Supplemental Information for:
'Quantifying the risk of hemiplasy in phylogenetic inference
Rafael F. Guerrero \& Matthew W. Hahn
This file contains an Appendix and Supplemental Figures 1-3

## Appendix: Probabilities of mutation along genealogies

To clarify the calculations of $P_{e}$ and $P_{o}$ in equations 1 and 2 , we must specify how the probability of mutation is calculated for each branch. On random branch lengths (as in the case of coalescent times), the probability of mutation is $\int 1-\mathrm{e}^{-\mu x} f(x) \mathrm{d} x$, where $f(x)$ is the probability density function of $x$ (the random variable for branch length). All mutation probabilities $v\left(\lambda_{i}, \tau\right)$ have some version of that general form, varying the value of $x$ and $f(x)$. Genealogies $\beta$ and $\gamma$ can only happen in the absence of coalescence between lineages B and C in the BC ancestor. In contrast, genealogy $\alpha$ can happen with or without coalescence in BC , and it is helpful to consider the two alternatives separately: $\alpha_{0}$ denotes the subset of $\alpha$ trees that coalesce in the ABC ancestor (i.e., without coalescence in BC ), whereas $\alpha_{+}$are the trees that have the $\alpha$ topology and coalesced in BC.

The genealogies $\alpha_{o}, \beta$, and $\gamma$ are identical in length (although they have different tip identities), and their mutation probabilities can be described by the equations:

$$
\begin{gathered}
v_{1}=\frac{1}{\Lambda} \int_{0}^{t_{3}}\left(1-e^{-\mu\left(t_{1}+t_{2}+x\right)}\right) \frac{3}{2}\left(e^{-x}-e^{-3 x}\right) \mathrm{d} x \\
v_{2}=\frac{1}{\Lambda} \int_{0}^{t_{3}}\left(1-e^{-\mu\left(t_{1}+t_{2}+x\right)}\right) 3 e^{-3 x}\left(1-e^{-\left(t_{3}-x\right)}\right) \mathrm{d} x \\
v_{4}=\frac{1}{\Lambda} \int_{0}^{t_{3}} 3 e^{-3 y}\left(\int_{0}^{t_{3}-y} e^{-x}\left(1-e^{-\mu x}\right) \mathrm{d} x\right) \mathrm{d} y \\
v_{5}=\frac{1}{\Lambda} \int_{0}^{t_{3}}\left(1-e^{-\mu\left(t_{3}-x\right)}\right) 3 e^{-3 x} \mathrm{~d} x
\end{gathered}
$$

In the above, $\Lambda=1+\frac{1}{2} e^{-3 t_{3}}-\frac{3}{2} e^{-t_{3}}$ and represents the probability of coalescence of $\mathrm{A}, \mathrm{B}$, and C in the ABC ancestor (i.e., the cumulative distribution function of the coalescent for a sample of size 3). Each of these four probabilities correspond to multiple branches in Fig. 1B. Specifically, $v_{1}=v\left(\lambda_{1}, \alpha_{0}\right)=v\left(\lambda_{2}, \beta\right)=v\left(\lambda_{3}, \gamma\right), v_{2}=v\left(\lambda_{2}, \alpha_{0}\right)=v\left(\lambda_{3}, \alpha_{o}\right)=v\left(\lambda_{1}, \beta\right)=$ $v\left(\lambda_{3}, \beta\right)=v\left(\lambda_{1}, \gamma\right)=v\left(\lambda_{2}, \gamma\right), v_{4}=v\left(\lambda_{4}, \alpha_{0}\right)=v\left(\lambda_{4}, \beta\right)=v\left(\lambda_{4}, \gamma\right)$, and $v_{5}=v\left(\lambda_{5}, \alpha_{0}\right)=$ $v\left(\lambda_{5}, \beta\right)=v\left(\lambda_{5}, \gamma\right)$.

The mutation probabilities for genealogy $\alpha_{+}$are:

$$
\begin{gathered}
v\left(\lambda_{1}, \alpha_{+}\right)=\frac{1}{1-e^{-t_{3}}} \int_{0}^{t_{3}}\left(1-e^{-\mu\left(t_{1}+t_{2}+x\right)}\right) e^{-x} \mathrm{~d} x \\
v\left(\lambda_{2}, \alpha_{+}\right)=v\left(\lambda_{3}, \alpha_{+}\right)=\frac{1}{1-e^{-t_{2}}} \int_{0}^{t_{2}}\left(1-e^{-\mu\left(t_{1}+x\right)}\right) e^{-x} \mathrm{~d} x \\
v\left(\lambda_{4}, \alpha_{+}\right)=\int_{0}^{t_{2}} \frac{e^{-y}}{1-e^{-t_{2}}}\left(\int_{0}^{t_{3}}\left(1-e^{-\mu\left(t_{2}-y+x\right)}\right) \frac{e^{-x}}{1-e^{-t_{3}}} \mathrm{~d} x\right) \mathrm{d} y \\
v\left(\lambda_{5}, \alpha_{+}\right)=\frac{1}{1-e^{-t_{3}}} \int_{0}^{t_{3}}\left(1-e^{-\mu\left(t_{3}-x\right)}\right) e^{-x} \mathrm{~d} x
\end{gathered}
$$

We use these functions, together with the probabilities of their corresponding genealogies $\left(p\left(\alpha_{+}\right)=1-e^{-t_{2}}\right.$, and $\left.p\left(\alpha_{o}\right)=p(\beta)=p(\gamma)=\frac{1}{3} e^{-t_{2}}\right)$, to obtain the values of $P_{e}$ and $P_{o}$ in equations 1 and 2 .


Figure S1. Diagram of possible scenarios of trait discordance.


Figure S2. The relative probabilities of hemiplasy and homoplasy $\left(P_{e} / P_{o}\right)$ are not dramatically affected by the length of the ancestral branch ( $t_{3}$; in units of $2 N$ generations). Contours are as for Figure $2($ dark orange $=$ hemiplasy more than 100 x more likely than homoplasy $)$. Rate of mutation shown along the vertical axis ( $\mu$, per $2 N$ generations). The black solid line represents parameter values for which hemiplasy and homoplasy are exactly equal $\left(P_{e} / P_{o}=1\right)$.


Figure S3. The fraction of genealogies that allow for a single hemiplastic substitution declines with the number of taxa in the phylogeny and the number of taxa that have the derived state (two in red, three in blue). The $y$-axis is the fraction of topologies that place the taxa sharing the derived state in a single clade ("hemiplastic genealogies"). This is calculated as $h(k) h(n-k+$ $1) / h(n)$, where $h(x)=x!(x-1)!/ 2^{x-1}, k$ is the number of taxa with the derived state, and $n$ is the total number of taxa in the phylogeny. The numerator is the number of topologies that contain the subclade grouping the $k$ taxa of interest, and the denominator is the total number of topologies for $n$ taxa. For instance, in the top left corner one out of three possible topologies can lead to hemiplasy (as in the main text, genealogy $\beta$ ). As the tree gets larger or more taxa share the derived state, the fraction of trees that have a single branch upon which a shared hemiplastic substitution can occur gets smaller. These calculations assume a hard polytomy of $n$ taxa, in which all samples coalesce in the ancestor (so all topologies are equally likely). It therefore represents a best-case scenario for hemiplasy.

