)))) |  | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
| $(\mathrm{O},(\mathrm{R},((\mathrm{A}, \mathrm{C}),(\mathrm{L},(\mathrm{G}, \mathrm{Q})) \mathrm{)}))$ |  | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
| $\left(\mathrm{O},(\mathrm{R},(\mathrm{L},((\mathrm{A}, \mathrm{Q}),(\mathrm{C}, \mathrm{G})) \mathrm{)}))^{\text {a }}\right.$ | 1 | 0 | 0 | 1 | 0 | 1 |  | 3 | 0 | 6 |
| $\left(\mathrm{O},(\mathrm{R},((\mathrm{L}, \mathrm{Q}),(\mathrm{A},(\mathrm{C}, \mathrm{G})) \mathrm{)}))^{\text {a }}\right.$ | 0 | 0 | 3 | 0 | 0 | 1 |  | 2 | 0 | 6 |
| (O,((A,C),(R,(G,(L,Q))))) | 4 | 4 | 4 | 0 | 0 | 0 |  | 0 | 0 | 4 |
| $\left(\mathrm{O},(\mathrm{R},(\mathrm{L},((\mathrm{A}, \mathrm{C}),(\mathrm{G}, \mathrm{Q})) \mathrm{)}))^{\text {a }}\right.$ | 4 | 4 | 4 | 0 | 0 | 0 |  | 0 | 0 | 4 |
| $(\mathrm{O},(\mathrm{R},(\mathrm{Q},(\mathrm{L},(\mathrm{G},(\mathrm{A}, \mathrm{C})) \mathrm{)}))$ ) | 4 | 4 | 0 | 0 | 0 | 0 |  | 0 | 0 | 4 |
| $(\mathrm{O},(\mathrm{Q},(\mathrm{R},(\mathrm{L},(\mathrm{A},(\mathrm{C}, \mathrm{G})) \mathrm{)}))$ ) | 1 | 0 | ) 1 | 1 | 0 | 1 |  | 0 | 0 | 4 |
| (O,((C,G),(A,(L,(R,Q))))) | 0 | 0 | 1 | 0 | 0 | 1 |  | 2 | 0 | 4 |
| $\left(\mathrm{O},(\mathrm{L},((\mathrm{R}, \mathrm{Q}),(\mathrm{G},(\mathrm{A}, \mathrm{C})) \mathrm{)}))^{\text {a }}\right.$ | 2 | 2 | 0 | 0 | 0 | 1 |  | 0 | 0 | 3 |
| $(\mathrm{O},((\mathrm{C},(\mathrm{~A}, \mathrm{G})),(\mathrm{Q},(\mathrm{~L}, \mathrm{R}))))$ | 0 | 0 | ) 3 | 0 | 0 | 0 |  | 0 | 0 | 3 |
| $(\mathrm{O},(\mathrm{Q},((\mathrm{L}, \mathrm{R}),(\mathrm{A},(\mathrm{C}, \mathrm{G})) \mathrm{)})$ ) | 0 | 0 | 1 | 0 | 0 | 2 |  | 0 | 0 | 3 |
| $(\mathrm{O},((\mathrm{A}, \mathrm{Q}),((\mathrm{C}, \mathrm{G}),(\mathrm{L}, \mathrm{R})) \mathrm{)})$ | 0 | 0 | 0 | 0 | 0 | 1 |  | 2 | 0 | 3 |
| $(\mathrm{O},((\mathrm{Q},(\mathrm{A}, \mathrm{L})),(\mathrm{R},(\mathrm{C}, \mathrm{G})) \mathrm{)})$ | 0 | 0 | 0 | 0 | 0 | 0 |  | 3 | 1 | 3 |
| $(\mathrm{O},((\mathrm{C}, \mathrm{G}),((\mathrm{A}, \mathrm{Q}),(\mathrm{L}, \mathrm{R}))))$ | 0 | 0 | 0 | 0 | 0 | 0 |  | 3 | 0 | 3 |
| $(\mathrm{O},((\mathrm{A}, \mathrm{C}),(\mathrm{G},(\mathrm{R},(\mathrm{L}, \mathrm{Q})) \mathrm{)}))$ | 2 | 2 | 0 | 0 | 0 | 0 |  | 0 | 0 | 2 |
| $(\mathrm{O},((\mathrm{G}, \mathrm{Q}),(\mathrm{L},(\mathrm{R},(\mathrm{A}, \mathrm{C})) \mathrm{)})$ ) | 2 | 2 | 0 | 0 | 0 | 0 |  | 0 | 0 | 2 |
| $(\mathrm{O},((\mathrm{~A},(\mathrm{~L}, \mathrm{R})),(\mathrm{Q},(\mathrm{C}, \mathrm{G}))))$ | 1 | 0 | 0 | 0 | 0 | 1 |  | 0 | 0 | 2 |
| $(\mathrm{O},(\mathrm{R},(\mathrm{Q},(\mathrm{L},(\mathrm{C},(\mathrm{A}, \mathrm{G})) \mathrm{)}))$ ) | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 2 |
| $(\mathrm{O},((\mathrm{C}, \mathrm{G}),((\mathrm{A}, \mathrm{L}),(\mathrm{R}, \mathrm{Q})) \mathrm{)})$ | 0 | 0 | 0 | 0 | 0 | 1 |  | 1 | 0 | 2 |
| $(\mathrm{O},(\mathrm{R},(\mathrm{Q},((\mathrm{A}, \mathrm{L}),(\mathrm{C}, \mathrm{G})) \mathrm{)})$ | 0 | 0 | 0 | 0 | 0 | 1 |  | 1 | 0 | 2 |
| $(\mathrm{O},(\mathrm{Q},(\mathrm{~A},(\mathrm{~L},(\mathrm{R},(\mathrm{C}, \mathrm{G}))))))$ | 0 | 0 | 0 | 0 | 0 | 0 |  | 2 | 2 | 2 |
| (O,(R,((C,G),(Q,(A,L))))) | 0 | 0 | 0 | 0 | 0 | 0 |  | 2 | 1 | 2 |
| (O,((C,G),(R,(Q,(A,L))))) | 0 | 0 | 0 | 0 | 0 | 0 |  | 2 | 0 | 2 |
| (O,(A,((C,G),(Q,(L,R))))) | 0 | 0 | 0 | 0 | 0 | 0 |  | 2 | 0 | 2 |
| $(\mathrm{O},((\mathrm{G}, \mathrm{L}),((\mathrm{A}, \mathrm{C}),(\mathrm{R}, \mathrm{Q})) \mathrm{)})$ | 1 | 1 | 0 | 0 | 0 | 0 |  | 0 | 0 | 1 |
| $(\mathrm{O},((\mathrm{L},(\mathrm{A}, \mathrm{C})),(\mathrm{R},(\mathrm{G}, \mathrm{Q})) \mathrm{)})$ | 1 | 1 | 0 | 0 | 0 | 0 |  | 0 | 0 | 1 |
| $(\mathrm{O},((\mathrm{L}, \mathrm{Q}),(\mathrm{G},(\mathrm{R},(\mathrm{A}, \mathrm{C})) \mathrm{)})$ ) | 1 | 1 | 0 | 0 | 0 | 0 |  | 0 | 0 | 1 |
| $(\mathrm{O},((\mathrm{R},(\mathrm{A}, \mathrm{C})),(\mathrm{Q},(\mathrm{G}, \mathrm{L})) \mathrm{)})$ | 1 | 1 | 0 | 0 | 0 | 0 |  | 0 | 0 | 1 |
| $(\mathrm{O},(\mathrm{L},(\mathrm{R},(\mathrm{Q},(\mathrm{G},(\mathrm{A}, \mathrm{C})) \mathrm{)}))$ ) | 1 | 1 | 0 | 0 | 0 | 0 |  | 0 | 0 | 1 |
| $(\mathrm{O},(\mathrm{L},(\mathrm{Q},(\mathrm{R},(\mathrm{G},(\mathrm{A}, \mathrm{C})) \mathrm{)}))$ ) | 1 | 1 | 0 | 0 | 0 | 0 |  | 0 | 0 | 1 |
| $(\mathrm{O},(\mathrm{A},(\mathrm{Q},((\mathrm{C}, \mathrm{G}),(\mathrm{L}, \mathrm{R})) \mathrm{)})$ ) | 1 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 1 |
| $(\mathrm{O},(\mathrm{L},(\mathrm{R},(\mathrm{G},(\mathrm{C},(\mathrm{A}, \mathrm{Q})) \mathrm{)}))$ ) | 0 | 0 | 0 | 1 | 1 | 0 |  | 0 | 0 | 1 |
| $(\mathrm{O},(\mathrm{L},(\mathrm{R},(\mathrm{G},(\mathrm{Q},(\mathrm{A}, \mathrm{C})) \mathrm{)}))$ ) | 0 | 0 | 0 | 1 | 1 | 0 |  | 0 | 0 | 1 |
| $(\mathrm{O},(\mathrm{L},(\mathrm{Q},((\mathrm{A}, \mathrm{R}),(\mathrm{C}, \mathrm{G})) \mathrm{)})$ ) | 0 | 0 | 0 | 1 | 0 | 0 |  | 0 | 0 | 1 |
| $(\mathrm{O},(\mathrm{Q},(\mathrm{L},(\mathrm{R},(\mathrm{C},(\mathrm{A}, \mathrm{G})) \mathrm{)}))$ ) | 0 | 0 | 0 | 1 | 0 | 0 |  | 0 | 0 | 1 |
| $\left(\mathrm{O},((\mathrm{A},(\mathrm{R}, \mathrm{Q})),(\mathrm{L},(\mathrm{C}, \mathrm{G})))^{\prime}\right.$ | 0 | 0 | 0 | 0 | 0 | 1 |  | 0 | 0 | 1 |
| (O,((A,L),((C,G),(R,Q)))) | 0 | 0 | 0 | 0 | 0 | 1 |  | 0 | 0 | 1 |


| $(\mathrm{O},((\mathrm{L}, \mathrm{R}),(\mathrm{C},(\mathrm{Q},(\mathrm{A}, \mathrm{G})))))$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table S9 (continued):

| Topology | 2L | 2La | 2R | $\mathbf{3 L}$ | $\mathbf{3 L a}$ | 3R | $\mathbf{X}$ | Xag | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $(\mathrm{O},(\mathrm{L},(\mathrm{A},((\mathrm{C}, \mathrm{G}),(\mathrm{R}, \mathrm{Q})))))$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| $(\mathrm{O},(\mathrm{L},(\mathrm{R},(\mathrm{A},(\mathrm{C},(\mathrm{G}, \mathrm{Q}))))))$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| $(\mathrm{O},(\mathrm{Q},((\mathrm{C}, \mathrm{G}),(\mathrm{A},(\mathrm{L}, \mathrm{R})))))$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| $(\mathrm{O},((\mathrm{A}, \mathrm{Q}),(\mathrm{L},(\mathrm{R},(\mathrm{C}, \mathrm{G})))))$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| $(\mathrm{O},((\mathrm{C}, \mathrm{G}),(\mathrm{L},(\mathrm{Q},(\mathrm{A}, \mathrm{R})))))$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| $(\mathrm{O},((\mathrm{R},(\mathrm{A}, \mathrm{Q})),(\mathrm{L},(\mathrm{C}, \mathrm{G}))))$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| $(\mathrm{O},(\mathrm{L},((\mathrm{A}, \mathrm{Q}),(\mathrm{R},(\mathrm{C}, \mathrm{G})))))$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| $(\mathrm{O},(\mathrm{R},((\mathrm{C}, \mathrm{G}),(\mathrm{A},(\mathrm{L}, \mathrm{Q})))))$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| $(\mathrm{O},((\mathrm{C}, \mathrm{G}),(\mathrm{L},(\mathrm{R},(\mathrm{A}, \mathrm{Q})))))$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| $(\mathrm{O},((\mathrm{C}, \mathrm{G}),(\mathrm{Q},(\mathrm{A},(\mathrm{L}, \mathrm{R})))))$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| $(\mathrm{O},(\mathrm{L},(\mathrm{R},((\mathrm{A}, \mathrm{Q}),(\mathrm{C}, \mathrm{G})))))$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| $(\mathrm{O},(\mathrm{R},((\mathrm{A}, \mathrm{L}),(\mathrm{Q},(\mathrm{C}, \mathrm{G})))))$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |



Fig. S16. (A) Spatial chromosomal distribution of the most common rooted topologies (ixii) for phylogenies inferred from 50 kb non-overlapping genomic regions for $A n$. gambiae complex species $(\mathrm{A}=A n$. arabiensis, $\mathrm{C}=$ An. coluzzii, $\mathrm{G}=$ An. gambiae, $\mathrm{L}=A n$. melas, $\mathrm{Q}=$ An. quadriannulatus, $\mathrm{R}=$ An. merus, outgroup=An. christyi). The trees fall into four general categories (1) $\mathrm{A}+\mathrm{GC}$ trees where A has introgressed with the gambiae group, (2) $\mathrm{A}+\mathrm{GC} \& \mathrm{R}+\mathrm{Q}$ trees where A-GC introgression and R-Q introgression have both occurred, (3) X-linked non-introgressed trees where A+Q are sister taxa, and (4) 2Laspecific trees where sorting of the ancient $2 \mathrm{La} /+$ haplotypes has occurred. (B) The mean/median bootstrap support for internal nodes among 50 kb trees for each topology on either the autosomes (left) or X chromosome (right) demonstrate three features of the phylogenies generated from the autosomes and the X. First, regardless of topology the most poorly supported node is the first divergence among the gambiae group $(\mathrm{C}+\mathrm{G})$, An. merus $(\mathrm{R})$, and the group An. melas, quadriannulatus, and arabiensis $(\mathrm{L}+\mathrm{Q}+\mathrm{A})$. All trees show strong support for C and G as sister taxa (as expected), and autosomal trees show strong support for A as sister to $\mathrm{C}+\mathrm{G}$. The few autosome-like trees that appear on the X (right bottom row) have generally weaker support at all nodes (except $\mathrm{C}+\mathrm{G}$ ) than the Xmajority trees. (C) For any rooted phylogeny of three taxa there are two divergence times, labeled $T_{1}$ and $T_{2}$. Introgression will generally tend to lower the apparent divergence time of $T_{2}$ when the taxon that is not in the sister pair (i.e. the first to diverge) is the source of introgression. Instead of inferring the true divergence time, the observed divergence time between these taxa instead will be the time of introgression. (D) When one of the sister taxa is the source of introgression, both $T_{1}$ and $T_{2}$ will be lowered, as: (1) the true $T_{1}$ will not be observed, (2) the true $T_{2}$ will instead be the observed $T_{1}$, and (3) the time of introgression will be the observed $T_{2}$.

## S3.3. Molecular phylogeny reconstruction by chromosome arm, chromosomal inversions, and across the entire genome

Phylogenetic tree reconstruction. After trimming the reference genome alignments as well as the genome alignments based on single field collected specimens with Trimal (86) and excluding sites with gaps in more than $60 \%$ of the sequences, maximum likelihood phylogenies were reconstructed for both alignments with RAxML v8.0.14 (84), using a GTR-GAMMA substitution model. Node support was assessed using 500 rapid bootstrap resampling replicates (85). Phylogenetic reconstructions were conducted on the sequence alignments for the whole genome, for individual chromosomal arms, and for inversions 2 La ( 2 L coordinates: $20.5 \mathrm{Mb}-42.1 \mathrm{Mb}$ ) and 3La (3L coordinates $\sim 15 \mathrm{Mb}-$ 35Mb) (Fig. S17-S19). We included both An. christyi and An. epiroticus and used the most distant outgroup, An. epiroticus, to root the trees.

Nuclear and mtDNA phylogenies for population samples of six species. We assessed the genetic divergence between each species and the substructure within each species by reconstructing distance-based Neighbour Joining trees (fig. S20-S21) based on the nuclear biallelic SNP dataset obtained from multiple individual mosquitoes per species from natural populations (section S2.2). We used ADEGENET v1.4-2 $(87,88)$ to store the data in R v3.0.2 and computed a genotype-based Euclidian distance matrix between individuals. We drew a distance-based Neighbour Joining (NJ) tree rooted with An. christyi and evaluated node support using 100 bootstrap replicates (89). These two latter steps were performed in R using the APE v3.1-2 R-package (90).

For mtDNA, a maximum likelihood phylogenetic (Fig. S22) tree based on 75 mitochondrial genomes (section S2.2.4) was constructed using RAxML (parameters -m GTRGAMMA -\# $1000-\mathrm{T} 16-\mathrm{fa}-\mathrm{x} 12345$-p 12345, for deducing the best tree and T 16 -\# $1000-\mathrm{fb}$-m GTRGAMMA, for calculating bootstrap values using the fast-bootstrap method) $(84,85)$. An. christyi was used as an outgroup to root the tree.

## Comparison of reference assembly-based and field sample-based phylogenies.

Phylogenetic trees obtained from the reference assemblies and single wild specimens all display very high branch support and similar topologies when considering the sequence alignments for the whole genome, chromosome X , and arms 2R and 3R (Fig. S17-S18). However, conflicting topologies were observed on arms 2L and 3L, consistent with different karyotype combinations involving the 2 La and 3La inversion systems influencing the inferred phylogenetic relationships (see below). Based on the reference assemblies, the 2L topology (Fig. S17C) is identical to that of the other autosomes: the An. gambiae AgamS1 reference ( $2 \mathrm{La} /+^{\mathrm{a}}$ ) is sister to the clade containing the An . arabiensis AaraD1 reference (2La/a) and the An. coluzzii AgamM1 reference (2La/a). Based on the field-collected samples, the 2L topology (Fig. S18C) shows the An. gambiae field sample (also $2 \mathrm{La} /+^{\mathrm{a}}$ ) clustering with PEST ( $2 \mathrm{~L}+{ }^{\mathrm{a}} /+^{\mathrm{a}}$ ). Phylogenies based exclusively on the 2La inversion in the reference (Fig. 3.5a) and field-based alignments (Fig. S19B) indicate that tree topology is driven by inversion status, and that different genomic sampling of the two alleles in the heterokaryotypic samples explains the differences in topologies for An. gambiae.

The differences in topology on chromosome 3L between the reference- and field-based alignments (Fig. S17E and S19E) involve the relationship between An. quadriannulatus and An. merus, and also are influenced by an inversion, 3La, that has introgressed between these two species (see below, and main text). Phylogenies based only on the 3La inversion in the reference (Fig. S19C) and field-based alignments (Fig. S19D) show that the two species cluster together, in disagreement with expectation based on the species branching order.

## Confirmation of phylogenetic relationships with population samples of each species.

The NJ tree based on multiple individual genomic sequences sampled from natural populations of each species (Fig. S20) confirmed and extended the single-genome results discussed above. Importantly, these trees revealed monophyly of intraspecific samples, even for species that were sampled from multiple, distant geographic locations. The only exception was the relationship between An. coluzzii and An. gambiae, which was paraphyletic, although An. coluzzii samples formed a cohesive clade inside of An. gambiae with respect to sequences on chromosome 3 and 2R, and An. gambiae samples formed a cohesive clade inside of An. coluzzii based on X chromosome sequences. Genetic subdivision was notable in both An. merus (between Kenya and South Africa) and An. coluzzii (between Cameroon and Burkina Faso).

The 2La and 3La inversions. The relationship between An. coluzzii and An. gambiae is particularly notable based on sequences from chromosome 2 L , as neither taxon forms a single cohesive clade. This pattern is associated with the individual karyotype status of
the 2La inversion. A NJ tree based solely on the 2La inversion (Fig. S21A) reveals that individual An. arabiensis samples cluster within a group composed of the An. gambiae and An. coluzzii that are 2La/a homokaryotypes. By contrast, those An. gambiae and An. coluzzii samples that are $2 \mathrm{~L}+{ }^{\mathrm{a}} /+^{\mathrm{a}}$ homokaryotypes cluster in another group, and heterokaryotypic (2La/2L+ ${ }^{\text {a }}$ ) samples form a third group.

A NJ tree focusing on the 3La inversion region (Fig. S21B) shows that An. quadriannulatus samples cluster with An. merus samples, counter to the expected species relationships. This underlines the strong introgression signal we have observed from $A n$. merus into An. quadriannulatus (see S4).

Mitochondrial phylogenies. Phylogenies based on the mitochondrial genome (Fig. S22) confirmed and extended previous observations of extensive mtDNA intermingling and shared haplotypes between An. gambiae and An. arabiensis even across 7000 km of the African continent (91, 92). Our data reveal a complete lack of An. arabiensis-specific mtDNA haplotypes, despite the fact that we sampled 12 individuals from eastern and western African populations, suggesting that the mtDNA genome of An. arabiensis has been completely replaced by the mtDNA genome from An. gambiae (or An. coluzzii). This result further stresses the very important level of introgression between $A n$. arabiensis and An. gambiae-An. coluzzii. It is noteworthy that although we detected nuclear introgression between An. merus and An. quadriannulatus, their mtDNA sequences are monophyletic, as are the mtDNA sequences of all other species sampled. Another peculiar observation revealed by the mtDNA phylogeny is the clustering of An . merus and An. melas sequences into the same clade, although each species remains
monophyletic. This might suggest that some mitochondrial exchange occurred in the past, despite the present allopatric distribution of these species. However, we did not detect any evidence of nuclear introgression (see S4).


Fig. S17.
Maximum likelihood phylogenies based on the reference assemblies using TBA sequence alignments across the whole genome and by chromosomal arm.


Fig. S18.
Maximum likelihood phylogenies of individual field-collected samples and the An. gambiae PEST reference (AgamP3) based on the whole genome or chromosomal arm TBA alignments. An. gambiae, A.gam-HD; An. coluzzii, A.col-M-HD; An. arabiensis, A.ara-HD; An. quadriannulatus, A.qua-HD; An. merus, A.mer-HD; A. melas, A.mel-HD.


Fig. S19.
Maximum likelihood phylogenies for the 2La and 3La inversions based on the reference assemblies (a and c) and on the individual field-collected samples (b and d). An. gambiae, A.gam; An. coluzzii, A.col; An. arabiensis, A.ara; An. quadriannulatus, A.qua; An. merus, A.mer; An. melas, A.mel. 2La and 2L+ refer to $2 \mathrm{La} / 2 \mathrm{La}$ and $2 \mathrm{~L}+{ }^{\mathrm{a}} / 2 \mathrm{~L}+{ }^{\mathrm{a}}$ homokaryotypes for the 2 La inversion, respectively. The heterokaryotype $2 \mathrm{La} / 2 \mathrm{~L}+{ }^{\mathrm{a}}$ is indicated by $2 \mathrm{La} /+$.


Fig. S20.
NJ tree displaying the Euclidian distance between individuals from population samples of each species, calculated from the SNP data of each chromosomal arm. Each species is represented by a distinct symbol color, and the symbol shape indicates the sampling location. Node support was evaluated by 100 bootstrap resampling replicates; only values greater than 0.5 are shown.


Fig. S21.
NJ trees displaying the Euclidian distance between individuals from population samples of each species, calculated from the SNP data for the SNPs found in the (A) 2 La and (B) 3 La inversions. Each species is represented by a distinct symbol color, and the symbol shape indicates the sampling location. Node support was evaluated by 100 bootstrap resampling replicates; only values greater than 0.5 are shown. The tree (A) shows that each An. gambiae, An. coluzzii, and An. arabiensis cluster according to their karyotype status for the 2La inversion.


Fig. S22.
Maximum Likelihood phylogeny of the mitochondrial genomes of field-collected samples, estimated with RAxML. Each species is represented by a different color. Labels are color-coded by species and indicate sampling location (BF : Burkina Faso, CM : Cameroon, KN : Kenya, MI : Mali, Mpug : South Africa, TZ : Tanzania, ZM : Zimbabwe). Bootstrap support (\%) is indicated at the nodes when it exceeded $50 \%$.

## S3.4. Higher molecular evolutionary rate of the $X$ chromosome versus the autosomes

To avoid the potentially confounding effect on inferences of evolutionary rate caused by differential introgression of autosomes versus X chromosomes within the An. gambiae complex, we selected a species pair for which introgression is unlikely. An. gambiae PEST was chosen to represent the An. gambiae complex, as its assembly and annotation are the most complete, and we compared this species to the more distant Pyretophorus outgroup species, An. epiroticus. Single copy orthologs were identified using Orthodb (93) (http://orthodb.org). Protein sequence alignments were generated first using MUSCLE (94), and then used to inform CDS alignments with the codon-aware PAL2NAL alignment program (95). Ambiguous regions were removed from the CDS alignments using TrimAL (80), with the gap tolerance parameter set to 0.8 to exclude alignment columns with missing data in $20 \%$ or more of the sequences in the orthogroup. Sequences were removed from the CDS alignments if more than $40 \%$ of their length was gap characters following multiple alignment. PAML v4.7 (96) was used to calculate dN and dS values for each aligned ortholog pair (runmode $=-2$, codeml model $=0, \mathrm{NSsites}=0$, ncatG $=1$ ). To explore whether rates of evolution are different for autosomes vs the X chromosome, PAML estimated values of dN and dS were tested using the Wilcoxon rank sum test in R (version 3.0.3). The X chromosome shows significantly higher rates of both dN and dS than the autosomes ( $p<$ $10^{-15}$ for each; Autosome mean $\mathrm{dN}=0.07, \mathrm{X}$ chromosome mean $\mathrm{dN}=0.09$; Autosome mean $\mathrm{dS}=$ 0.80, X chromosome mean $\mathrm{dS}=1.05$ ) as shown in Fig. S23.


Fig. S23.
Autosome versus X chromosome rates of evolution. The mean rates of amino acid ( dN ) and silent site (dS) evolution between An. gambiae and An. epiroticus are plotted with $95 \%$ confidence interval bars. Rates of evolution of both site types are significantly faster on the X than on the autosomes (Wilcoxon rank sum test $p$-value $<10^{-15}$ for both site types).

## S4. Formal tests of introgression between species

## S4.1. Chromosomal patterns of introgression from $D$ and $D_{\text {FOIL }}$ statistics for field samples.

 Disentangling incomplete lineage sorting from gene flow. In clades of closely related taxa, discordant genealogies due to incomplete lineage sorting (ILS) can complicate the detection of introgression. When four taxa are considered (three in-group and one out-group), the $D$-statistic (a.k.a. the "ABBA/BABA test") has been proposed to distinguish between ILS and introgression by testing for an imbalance in the relative frequency of the two discordant gene trees $(1,4)$. Given a major species phylogeny, ILS should produce the two minor topologies with equal frequency (97-99). However, introgression causes an imbalance toward a closer relationship between the two taxa exchanging alleles. Therefore, a statistically significant imbalance toward one discordant topology (indicated by the allele pattern ABBA or BABA) indicates that introgression has occurred.Given site pattern counts (e.g., $n_{\text {ABBA }}$ ) of each site type in a given region of the sequence alignment, we can calculate the $D$-statistic as:

$$
\begin{equation*}
D=\frac{n_{\mathrm{ABBA}}-n_{\mathrm{BABA}}}{n_{\mathrm{ABBA}}+n_{\mathrm{BABA}}} \tag{3}
\end{equation*}
$$

Therefore, the four-taxon $D$-statistic is a measure of inequality in the prevalence of site patterns that support the two possible discordant gene tree topologies. Note that this approach cannot detect introgression between sister species because such gene flow does not produce discordant topologies. It also does not tell us the direction of introgression; for this, we need to apply an extension of the $D$-statistic for five-taxon trees.

Pease and Hahn (30) proposed a five-taxon test to distinguish ILS from gene flow (the $D_{\text {FOIL }}$ statistics). Unlike the standard $D$-statistic, their $D_{\text {FOIL }}$ statistics can determine the direction of any detected introgression in a symmetric phylogeny (i.e., two sets of paired in-groups and a single out-group). $D_{\text {FOIL }}$ consists of a system of four $D$-statistics to distinguish among the 16
possible introgressions in a symmetric five-taxon phylogeny. The four in-group taxa are labeled $P_{1}-P_{4}$, with the four $D_{F O I L}$ statistics corresponding to: $D_{F O}$ ("first" $=P_{1} / P_{3}$ vs. "outer" $=P_{1} / P_{4}$ ), $D_{I L}$ ("inner" $=P_{2} / P_{3}$ vs. "last" $=P_{2} / P_{4}$ ), $D_{F I}$ ("first" vs. "inner"), and $D_{O L}$ ("outer" vs. "last"). Given counts of the site types corresponding to the presence of biallelic ancestral (A)/ derived (B) states, these statistics are defined as:

$$
\begin{align*}
& D_{F O}=\frac{\left(n_{\mathrm{BABAA}}+n_{\mathrm{BBBAA}}+n_{\mathrm{ABABA}}+n_{\mathrm{AAABA}}\right)-\left(n_{\mathrm{BAABA}}+n_{\mathrm{BBABA}}+n_{\mathrm{ABBAA}}+n_{\mathrm{AABAA}}\right)}{\left(n_{\mathrm{BABAA}}+n_{\mathrm{BBBAA}}+n_{\mathrm{ABABA}}+n_{\mathrm{AAABA}}\right)+\left(n_{\mathrm{BAABA}}+n_{\mathrm{BBABA}}+n_{\mathrm{ABBAA}}+n_{\mathrm{AABAA}}\right)}  \tag{4}\\
& D_{I L}=\frac{\left(n_{\mathrm{ABBAA}}+n_{\mathrm{BBBAA}}+n_{\mathrm{BAABA}}+n_{\mathrm{AAABA}}\right)-\left(n_{\mathrm{ABABA}}+n_{\mathrm{BBABA}}+n_{\mathrm{BABAA}}+n_{\mathrm{AABAA}}\right)}{\left(n_{\text {ABBAA}}+n_{\mathrm{BBBAA}}+n_{\mathrm{BAABA}}+n_{\mathrm{AAABA}}\right)+\left(n_{\mathrm{ABABA}}+n_{\mathrm{BBABA}}+n_{\mathrm{BABAA}}+n_{\mathrm{AABAA}}\right)}  \tag{5}\\
& D_{F I}=\frac{\left(n_{\mathrm{BABAA}}+n_{\mathrm{BABBA}}+n_{\mathrm{ABABA}}+n_{\mathrm{ABAAA}}\right)-\left(n_{\mathrm{ABBAA}}+n_{\mathrm{ABBBA}}+n_{\mathrm{BAABA}}+n_{\mathrm{BAAAA}}\right)}{\left(n_{\mathrm{BABAA}}+n_{\mathrm{BABBA}}+n_{\mathrm{ABABA}}+n_{\mathrm{ABAAA}}\right)+\left(n_{\mathrm{ABBAA}}+n_{\mathrm{ABBBA}}+n_{\mathrm{BAABA}}+n_{\mathrm{BAAAA}}\right)}  \tag{6}\\
& D_{O L}=\frac{\left(n_{\mathrm{BAABA}}+n_{\mathrm{BABBA}}+n_{\mathrm{ABBAA}}+n_{\mathrm{ABAAA}}\right)-\left(n_{\mathrm{ABABA}}+n_{\mathrm{ABBBA}}+n_{\mathrm{BABAA}}+n_{\mathrm{BAAAA}}\right)}{\left(n_{\mathrm{BAAAA}}+n_{\mathrm{BABBA}}+n_{\mathrm{ABBAA}}+n_{\mathrm{ABAAA}}\right)+\left(n_{\mathrm{ABABA}}+n_{\mathrm{ABBBA}}+n_{\mathrm{BABAA}}+n_{\mathrm{BAAAA}}\right)} \tag{7}
\end{align*}
$$

Testing for introgression. $D / D_{\text {FOIL }}$ tests and plots were calculated for 50 kb windows using the DFOIL program (https://www.bitbucket.org/jbpease/dfoil). Windows with fewer than 5000 sites were excluded. Windows with less than a count of 10 for any of the $D$-statistic or $D_{\text {FOIL }}$ components (i.e. site counts) were also excluded. Significance was determined by the binomial exact test as described in Pease and Hahn (30). The $D$-statistics and $D_{F O I L}$ components were averaged over three consecutive windows for the plots. Biallelic site counts were calculated using custom Python scripts.

We applied the $D$-statistic to two different sets of three taxa and an outgroup (O; Fig. S24): An. quadriannulatus (Q), An. melas (L), and An. merus (R) (top row); An. melas (L), An. arabiensis (A), and An. gambiae (G) (second row); and An. melas (L), An. arabiensis (A), and An. coluzzii (C) (third row). We applied the $D_{\text {FOIL }}$ statistics to the tree ((CG)(AQ))O (bottom row).




Fig. S24.
Chromosomal plots of the $D$-statistic (black line) show the variation in signal of introgression across 50 kb non-overlapping genomic windows on all five chromosomal arms. Grey shading indicates regions of significant introgression ( $P<2 \times 10^{-4}$, binomial exact test). For the group $((\mathrm{L}, \mathrm{Q}), \mathrm{R})$,O (top row), generally $D>0$, indicating low levels of autosome-wide introgression between An. quadriannulatus $(\mathrm{Q})$ and An. merus $(\mathrm{R})$, when compared to An. melas ( L ) with outgroup (O) An. christyi. Introgression appears particularly strong or recent in the 3La inversion region $(\sim 15-35 \mathrm{Mb})$ and on $3 \mathrm{R}(\sim 5-15 \mathrm{Mb})$. For the groups ( $(\mathrm{AL}) \mathrm{G}) \mathrm{O}$ and ((AL)C)O (second and third rows), An. arabiensis (A) shows significant introgression with both An. gambiae (G) and An. coluzzii (C). Note also that $D$ differs between these two in the 2La region $(\sim 20-41 \mathrm{Mb})$ due to the difference in karyotype between G and C . The $D_{\text {FOIL }}$ test (bottom row) infers the taxa involved in and direction of introgression from the combined signature of four tests: $D_{F O}$ (green), $D_{I L}$ (orange), $D_{F I}$ (blue), and $D_{O L}$ (magenta). The $D_{F O I L}$ tests for the group ((CG)(AQ))O indicates that nearly all introgression detected is between A and G+C (grey shading). Therefore, introgression between A and the gambiae group is inferred to have occurred either prior to the split of G and C , or with approximately equal frequency with both species after their split. Again, the pattern in 2La is exceptional in these plots due to the difference in karyotype.

## S4.2 Geographic pattern of introgression

For the species between which introgression was detected based on analyses of the reference assemblies and single field-collected individuals, we tested whether geographic variation in introgression occurred in a consistent way across population samples. The rationale underlying this test is that if the signal of introgression can be detected in all the sampled populations, this could indicate relatively old introgression in one population that spread to others, or pervasive introgression in multiple populations. In contrast, an introgression signal only detected in some populations of the focal species could reveal more recent or geographically restricted events. This is similar to the rationale followed to demonstrate that Neanderthal introgression into human populations only occurred in non-African populations and could be consistent with a single episode of admixture from Neanderthals into the ancestors of all non-Africans when the two groups coexisted in the Middle East $50-80 \operatorname{Kyr}(1,100)$.

To conduct this analysis, we used the SNP dataset based on multiple individual mosquito genomes sampled in the field from various locations for each of the 6 species (Fig. S6). We used the four-taxon $D$-statistic (described in section S4.1) extended to multiple individuals per group as implemented in ADMIXTOOLS v.1.1 (101). As described in Patterson et al. (101) and Wall et al. (100), diploid genomes can be subject to this test by using the frequencies (instead of the count) of the derived allele in each group considered. Let $\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ be four taxa with a phylogeny $((\mathrm{W}, \mathrm{X}), \mathrm{Y}), \mathrm{Z})$, with W and X being the focal species, Y the tested species potentially introgressing with W or X , and Z the outgroup used to polarize variants as ancestral (A) or derived (B). Only those sites with configurations $A B B A$ and $B A B A$ are used, where the order is $\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$. The requirement that two copies of both the derived and the ancestral alleles be present greatly reduces the effect of sequencing error (4).

When only a single sequence from each population is available,

$$
\begin{equation*}
D=\frac{n_{\mathrm{BABA}}-n_{\mathrm{ABBA}}}{n_{\mathrm{ABBA}}+n_{\mathrm{BABA}}} \tag{8}
\end{equation*}
$$

where $n_{\text {ABBA }}$ and $n_{\text {BABA }}$ are the numbers of sites with each of the two configurations. Note that, compared to Eq. 3 in supplementary text $\mathrm{S} 4.1, n_{\mathrm{BABA}}$ and $n_{\text {ABBA }}$ were switched in the numerator to align with the ADMIXTOOLS implementation of the $D$-statistic. Following Patterson et al. (101), when diploid sequences from each taxon $\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are available, the numerator for the SNP $i\left(\right.$ Num $\left._{i}\right)$ and denominator $\left(\right.$ Den $\left._{i}\right)$ equal:

$$
\begin{gather*}
\operatorname{Num}_{i}=P(B A B A)-P(A B B A)=\left(w^{\prime}-x^{\prime}\right)\left(y^{\prime}-z^{\prime}\right)  \tag{9}\\
\operatorname{Den}_{i}=P(B A B A)+P(A B B A)=\left(w^{\prime}+x^{\prime}-2 w^{\prime} x^{\prime}\right)\left(y^{\prime}+z^{\prime}-2 y^{\prime} z^{\prime}\right) \tag{10}
\end{gather*}
$$

where $w^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$ are variant population allele frequencies in the taxon $W, X, Y, Z$ for a $\operatorname{SNP} i$. Using the sample allelic frequency, the $D$-statistic $\mathrm{D}(\mathrm{W}, \mathrm{X} ; \mathrm{Y}, \mathrm{Z})$ can be defined as

$$
\begin{equation*}
D=\frac{\sum_{i} \hat{N} u m_{i}}{\sum_{i} \hat{D} e n_{i}} \tag{11}
\end{equation*}
$$

ADMIXTOOLS computes a standard error for $D$ using the weighted block jackknife (101). The number of standard errors by which $D$ departs from zero reflects the Z-score, which is approximately normally distributed and thus yields a formal test of introgression. An absolute Zscore value greater than 3 is considered as significant evidence of introgression.

The triplet of species $(\mathrm{W}, \mathrm{X}, \mathrm{Y})$ considered in this analysis use the following code: $\mathrm{A}=A n$. arabiensis, $\mathrm{C}=$ An. coluzzii, $\mathrm{G}=$ An. gambiae, $\mathrm{L}=$ An. melas, $\mathrm{Q}=$ An. quadriannulatus, $\mathrm{R}=$ An. merus. We used two outgroup species to polarize the variants: An. christyi and An. epiroticus. Under the ADMIXTOOLS implementation of the $D$-statistic, $D=0$ means no introgression, $D>0$ and $\operatorname{abs}(\mathrm{Z})>3$ means introgression between $\mathrm{W}-\mathrm{Y}, \mathrm{D}<0$ and $\operatorname{abs}(\mathrm{Z})>3$ means introgression between $\mathrm{X}-\mathrm{Z}$.

Validation of interspecific introgression. We conducted the analysis first at the species level, considering all individuals available in each species in order to validate the findings based on the analyses of one single genome per species from the reference assemblies and from the single genome field samples (see S4.1). This analysis confirmed the previous findings: the
introgression signal was highly significant between $\mathrm{A}-\mathrm{G}$ in the QAG test and $\mathrm{A}-\mathrm{C}$ in the QAC test for all the chromosomes except the X and 2L (Fig. S25). The absence of an introgression signal on 2 L results from the fact that the samples in G and C are polymorphic for the 2 La and $2 \mathrm{~L}+{ }^{\mathrm{a}}$ inversion (see below and section S3.2 and S.3; Fig. S21). Significant Z-scores were also found between Q-G (in the QLG test) and Q-C (in the QLC test), but these signals are sideeffects of the massive introgression between $\mathrm{A}-\mathrm{C}$ and $\mathrm{A}-\mathrm{G}$ as shown using the $D_{\text {FOIL }}$ test applied to single genome analyses (see S4.1). Finally, significant introgression was also found between Q-R in QLR and QAR tests, in agreement with previous results. The signal was especially strong on chromosome 3 L , as a result of the introgression of the $\sim 22 \mathrm{Mb} 3 \mathrm{La}$ inversion from R to Q (polarity implied by the topology of the 3La inversion, Fig. S21). All the other significant Q-R $D$ values were very close to 0 with Z-scores close to the threshold of 3 (Fig. S25). This test also confirmed that the X chromosome did not display evidence of introgression in any of the comparisons.

Geographic variation in introgression. As distinct populations were sampled in A, G, C, and R for different parts of their distribution (Fig. S6), we tested whether the signal of introgression differed according to the set of populations considered in the test (Table S10).

The two populations of R from Kenya and Mozambique did not display any distinct pattern of introgression when considered as focal groups ( $\mathrm{W}, \mathrm{X}$ ) with Q as Y , or when considering them in turn as the Y test taxon (lines 1 to 3 , Table S 10 ).

We then tested introgression between C and G populations (lines $4-21$, Table S10). The most important signal of introgression was observed on chromosome 2L, relating to the inversion karyotype composition in each population, with populations ( W or X ) sharing the same inversion status as Y implicated in introgression. Introgression was also detected between all C populations and $\mathrm{G}_{\mathrm{TZ}}$ (An. gambiae sampled from Tanzania; lines 4-8). The signal was present on $2 \mathrm{R}, 3 \mathrm{~L}$ and 3 R arms, and was especially strong on the X chromosomes. Some introgression was also detectable between local populations (lines 9-11).

When testing whether G or C were introgressing with A , all tests (lines 15-21) showed significant introgression on all autosomes except 2 L (due to the 2 La inversion). We further refined this analysis by testing whether a specific population of $G$ had stronger evidence of introgression with A (lines 22-30), and found this to be the case for $\mathrm{G}_{\mathrm{TZ}}$ and any A populations, even when considering the two A populations from West Africa. We tested whether a particular A population could exchange more derived alleles with G (or C ), but all the $D$ values (lines 31 to 40) were very close to 0 and the $Z$ scores were under or near the threshold limits of 3 . These results may suggest that recent introgression between A-G occurred in East-Africa $\left(\mathrm{G}_{\mathrm{TZ}}\right)$, and that the other G populations sampled in West Africa displays a more ancient signal of introgression. However a more intensive sampling is required to make any definitive conclusions.


Fig. S25.
Introgression $D$-statistic computed per chromosome at the species level, considering all the individuals within each species. The Z-score, computed by block-jackknife, provides the statistical significance. An absolute Z value greater than 3 is considered significant (grey points indicate non-significant Z-values). The whiskers show $D \pm 3 \mathrm{SE}$. The triplet of species considered is indicated by the code above each plot (W, X, Y), where An. gambiae $=\mathrm{G}$, An. coluzzii $=\mathrm{C}$, An . arabiensis $=\mathrm{A}$, An. quadriannulatus $=\mathrm{Q}$, An. merus $=\mathrm{R}$, and An. melas $=\mathrm{L} . D=0$, no introgression; $D>0$ and $\operatorname{abs}(\mathrm{Z})>3$, introgression between $\mathrm{W}-\mathrm{Y} ; D<0$ and $\operatorname{abs}(\mathrm{Z})>3$, introgression between $\mathrm{X}-\mathrm{Z}$.

## Table S10.

Introgression $D$-statistic test for triplets of populations within- and between-species. The Z-score provides the statistical significance level with absolute values greater than 3 being statistically significant (in bold). $D>0$ and $\mathrm{Z}>3=\mathrm{W}-\mathrm{Y} ; D<0$ and $\mathrm{Z}<-3=\mathrm{X}-\mathrm{Y}$. Bold values have a $D$-statistic greater than 0.1 or lower than 0.1 indicating a substantial level of introgression. The 2La karyotype was determined by molecular diagnostic assay (S2.1.1).

|  | Groups (((WX)Y)O) |  |  |  |  |  | 2L |  | 2R |  | 3L |  | 3R |  | X |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | W | W-2La | X | X-2La | Y | Y-2La | D | Z | D | Z | D | Z | D | Z | D | Z |
| 1 | $\mathrm{R}_{\mathrm{KN}}$ | + | $\mathrm{R}_{\mathrm{MZ}}$ | + | $\mathrm{Q}_{\mathrm{ZM}}$ | + | -0.01 | -2.11 | 0.00 | 0.90 | 0.01 | 1.55 | 0.00 | -0.49 | 0.01 | 0.84 |
| 2 | $\mathrm{Q}_{\mathrm{ZM}}$ | + | $\mathrm{A}_{\text {TZ }}$ | a | $\mathrm{R}_{\mathrm{KN}}$ | + | 0.09 | 13.64 | 0.11 | 24.22 | 0.28 | 18.53 | 0.13 | 14.77 | 0.06 | 5.35 |
| 3 | $\mathrm{Q}_{\mathrm{ZM}}$ | + | $\mathrm{A}_{\text {TZ }}$ | a | $\mathrm{R}_{\mathrm{MZ}}$ | $+$ | 0.09 | 13.50 | 0.11 | 24.23 | 0.28 | 18.87 | 0.13 | 14.74 | 0.06 | 5.50 |
| 4 | $\mathrm{G}_{\mathrm{MI}}$ | a | $\mathrm{G}_{\text {TZ }}$ | + | $\mathrm{C}_{\mathrm{BF}}$ | a | 0.17 | 6.87 | -0.08 | -8.59 | -0.01 | -1.61 | -0.01 | -1.07 | -0.15 | -7.80 |
| 5 | $\mathrm{G}_{\mathrm{BF}}$ | a/+ | $\mathrm{G}_{\mathrm{TZ}}$ | $+$ | $\mathrm{C}_{\mathrm{BF}}$ | a | 0.09 | 5.16 | -0.04 | -4.97 | -0.02 | -3.52 | -0.02 | -2.33 | -0.17 | -8.48 |
| 6 | $\mathrm{G}_{\mathrm{CM}}$ | + | $\mathrm{G}_{\text {TZ }}$ | + | $\mathrm{C}_{\mathrm{CM}}$ | + | 0.03 | 2.85 | -0.06 | -9.22 | -0.05 | -7.10 | -0.05 | -6.64 | -0.21 | -11.30 |
| 7 | $\mathrm{G}_{\mathrm{BF}}$ | a/+ | $\mathrm{G}_{\text {TZ }}$ | $+$ | $\mathrm{C}_{\mathrm{CM}}$ | $+$ | -0.20 | -13.36 | -0.11 | -8.59 | -0.02 | -2.91 | -0.02 | -2.58 | -0.17 | -8.06 |
| 8 | $\mathrm{G}_{\mathrm{CM}}$ | $+$ | $\mathrm{G}_{\mathrm{TZ}}$ | $+$ | $\mathrm{C}_{\mathrm{BF}}$ | a | -0.14 | -11.70 | -0.07 | -11.82 | -0.06 | -8.65 | -0.05 | -7.49 | -0.22 | -12.54 |
| 9 | $\mathrm{G}_{\mathrm{BF}}$ | a/+ | $\mathrm{G}_{\mathrm{CM}}$ | + | $\mathrm{C}_{\text {BF }}$ | a | 0.20 | 9.19 | 0.03 | 8.09 | 0.03 | 7.18 | 0.04 | 11.33 | 0.05 | 3.75 |
| 10 | $\mathrm{G}_{\mathrm{BF}}$ | a/+ | $\mathrm{G}_{\mathrm{CM}}$ | + | $\mathrm{C}_{\mathrm{CM}}$ | + | -0.20 | -9.78 | -0.04 | -3.20 | 0.02 | 6.43 | 0.03 | 7.31 | 0.04 | 3.70 |
| 11 | $\mathrm{C}_{\mathrm{BF}}$ | a | $\mathrm{C}_{\mathrm{CM}}$ | $+$ | $\mathrm{G}_{\mathrm{BF}}$ | a/+ | 0.10 | 9.22 | 0.07 | 6.41 | 0.01 | 1.68 | 0.01 | 3.13 | 0.03 | 1.67 |
| 12 | $\mathrm{C}_{\mathrm{BF}}$ | a | $\mathrm{C}_{\mathrm{CM}}$ | + | $\mathrm{G}_{\mathrm{CM}}$ | $+$ | -0.26 | -8.69 | -0.02 | -2.04 | -0.01 | -1.11 | 0.00 | 0.82 | 0.02 | 1.05 |
| 13 | $\mathrm{C}_{\mathrm{BF}}$ | a | $\mathrm{C}_{\mathrm{CM}}$ | + | $\mathrm{G}_{\mathrm{TZ}}$ | + | -0.15 | -7.67 | -0.01 | -1.32 | 0.01 | 1.15 | 0.01 | 2.90 | 0.03 | 1.41 |
| 14 | $\mathrm{G}_{\mathrm{BF}}$ | a/+ | $\mathrm{C}_{\mathrm{BF}}$ | a | $\mathrm{A}_{\mathrm{BF}}$ | a | -0.06 | -2.96 | 0.11 | 17.17 | 0.08 | 11.43 | 0.03 | 7.16 | -0.02 | -0.91 |
| 15 | $\mathrm{G}_{\mathrm{CM}}$ | $+$ | $\mathrm{C}_{\mathrm{CM}}$ | + | $\mathrm{A}_{\mathrm{CM}}$ | a | 0.08 | 12.50 | 0.12 | 16.96 | 0.09 | 14.07 | 0.05 | 11.56 | 0.05 | 2.82 |
| 16 | $\mathrm{G}_{\text {TZ }}$ | $+$ | $\mathrm{C}_{\text {BF }}$ | a | $\mathrm{A}_{\mathrm{BF}}$ | a | -0.11 | -3.65 | 0.15 | 13.50 | 0.17 | 18.00 | 0.13 | 11.37 | -0.01 | -0.27 |
| 17 | $\mathrm{G}_{\text {TZ }}$ | $+$ | $\mathrm{C}_{\mathrm{CM}}$ | + | $\mathrm{A}_{\mathrm{CM}}$ | a | 0.27 | 22.91 | 0.23 | 28.95 | 0.22 | 23.43 | 0.17 | 16.29 | 0.10 | 4.50 |
| 18 | $\mathrm{G}_{\text {TZ }}$ | + | $\mathrm{C}_{\mathrm{BF}}$ | a | $\mathrm{A}_{\text {TZ }}$ | a | -0.11 | -3.60 | 0.16 | 14.85 | 0.17 | 17.33 | 0.13 | 11.66 | -0.01 | -0.16 |
| 19 | $\mathrm{G}_{\mathrm{TZ}}$ | $+$ | $\mathrm{C}_{\mathrm{CM}}$ | + | $\mathrm{A}_{\text {TZ }}$ | a | 0.27 | 23.37 | 0.23 | 28.29 | 0.22 | 23.33 | 0.18 | 17.14 | 0.10 | 4.44 |
| 20 | $\mathrm{G}_{\mathrm{BF}}$ | a/+ | $\mathrm{C}_{\mathrm{CM}}$ | + | $\mathrm{A}_{\mathrm{BF}}$ | a | 0.28 | 16.57 | 0.17 | 21.88 | 0.12 | 19.93 | 0.08 | 14.59 | 0.08 | 4.36 |
| 21 | $\mathrm{G}_{\mathrm{CM}}$ | + | $\mathrm{C}_{\mathrm{BF}}$ | a | $\mathrm{A}_{\mathrm{CM}}$ | a | -0.22 | -7.32 | 0.05 | 5.44 | 0.05 | 8.37 | 0.01 | 3.23 | -0.04 | -1.79 |

Table S10 (Continued).

|  | Groups (((WX)Y)O) |  |  |  |  |  | 2L |  | 2R |  | 3L |  | 3R |  | X |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | W | W-2La | X | X-2La | Y | Y-2La | D | Z | D | Z | D | Z | D | Z | D | Z |
| 22 | $\mathrm{G}_{\mathrm{MI}}$ | a | $\mathrm{G}_{\mathrm{TZ}}$ | + | $\mathrm{A}_{\text {BF }}$ | a | 0.22 | 7.39 | -0.12 | -13.07 | -0.10 | -12.23 | -0.09 | -9.25 | 0.02 | 0.94 |
| 23 | $\mathrm{G}_{\mathrm{BF}}$ | a/+ | $\mathrm{G}_{\text {TZ }}$ | $+$ | $\mathrm{A}_{\text {BF }}$ | a | 0.09 | 5.38 | -0.03 | -2.57 | -0.09 | -10.92 | -0.09 | -8.67 | 0.02 | 0.60 |
| 24 | $\mathrm{G}_{\mathrm{CM}}$ | $+$ | $\mathrm{G}_{\mathrm{TZ}}$ | + | $\mathrm{A}_{\text {CM }}$ | a | -0.19 | -15.58 | -0.09 | -14.42 | -0.12 | -16.22 | -0.11 | -10.94 | -0.03 | -1.15 |
| 25 | $\mathrm{G}_{\mathrm{TZ}}$ | $+$ | $\mathrm{G}_{\mathrm{CM}}$ | $+$ | $\mathrm{A}_{\text {TZ }}$ | a | 0.19 | 15.85 | 0.09 | 13.91 | 0.12 | 15.98 | 0.11 | 11.14 | 0.03 | 1.42 |
| 26 | $\mathrm{G}_{\text {TZ }}$ | $+$ | $\mathrm{G}_{\mathrm{BF}}$ | a/+ | $\mathrm{A}_{\text {TZ }}$ | a | -0.09 | -5.15 | 0.04 | 3.66 | 0.10 | 11.59 | 0.10 | 9.19 | -0.02 | -0.60 |
| 27 | $\mathrm{G}_{\text {TZ }}$ | $+$ | $\mathrm{G}_{\mathrm{MI}}$ | a | $\mathrm{A}_{\text {TZ }}$ | a | -0.22 | -7.29 | 0.12 | 13.35 | 0.11 | 13.13 | 0.10 | 9.88 | -0.02 | -1.09 |
| 28 | $\mathrm{G}_{\mathrm{BF}}$ | a/+ | $\mathrm{G}_{\mathrm{CM}}$ | + | $\mathrm{A}_{\mathrm{BF}}$ | a | 0.24 | 11.86 | 0.06 | 7.27 | 0.03 | 6.77 | 0.02 | 5.89 | 0.02 | 1.13 |
| 29 | $\mathrm{G}_{\mathrm{BF}}$ | a/+ | $\mathrm{G}_{\mathrm{CM}}$ | + | $\mathrm{A}_{\mathrm{CM}}$ | a | 0.23 | 11.80 | 0.07 | 7.16 | 0.03 | 7.25 | 0.02 | 6.02 | 0.02 | 0.95 |
| 30 | $\mathrm{G}_{\mathrm{BF}}$ | a/+ | $\mathrm{G}_{\mathrm{CM}}$ | + | $\mathrm{A}_{\text {TZ }}$ | a | 0.24 | 11.85 | 0.05 | 7.87 | 0.03 | 7.70 | 0.02 | 5.29 | 0.02 | 1.18 |
| 31 | $\mathrm{A}_{\text {BF }}$ | a | $\mathrm{A}_{\text {CM }}$ | a | $\mathrm{G}_{\mathrm{BF}}$ | a/+ | 0.00 | 0.76 | -0.01 | -3.72 | -0.01 | -1.37 | -0.01 | -1.48 | 0.04 | 2.99 |
| 32 | $\mathrm{A}_{\text {BF }}$ | a | $\mathrm{A}_{\text {CM }}$ | a | $\mathrm{C}_{\mathrm{BF}}$ | a | 0.00 | 0.76 | -0.01 | -1.77 | 0.00 | -0.36 | 0.00 | -0.42 | 0.04 | 3.12 |
| 33 | $\mathrm{A}_{\mathrm{BF}}$ | a | $\mathrm{A}_{\mathrm{CM}}$ | a | $\mathrm{G}_{\mathrm{CM}}$ | $+$ | 0.01 | 1.74 | 0.00 | -1.47 | 0.00 | -0.68 | 0.00 | -0.40 | 0.04 | 2.98 |
| 34 | $\mathrm{A}_{\mathrm{BF}}$ | a | $\mathrm{A}_{\mathrm{CM}}$ | a | $\mathrm{C}_{\mathrm{CM}}$ | + | 0.01 | 1.94 | 0.00 | -0.28 | 0.00 | -0.42 | 0.00 | -0.95 | 0.04 | 2.70 |
| 35 | $\mathrm{A}_{\mathrm{CM}}$ | a | $\mathrm{A}_{\text {TZ }}$ | a | $\mathrm{G}_{\mathrm{CM}}$ | $+$ | 0.01 | 3.27 | 0.03 | 3.62 | 0.01 | 0.99 | 0.01 | 3.08 | 0.04 | 2.66 |
| 36 | $\mathrm{A}_{\mathrm{CM}}$ | a | $\mathrm{A}_{\text {TZ }}$ | a | $\mathrm{C}_{\mathrm{CM}}$ | $+$ | 0.01 | 3.04 | 0.03 | 3.62 | 0.01 | 0.94 | 0.01 | 2.90 | 0.03 | 2.26 |
| 37 | $\mathrm{A}_{\mathrm{BF}}$ | a | $\mathrm{A}_{\text {TZ }}$ | a | $\mathrm{G}_{\mathrm{BF}}$ | a/+ | 0.01 | 3.19 | 0.03 | 4.43 | 0.00 | 0.22 | 0.01 | 2.26 | 0.06 | 4.88 |
| 38 | $\mathrm{A}_{\mathrm{BF}}$ | a | $\mathrm{A}_{\text {TZ }}$ | a | $\mathrm{C}_{\mathrm{BF}}$ | a | 0.01 | 2.23 | 0.03 | 4.50 | 0.00 | 0.63 | 0.01 | 1.84 | 0.06 | 4.41 |
| 39 | $\mathrm{A}_{\mathrm{BF}}$ | a | $\mathrm{A}_{\text {TZ }}$ | a | $\mathrm{G}_{\mathrm{TZ}}$ | $+$ | 0.01 | 3.12 | 0.02 | 2.75 | -0.01 | -0.77 | 0.00 | -0.07 | 0.06 | 4.86 |
| 40 | $\mathrm{A}_{\mathrm{CM}}$ | a | $\mathrm{A}_{\text {TZ }}$ | a | $\mathrm{G}_{\mathrm{TZ}}$ | + | 0.01 | 2.43 | 0.03 | 3.47 | 0.00 | 0.76 | 0.01 | 1.31 | 0.03 | 2.27 |
|  |  |  |  |  |  | \# SNP | 1,744,882 |  | 1,941,790 |  | 1,329,351 |  | 1,626,846 |  | 888,901 |  |
|  |  |  |  |  |  | \# Block | 99 |  | 123 |  | 84 |  | 107 |  | 49 |  |

## S5. Chromosomal inversion phylogeny of the An. gambiae complex

Based on the banding pattern of polytene chromosomes, 10 fixed inversions in the $A n$. gambiae complex have been observed (31), of which five are on the X chromosome. Based on these five fixed X inversions, the An. gambiae complex can be divided into three groups: 1) An. merus and An. gambiae, which share the compound Xag inversion; 2) An. quadriannulatus, An. bwambae and An. melas, which carry the arbitrary standard X arrangement ; and 3) An. arabiensis, which carries the compound Xbcd inversion. We aimed to A ) identify the genomic coordinates for breakpoints of fixed inversions, using the newly available Anopheles genome assemblies (18,52); B) determine the ancestral and derived arrangements for fixed chromosomal inversions in the An. gambiae complex based on comparisons to outgroup species; C) reconstruct phylogenetic relationships within the An. gambiae complex using fixed inversions as markers; D) estimate the divergence time in the An. gambiae complex using rates of X chromosome evolution estimated for the genus (18).

## S5.1. Genomic coordinates for breakpoints of fixed inversions

Ortholog information was retrieved from OrthoDB (93). The gene IDs of An. gambiae were retrieved based on GFF3 annotation from VectorBase (http://www.vectorbase.org/). The Anopheles species ortholog groups IDs for all genes were identified using OrthoDB. Within the same species, any two or more genes that share the same ortholog group ID were removed for further analysis, thus one-to-one gene ortholog pairs between all species were identified. The genomic coordinates within scaffolds for one-to-one orthologs for each species were then obtained from the GFF3 annotation file downloaded from VectorBase.

Using the relationships between genes and their position on scaffolds, tab-format files for the R program genoPlotR (102) were generated. The relationships between these genes and their order on scaffolds were visualized in genoPlotR. Visualizing the results and comparing them with the cytogenetic (31) and physical (103) maps identified breakpoints of fixed inversions. To
narrow down the breakpoint positions, the sequences between the neighboring genes of breakpoint regions were extracted using BEDtools "fastaFromBed" (104) and compared between species. To assemble a chromosome from scaffolds, the cytogenetic (31) and physical (103) maps of An. gambiae were used as a guide to concatenate long scaffolds in a speciesspecific order.

Chromosomal positions of the 10 known fixed inversions were taken from the $A n$. gambiae cytogenetic map (31). The approximate coordinates of the breakpoints in the PEST AgamP3 genome assembly were identified using a physical map of An. gambiae polytene chromosomes (103). These coordinates were used as a guide to find precise coordinates of fixed inversion breakpoints in genomic scaffolds of species from the An. gambiae complex with reference assemblies. Several breakpoints could not be found in some highly fragmented genome assemblies: one of two breakpoints for Xag in An. quadriannulatus, all Xag breakpoints in An. merus, the 2 Rp breakpoints in An. merus, and the 2Rm and 3La breakpoints in An. melas. There are two fixed inversions between An. gambiae and An. quadriannulatus on the X chromosome ( Xa and Xg ), three fixed inversions between the An. quadriannulatus and $A n$. arabiensis X chromosome ( $\mathrm{Xb}, \mathrm{Xc}$, and Xd ), and five fixed inversions between the An. gambiae and An. arabiensis X chromosome ( $\mathrm{Xa}, \mathrm{Xg}, \mathrm{Xb}, \mathrm{Xc}$, and Xd ) (31). All five inversions were found when we aligned five concatenated An. arabiensis scaffolds to the An. gambiae X chromosome assembly (Fig. S26).

We identified 42 genomic scaffolds in An. quadriannulatus that belong to the X chromosome based on synteny. By comparing genome assemblies of An. gambiae and An. quadriannulatus, we found only one $\sim 2 \mathrm{Mb}-$ long scaffold (KB667689) in An. quadriannulatus that has the Xag breakpoints. We demonstrated that cytologically identical distal Xa and Xg breakpoints have different genomic positions, they are separated by $\sim 329 \mathrm{~kb}$ in $A n$. quadriannulatus, by $\sim 211 \mathrm{~kb}$ in An. gambiae, and by $\sim 153 \mathrm{~kb}$ in An. arabiensis. Therefore, we found no evidence for breakpoint reuse of distal Xa and Xg breakpoints in An .
quadriannulatus and An. arabiensis. However, we do see evidence for breakpoint reuse of breakpoints Xb and Xd in An. arabiensis (Fig. S26). The genomic localization of breakpoints for the fixed inversions on the X chromosome and autosomes is provided in S 11 .


Fig. S26.
Concatenated X chromosome scaffolds of An. arabiensis (top) aligned to the An. gambiae X chromosome (bottom). The breakpoints are shown with small letters. The chromosomes are oriented with telomeres on the left and centromeres on the right.

Table S11.
Coordinates of breakpoints of 10 fixed inversions in the An. gambiae genome assembly.

| Bp*Flanking <br> gene 1 id | Gene 1 <br> coord A | Gene 1 <br> coord B | Flanking <br> gene 2 id | Gene 2 <br> coord A | Gene 2 <br> coord B | Bp* <br> coord A | Bp* <br> coord B |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | AGAP000002 | 582 | 16387 | AGAP000005 | 32382 | 38843 | 21645 | 27311 |
| Xa | AGAP000017 | 212901 | 233685 | AGAP000018 | 245976 | 251810 | 238265 | 240688 |
| Xc | AGAP000201 | 3279532 | 3280615 | AGAP000203 | 3364642 | 3371951 | 3342563 | 3355861 |
| Xb | AGAP000319 | 5662879 | 5676527 | AGAP000320 | 5679568 | 5695844 | 5676527 | 5679568 |
| Xbd AGAP000469 | 8098317 | 8102973 | AGAP000470 | 8105206 | 8110152 | 8102973 | 8105206 |  |
| Xc | AGAP000519 | 9215504 | 9266532 | AGAP000520 | 9291162 | 9297115 | 9281318 | 9288838 |
| Xg | AGAP000724 | 13154935 | 13156918 | AGAP000726 | 13162864 | 13169057 | 13160765 | 13162864 |
| Xa | AGAP000809 | 14838271 | 14839995 | AGAP000813 | 14912127 | 14913229 | 14839995 | 14912127 |
| Xd | AGAP000891 | 16768557 | 16772936 | AGAP000892 | 16792766 | 16794816 | No data | No data |
| 2Ro AGAP001760 | 9483432 | 9485151 | AGAP001762 | 9488303 | 9493744 | 9485167 | 9486712 |  |
| 2Rp AGAP013533 | 13138062 | 13145420 | AGAP001984 | 13150830 | 13154837 | No data | No data |  |
| 2Ro AGAP002933 | 29835569 | 29838048 | AGAP002935 | 29839372 | 29840708 | 29838366 | 29839163 |  |
| 2Rp AGAP003327 | 35998660 | 36020065 | AGAP003328 | 36027561 | 36028502 | No data | No data |  |
| 2La AGAP005778 | 20521765 | 20523605 | AGAP005779 | 20528560 | 20529407 | 20524058 | 20528089 |  |
| 2La AGAP007068 | 42163507 | 42164602 | AGAP007069 | 42165842 | 42176356 | 42165182 | 42165532 |  |

[^0]
## S5.2. Ancestral and derived genome arrangements

To reconstruct the ancestral karyotype of the An. gambiae complex, the gene orders at the breakpoints were analyzed using species outside the An. gambiae complex. If the gene order at the breakpoint is the same as in outgroups, then this gene order was considered ancestral in the An. gambiae complex. In order to confirm these results at the nucleotide level, the sequences at breakpoints were retrieved and subjected to BLASTn analysis against the outgroup species with a $1 \mathrm{e}^{-5} \mathrm{e}$-value cut-off. We determined gene orders at the breakpoints of the fixed inversions in 12 outgroup species: An. albimanus, An. atroparvus, An. christyi, An. culicifacies, An. dirus, An. epiroticus, An. farauti, An. funestus, An. maculatus, An. minimus, An. sinensis, and An. stephensi. Table S11 demonstrates the gene orders at the breakpoints in the X chromosome inversions. The data show that all arrangements in the An. gambiae X chromosome are ancestral. The Xag chromosome arrangement is shared by An. gambiae and An. merus (31), but the An. merus assembly is too fragmented to find breakpoints on the X chromosome. No supporting information was found for An. arabiensis having ancestral X chromosome arrangements. We found that the $\mathrm{X}+$ arrangement typical to An. quadriannulatus and the Xbcd arrangements found only in An. arabiensis are derived. Table S11 shows the gene orders at the breakpoints in the autosomal inversions in ingroup and outgroup species. We confirm the previous finding that the $2 \mathrm{Ro}, 2 \mathrm{La}$, and $2 \mathrm{R}+{ }^{\mathrm{p}}$ are ancestral autosomal arrangements, while the 2 Rp and $2 \mathrm{~L}+{ }^{\mathrm{a}}$ are derived arrangements (105). We also found that the $2 \mathrm{R}+{ }^{\mathrm{b}}$ arrangement of the polymorphic inversions $2 \mathrm{Rb} /+\mathrm{is}$ ancestral. We conclude that the genome arrangements of An. gambiae and An. merus closely resemble the ancestral karyotype.

## S5.3. Rooted inversion phylogeny of the An. gambiae complex

Our task was to generate a tree using ancestral chromosomal arrangements ( $\mathrm{Xa}, \mathrm{Xg}, 2 \mathrm{Ro}$, $\left.2 \mathrm{R}+^{\mathrm{p}}, 2 \mathrm{La}\right)$ and derived chromosomal arrangements $\left(\mathrm{Xb}, \mathrm{Xc}, \mathrm{Xd}, \mathrm{X}+^{\mathrm{ag}}, 2 \mathrm{R}+^{\mathrm{o}}, 2 \mathrm{Rp}, 2 \mathrm{~L}+{ }^{\mathrm{a}}\right.$ ). Because the genome assembly for An. melas is too fragmented, we could not identify
breakpoints for 2Rm and 3La. Therefore, we did not include An. melas in the phylogeny. The calculation of inversion distances among the included species of the An. gambiae complex and the outgroup species was performed using the Multiple Genome Rearrangement (MGR) program available at http://grimm.ucsd.edu/MGR/. The signed option of the MGR program was used. This program implements an algorithm that uses a parsimony approach, i.e. it minimizes the sum of the rearrangements over all the edges of the phylogenetic tree (100). To create an inversion phylogenetic tree, numbers were assigned to represent each conserved synteny block in ingroup and outgroup species using our breakpoint data.

Figure S27A shows one result, a parsimony tree that allows no independent fixations of inversions in different lineages. This tree does not require but allows introgression of 2La from An. gambiae to An. arabiensis. Figure S27B shows an alternative result, a parsimony tree that requires independent fixations of $2 \mathrm{R}+{ }^{\circ}$ in two lineages and introgression of 2 La from An . gambiae to An. arabiensis. This tree topology is identical to that of the species tree inferred from the X chromosome (Fig. 1B, main text), and it assumes an ancient inversion polymorphism of the 2 La and 2 Ro inversions that likely predate speciation in the complex. While the $2 \mathrm{R}+{ }^{\circ}$ inversion became fixed in An. gambiae and other species of the complex, the 2La inversion still remains polymorphic in An. gambiae.

These inversion trees consider An. merus and An. gambiae as species descended from the earliest branching events, in agreement with the species tree inferred from the X chromosome. The ambiguity of placing either species as sister to the An. quadriannulatus + An. arabiensis clade is consistent with the detection of incomplete lineage sorting (ILS) at the basal node of the species tree (main text). The majority trees supported by autosomal genomic sequences strongly conflict with the inversion phylogeny. To reconcile these contrasting topologies, it is necessary to postulate a long-term ancestral polymorphism of $2 \mathrm{Ro} /+, 2 \mathrm{La} /+$, and $\mathrm{Xag} /+$, as well as independent fixations of $2 \mathrm{R}+^{0}, 2 \mathrm{~L}+^{\mathrm{a}}, \mathrm{Xag}$, and $\mathrm{X}+^{\text {ag }}$ in at least two lineages. Only two polymorphic inversions have been found on the X chromosome in the An. gambiae complex (31). A comprehensive survey of inversion polymorphisms detected in thousands of An. gambiae population samples spanning multiple decades and geographic locations in Africa detected at least 82 polymorphic inversions on autosomes and none on the X chromosome (107), suggesting that inversion polymorphisms on the X chromosome are relatively rare. More important, placing An. gambiae and An. arabiensis as sister taxa as the majority autosomal topologies predict is problematic because it implies that Xbcd originated directly from Xag. In reality, the Xbcd inversion of An. arabiensis and the Xag inversion of An. gambiae and An. merus are complex rearrangements that differ by 5 overlapping inversions; Xbcd can only arise from $\mathrm{X}+{ }^{\mathrm{ag}}$, not directly from Xag. In conclusion, our independent phylogenetic approach rejects the majority autosomal topology and produces an inversion phylogeny consistent with the species phylogeny determined from X chromosome sequences.

## S5.4. Dating the initial radiation of the An. gambiae complex

We calculated the rate of the X chromosome rearrangement in the genus Anopheles using chromosome-based genome assemblies for An. stephensi, An. funestus, An. atroparvus, and An. albimanus (18). The rate of X chromosome rearrangement was consistent among different species pairs ranging only between 0.120 and 0.130 breaks/ $\mathrm{Mb} / \mathrm{Myr}$. The mean rate of X
chromosome evolution in genus Anopheles was $0.126 \pm 0.004$ breaks $/ \mathrm{Mb} / \mathrm{Myr}$ (18). The standard deviation was calculated using four different species pairs. There are five fixed inversions between X chromosomes of An. gambiae and An. arabiensis (31). The length of the X chromosome genome assembly in An. arabiensis is 21.162 Mb . Assuming a constant rate of X chromosome rearrangement and two breaks per inversion, we calculated the split between the branches leading to An. gambiae and An. arabiensis using the following formula: Divergence $(\mathrm{Myr})=($ breaks $/ \mathrm{Mb}) \div($ rearrangement rate $\times 2)$. We multiplied the rearrangement rate by 2 in order to account for both lineages. Accordingly, divergence between the An. gambiae and An. arabiensis lineages occurred about $1.88 \pm 0.05 \mathrm{Myr}$ ago, an estimate very close to the approximate divergence time of $1.85 \pm 0.47 \mathrm{Myr}$ inferred independently from sequence divergence on the X chromosome (Fig. 1C, main text).


Fig. S27.
The rooted chromosomal phylogeny of the An. gambiae complex, based on fixed chromosomal inversions whose ancestral-derived relationships could be inferred from available genome assemblies of ingroup and outgroup species. An. coluzzii is not shown, as it does not differ from An. gambiae by any fixed inversions. (A) A parsimony tree that allows no independent fixations of inversions in different lineages but allows introgression of 2La from An. gambiae to An. arabiensis. (B) A tree that requires independent fixations of $2 \mathrm{R}+^{\circ}$ in two lineages and introgression of 2La from An. gambiae to An. arabiensis.

## S6. Functional analysis of differentially introgressed regions

## S6.1. Ecdysteroid quantification in An. gambiae and An. arabiensis.

Ecdysteroid titers in the male accessory glands (MAGs) of An. gambiae and An. arabiensis males were determined by an ACE Competitive Enzyme Immunoassay (EIA), using 20-hydroxyecdysone (20E) conjugated to acetylcholinesterase as a tracer and 20E EIA antiserum (Cayman Chemical). A standard curve was prepared from 625 pg of 20E (Sigma-Aldrich) in EIA buffer, with a series of seven 2-fold dilutions. MAGs were dissected from 4-day old virgin male mosquitoes and total ecdysteroids were extracted in $30 \mu \mathrm{l}$ of methanol, re-dissolved in $50 \mu \mathrm{l}$ of EIA buffer and loaded on a 96 -well plate pre-coated with mouse anti-rabbit IgG (Cayman Chemical). Plates were incubated with tracer ( $50 \mu \mathrm{l}$ ) and antiserum ( $50 \mu \mathrm{l}$ ) for 18 h at $4^{\circ} \mathrm{C}$ and then developed with Ellman's Reagent ( $200 \mu \mathrm{l}$ ) for 90-120 min. Absorbance was measured on an ELISA plate reader at 412 nm . All samples were assayed in duplicate. The results are expressed as mean values $\pm$ SEM of 10 independent samples containing MAGs from 2 males each. Differences in mean amount of ecdysteroids in the MAGs were determined by 1-way ANOVA and the significance of pairwise comparisons was calculated using Tukey's HSD in Prism 6.0.

## S6.2 Functional Enrichment analyses of (non-) introgressed genes

Functional enrichment analyses of genes in a target region of interest were conducted using DAVID (108), which clusters terms with similar functional categories. Here we report only significantly enriched clusters (enrichment score $>1.3$ ). Additionally, a specific analysis of Gene Ontology (GO) terms was conducted with the R software goseq (109), adapted from its original purpose (to test for GO enrichment in genes differentially expressed) to test for enrichment in (non-) introgressed gene lists. We also compared GO terms of genes in the target region to GO terms of genes in a random subset of the genome (excluding the target genes). The mean GO content of 15 random subsets, each containing an equal number of genes to the target region, was
compared to the mean GO content of the target region. To test for over-representation of genes implicated in the mosquito immune response, the number of immune-related genes from an updated version of ImmunoDB (110) was compared with chi-square tests of the target region versus genes outside the target region.

## S6.2.1. An. merus and An. quadriannulatus introgression

Functional enrichment analyses were based on genes in regions detected as introgressed between this species pair based on $D_{\text {FOIL }}$ statistics; the background used as reference was defined as the set of genes across the genome with sufficient data to pass our filters and allow for testing using $D_{\text {FOIL }}$ ( S 4.1 ). We performed analyses on all introgressed genes across the genome, and additionally on genes in the 3La inversion (in PEST coordinates, from position 14,452,080 to 35,641,019 corresponding to AGAP010981 to AGAP011962).

The results of the genome-wide analysis and the 3La analysis of introgressed genes are presented in Tables S12-S15. Overall, functional enrichment was similar in both data sets. Functions related to immune/stress defense, apoptosis, oxidation-reduction, ion transport and polyamine synthesis were over-represented among the introgressed genes. Significantly more immune-related genes were observed (46 genes) than expected (29) in 3La (chi-square test, d.f. $=1, P=0.002$ ) versus all regions of the genome outside this inversion.

## S6.2.2. Autosomal genes resistant to introgression between An. arabiensis and An. gambiae

Because most of the autosomes showed evidence of introgression between An. gambiae and An. arabiensis, it was of interest to examine the set of autosomal genes that resisted introgression, as these would be candidate genes potentially involved in reproductive isolation. For this purpose, we considered "non-introgressed" autosomal genes to be those whose gene trees support the species topology of ((An. arabiensis, An. quadriannulatus)An. gambiae) with $>80 \%$ RAxML bootstrap support for the clade. To identify this set of genes, we selected a total of 7

Anopheles species for phylogenetic analysis: An. gambiae (PEST), An. merus, An. arabiensis, An. quadriannulatus, An. melas, An. christyi, and An. epiroticus. In addition, we identified singlecopy gene families using OrthoDB (93); these included 5782 strict single-copy gene families (one gene in each of seven species) and 1130 relaxed single-copy gene families (one species was allowed to have more than one gene in the gene family, and the longest one was selected for further analysis). After eliminating the set of genes on the X chromosome, for each remaining gene, the peptide sequences were aligned using MUSCLE (94). The peptide alignment was back-aligned to a CDS alignment using Pal2Nal (95), and alignments were cleaned with TrimAl (80). RAxML $(84,85)$ was then run on the cleaned CDS alignment using the GTRGAMMA model of evolution and 100 fast bootstraps, and gene trees were re-rooted using An. epiroticus as the outgroup.

Of the 6319 autosomal orthologs whose gene trees were analyzed, the 485 that supported the species topology ((An. arabiensis, An. quadriannulatus)An. gambiae) were considered "nonintrogressed" and submitted to functional enrichment analysis. DAVID revealed two clusters with an enrichment score $>1.3$, but the second cluster (zinc finger, FYVE-type) only contained four genes. The first cluster was annotated as 3',5'-cyclic-nucleotide phosphodiesterase (enrichment score of 2.28, 7 genes). Cyclic-nucleotide phosphodiesterases also appeared as the top over-represented GO terms from goseq analysis (Table S16). Phosphodiesterases again emerged as significantly over-represented when comparing GO terms in the target list with random lists of equal size; "phosphoric diester hydrolase activity" and " 3 ' 5 '-cyclic-nucleotide phosphodiesterase activity" were ranked as the $9^{\text {th }}$ and $18^{\text {th }}$ most over-represented terms, respectively.


Fig. S28.
(A) Diagram of insect ecdysteroid synthesis pathway. An. gambiae genes corresponding to the seven enzymes currently known to be implicated in the production of 20-hydroxyecdysone (20E) are indicated along with their chromosomal location. Remarkably, in An. gambiae there is an overrepresentation of X chromosome genes in the pathway, with four out of seven 20E genes present on this chromosome (genes highlighted in pink). Interestingly, AGAP000284, the penultimate enzyme in the pathway, is present in the region (Xag) resistant to introgression between An. gambiae and An. arabiensis. (B) Comparison of 20 E titers between An. gambiae and An. arabiensis males. Hormone levels were measured from male accessory glands (MAGs) dissected from males of An. gambiae s.s. and two different strains of An. arabiensis. Male An. arabiensis from both strains have significantly lower levels of ecdysone in their MAGs compared to An. gambiae as indicated by letters (ANOVA $\mathrm{F}_{2,27}=17.92, P<0.0001$, pairwise comparison Tukey's HSD).

## Table S12.

DAVID annotation clusters with enrichment scores $>1.3$ for all genes introgressed between An . merus and An. quadriannulatus.

| Cluster | Enrichment score | Number of genes | David cluster name |
| :---: | :---: | :---: | :--- |
| 1 | 2.92 | 96 | peptidase |
| 2 | 2.6 | 18 | digestion |
| 3 | 1.68 | 15 | ornithine decarboxylase |
| 4 | 1.68 | 13 | SET domain |
| 5 | 1.68 | 24 | leucine-rich repeat |
| 6 | 1.61 | 11 | nucleotide transport and |
| 7 | 1.61 | 47 | chitin binding |
| 8 | 1.42 | 9 | alcohol dehydrogenase |
| 9 | 1.4 | 55 | ion binding and transport |

## Table S13.

The top 20 GO terms significantly over-represented among genes introgressed between $A n$. merus and An. quadriannulatus. Number of occurrences is given for each GO term in the target introgressed and background (total) gene lists.
Total
(Introgressed +

|  | $\boldsymbol{P}$-value | Introgressed | Non-introgressed) |
| :--- | :---: | :---: | :---: |
| catalytic activity | 0.0005 | 149 | 694 |
| cytoskeleton | 0.0005 | 29 | 148 |
| dynein complex | 0.0005 | 3 | 12 |
| enzyme regulator activity | 0.0005 | 30 | 168 |
| focal adhesion | 0.0005 | 2 | 2 |
| hydrolase activity | 0.0005 | 111 | 542 |
| motor activity | 0.0005 | 6 | 17 |
| myosin complex | 0.0005 | 5 | 16 |
| oxidoreductase activity, acting on <br> paired donors, with incorporation or <br> reduction of molecular oxygen, <br> reduced ascorbate as one donor, and <br> incorporation of one atom of oxygen | 0.0005 | 4 | 4 |


| polyamine biosynthetic process | 0.0005 | 5 | 6 |
| :--- | :---: | :---: | :---: |
| potassium ion transmembrane <br> transport | 0.0005 | 9 | 28 |
| potassium ion transport | 0.0005 | 8 | 24 |
| protein binding | 0.0005 | 246 | 1632 |
| regulation of GTPase activity | 0.0005 | 7 | 44 |
| regulation of ion transmembrane <br> transport | 0.0005 | 9 | 24 |
| voltage-gated ion channel activity | 0.0005 | 7 | 12 |
| voltage-gated potassium channel <br> activity | 0.0005 | 4 | 12 |
| voltage-gated potassium channel <br> complex | 0.0005 | 4 | 7 |
| digestion | 0.0010 | 7 | 11 |
| homophilic cell adhesion | 0.0010 | 7 | 33 |

## Table S14.

DAVID annotation clusters with enrichment scores $>1.3$ based on genes introgressed between $A n$. merus and An. quadriannulatus in the 3La inversion.

| Cluster | Enrichment score | Number of genes | David cluster name |
| :---: | :---: | :---: | :--- |
| 1 | 3.9 | 14 | SET domain |
| 2 | 1.56 | 15 | ornithine decarboxylase |
| 3 | 1.54 | 11 | monooxygenase |
| 4 | 1.51 | 14 | aldo/keto reductase |
| 5 | 1.48 | 13 | leucine-rich repeat |
| 6 | 1.47 | 57 | serine-type peptidase <br> activity |
| 7 | 1.45 | 8 | fibrinogen |
| 8 | 1.33 | 8 | caspase |

## Table S15.

The top 20 GO terms significantly ( $P<0.05$ ) over-represented in 3La genes introgressed between An. merus and An. quadriannulatus. Number of occurrences is given for each GO term in the target introgressed and background (total) gene sets.

Total
(Introgressed + Non-
Overrepresented

| GO term name | $\boldsymbol{P}$-value | Introgressed | introgressed) |
| :--- | :---: | :---: | :---: |
| catalytic activity | 0.0005 | 77 | 749 |
| oxidoreductase activity, acting on paired <br> donors, with incorporation or reduction of <br> molecular oxygen, reduced ascorbate as one <br> donor, and incorporation of one atom of <br> oxygen |  |  |  |
| polyamine biosynthetic process | 0.0005 | 4 |  |
| mitosis | 0.0005 | 4 | 6 |
| protein binding | 0.0015 | 6 | 6 |
| hydrolase activity | 0.0015 | 151 | 18 |
| phosphatase activity | 0.0035 | 58 | 1740 |
| cell cycle | 0.0035 | 14 | 579 |
| lipid metabolic process | 0.0045 | 10 | 92 |
| copper ion binding | 0.0050 | 22 | 58 |
| dephosphorylation | 0.0055 | 6 | 176 |
| organelle | 0.0055 | 12 | 22 |
| COPII vesicle coating | 0.0055 | 122 | 76 |
| motor activity | 0.0060 | 2 | 1421 |
| condensin complex | 0.0070 | 5 | 2 |
| alkaline phosphatase activity | 0.0110 | 2 | 19 |
| chitin binding | 0.0125 | 3 | 3 |
| chitin metabolic process | 0.0125 | 14 | 7 |
| serine-type endopeptidase activity | 0.0125 | 14 | 104 |
| apoptotic process | 0.0125 | 36 | 104 |

## Table S16.

GO terms significantly ( $P<0.05$ ) over-represented among autosomal genes resistant to introgression between An. gambiae and An. arabiensis.

| GO term name | Over- <br> represented <br> $\boldsymbol{P}$-value | Number of GO in <br> orthologs not <br> introgressed | Number of GO in <br> all autosomal <br> orthologs |
| :--- | :---: | :---: | :---: |
| phosphoric diester hydrolase activity | 0.0005 | 7 | 14 |
| 3',5'-cyclic-nucleotide phosphodiesterase <br> activity | 0.0010 | 5 | 8 |
| neurotransmitter:sodium symporter <br> activity | 0.0050 | 4 | 9 |
| symporter activity | 0.0050 | 4 | 9 |
| neurotransmitter transport | 0.0065 | 4 | 10 |
| carbohydrate metabolic process | 0.0075 | 18 | 126 |
| monovalent inorganic cation transport | 0.0100 | 5 | 17 |
| iron-sulfur cluster binding | 0.0115 | 6 | 25 |
| 2 iron, 2 sulfur cluster binding | 0.0145 | 4 | 13 |
| translational termination | 0.0150 | 2 | 3 |
| mitochondrial inner membrane | 0.0160 | 3 | 8 |
| Mo-molybdopterin cofactor biosynthetic <br> process | 0.0170 | 2 | 3 |
| sodium ion transmembrane transport | 0.0170 | 6 | 27 |
| negative regulation of catalytic activity | 0.0240 | 4 | 15 |
| Rab GTPase activator activity | 0.0245 | 5 | 22 |
| generation of precursor metabolites and <br> energy | 0.0250 | 6 | 31 |
| cation transport | 0.0260 | 8 | 45 |
| sensory perception of taste | 0.0360 | 5 | 25 |
| regulation of endopeptidase activity | 0.0450 | 3 | 10 |


[^0]:    *breakpoint

