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Accurate Inference and Estimation in Population Genomics 
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Both intra- and interspecific genomic comparisons have revealed local similarities in the level and frequency of mutational 
variation, as well as in patterns of gene expression. This autocorrelation between measurements leads to violations of 
assumptions of independence in many statistical methods, resulting in misleading and incorrect inferences. Here I show 
that autocorrelation can be due to many factors and is present across the genome. Using a one-dimensional spatial stochastic 
model, I further show how previous results can be employed to correct for autocorrelation along chromosomes in pop-
ulation and comparative genomics research. When multiple hypothesis tests are autocorrelated, I demonstrate that a simple 
correction can lead to increased power in statistical inference. I present a preliminary analysis of population genomic data 
from Drosophila simulans to show the ubiquity of autocorrelation and applicability of the methods proposed here. 

Introduction 

One of the major goals of molecular population genet-
ics is to account for the various forces affecting nucleotide 
variation within and between species. Drift, selection, mu-
tation, and demographic processes can all play important 
roles in determining the number and frequency of DNA 
mutations, but determining the relative contribution of each 
process at any single locus can be challenging (e.g., Tajima 
1989; Braverman et al. 1995; Tenaillon et al. 2001; Hahn, 
Rausher, and Cunningham 2002; Akey et al. 2004; Schmid 
et al. 2005; Stajich and Hahn 2005). As molecular popula-
tion genetics has proceeded from the first single-locus study 
(Kreitman 1983) to two-locus (Hudson, Kreitman, and 
Aguade 1987), dozen-locus (Begun and Aquadro 1992), 
and 100-locus (Glinka et al. 2003) studies, researchers have 
been better able to distinguish the genome-wide effects of 
drift and demography from the locus- or region-specific 
effects of natural selection. As sequencing technologies be-
come faster and more affordable, population genetic data 
sets comprising huge numbers of loci will offer the oppor-
tunity to study these evolutionary processes at a genomic 
scale (population genomics). 

Despite this increase in sequence data, the amount of 
information gained in going from one to even a few loci 
outweighs that gained in going from hundreds to thousands 
of loci. This is because the more dense sampling of loci 
means that many data points are no longer independent: 
there is an autocorrelation (or ‘‘serial correlation’’) between 
linked loci in levels of polymorphism, divergence, the allele 
frequency spectrum, and various summary statistics of var-
iation, even over very large distances (e.g., Tishkoff et al. 
1996; Reich et al. 2002; Falush, Stephens, and Pritchard 
2003; Gaffney and Keightley 2005; Hinds et al. 2005; 
Stajich and Hahn 2005). There may be many reasons for 
this spatial autocorrelation, including shared histories, var-
iation in underlying mutation rates or neutral mutation rates 
(e.g., in gene-rich or gene-poor regions), linked selection, 
and demographic events. There is also an autocorrelation in 

the expression levels of neighboring genes (Hurst, Pal, and 
Lercher 2004), possibly due to autocorrelated levels of 
polymorphism (e.g., Kliebenstein et al. 2005) or shared reg-
ulatory elements. The sampling of nonindependent loci can 
mean that patterns present in only a fraction of the genome 
will be pseudoreplicated and that statistics assuming inde-
pendent observations will overestimate the true number of 
independent loci. This leads to underestimated standard 
errors (SEs) and confidence intervals (CIs) and hence tests 
that are too liberal (Lehmann 1986). Autocorrelation there-
fore results in problems with statistical inference and esti-
mation in genomic studies. 

Certain data analysis methods—such as sliding 
window analyses—can also lead to spatial autocorrelation 
as the data in each window is not independent of its neigh-
bors. This form of autocorrelation is due to statistical non-
independence between measurements, rather than the 
biological nonindependence induced by shared underlying 
parameters. Throughout this paper, I refer solely to biolog-
ical nonindependence, though many of the same problems 
and solutions may arise when data are autocorrelated due to 
both biological and statistical causes. 

Many situations in population and comparative 
genomics are affected by an overestimation of the number 
of independent measurements or simply the assumption 
that all the data are independent. Here are four scenarios 
where these effects may occur. First, in tests of the mean 
between groups, autocorrelated data result in underesti-
mated SEs. Researchers often test for differences in levels 
of polymorphism between populations (e.g., Andolfatto 
2001; Glinka et al. 2003) or in levels of polymorphism 
or divergence between genes on sex chromosomes and 
autosomes (e.g., Andolfatto 2001; Betancourt, Presgraves, 
and Swanson 2002). Such differences provide information 
about the relative importance of demographic history and 
natural selection, as well as about genome-wide differen-
ces in the efficacy of selection. However, the sampling 
of autocorrelated loci may lead to misleading results re-
garding differences between populations or chromosomes. 
Even tests that are not explicitly spatial—such as compar-
isons in evolutionary rate among genes in various func-
tional categories—may be affected by autocorrelation 
because of the frequent occurrence of tandem duplication 
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(Friedman and Hughes 2001) and blocks of associated 
genes (Hurst, Pal, and Lercher 2004) in the genomes of 
most organisms. Second, evaluating relationships among 
causal factors may be affected by nonindependent meas-
urements. Regressing measures of variation on factors 
such as recombination rate (itself an autocorrelated mea-
sure; Kong et al. 2002), GC content, or underlying muta-
tion rate may give misleading results as to the causes of 
patterns of polymorphism and divergence. While ordinary 
least squares methods are unbiased estimators of the slope 
of a regression, they underestimate the SE when either one 
or both of the two variables are themselves autocorrelated 
(Zeger, Irizarry, and Peng 2004). Third, in cases where 
one wishes to construct a null model for testing the effects 
of various evolutionary processes, autocorrelation can lead 
to biased parameter estimates. For instance, Ometto et al. 
(2005) generated a null distribution for an out-of-Africa 
population bottleneck in Drosophila melanogaster using 
250 noncoding loci on the X chromosome. They identified 
loci that fell outside of various CIs and were presumably 
affected by natural selection. However, autocorrelation be-
tween sampled loci may cause incorrect identification of 
the targets of selection because of incorrect parameteriza-
tion of the null. Finally, any analysis in which a simple 
distribution of summary statistics is constructed may be 
misled by autocorrelation between the nonindependent 
measurements. Looking for outlying loci or for more loci 
in the tails of the distribution than are expected by chance 
may result in erroneous inference under the assumption 
of independence among loci (e.g., Akey et al. 2004; 
Stajich and Hahn 2005). This occurs because significant 
results present in a small subset of the data can be pseu-
doreplicated when autocorrelated observations are made. 
More significant loci may be found than are expected 
at random as multiple, autocorrelated loci are counted 
separately. 

Problems with autocorrelated data are an inevitable 
function of finite genome sizes and will become more com-
mon as data sets grow. In this paper, therefore, I present 
a model that takes into account autocorrelation and allows 
for more accurate inferences in genomic studies. Using 
a stochastic model of one-dimensional spatial autocorrela-
tion, I show how previous results can be employed to more 
accurately estimate the true number of independent obser-
vations and, as a consequence, to more accurately estimate 
the SE in hypothesis tests. I also show that if hypothesis 
tests on individual loci are not wholly independent, then 
typical multiplicity correction procedures produce a conser-
vative test and a corresponding loss of power. I present 
a preliminary analysis of data from light-shotgun genome 
sequencing of six lines of Drosophila simulans (C. Langley 
and D. Begun, personal communication) in order to show 
both the ubiquity of autocorrelation in population genomic 
data sets and the applicability of the methods presented to 
correct for this autocorrelation. 

Materials and Methods 
Estimating Autocorrelation 

In order to model the autocorrelation present in geno-
mic data, we treat a chromosome as a one-dimensional 

space with data measured at points along its length. These 
data points can be equally spaced genes or noncoding 
loci or in nonoverlapping windows covering the whole 
chromosome. There are many well-developed methods 
for the analysis of this type of one-dimensional spatial au-
tocorrelation, generally falling under the statistical field of 
‘‘time series’’ (e.g., Shumway 1988; Chatfield 1989; Diggle 
1990; Box, Jenkins, and Reinsel 1994; Fuller 1996). How-
ever, as I outline below, there is no concept of time or di-
rectionality implied in the analyses presented here, and all 
results are equally valid—as long as stationarity assump-
tions are met—no matter which end of the chromosome 
we start from. 

For data where successive measurements are corre-
lated (the definition of autocorrelation), a powerful and 
popular approach is to regress these successive measure-
ments on one another. Such models are called autoregres-
sive and are preferable for most genomic data because they 
result in correlations that decay gradually rather than 
steeply: the correlation between measurements i steps apart 
is qi (where q is the autocorrelation coefficient defined in 
the next paragraph). Other models for autocorrelated data 
exist (see, e.g., Chatfield 1989) but will not be considered 
in this first attempt at applying this class of probability mod-
els to genomic data. Autoregressive processes are not re-
stricted to regressing neighboring observations—higher 
order processes that consider regressions at any lag (i.e., 
number of steps apart) are possible. I largely consider 
first-order processes here because they are well studied 
and discuss how to decide whether models of higher order 
are appropriate below. 

Under a first-order autoregressive process, the value of 
the ith observation is given by 

Xi 5 l 1 qðXi1  lÞ1 ei; jqj  1; i5 1; 2;.; ð1Þ 
where parameter l is the mean of the series of measures, q 
is the autocorrelation at lag 1 (the only correlation consid-
ered in models of order 1), and e is the normally distributed 
noise term with mean zero and variance r2. The parameters 
of this model can be fit by a number of maximum likelihood 
estimation procedures (Chatfield 1989). Significance of the 
autocorrelation parameter (against the null hypothesis that it 
is equal to zero) can be determined via permutation. A num-
ber of approaches exist for choosing the appropriate order 
of the autoregressive model used, including informal ap-
proaches using the partial autocorrelation function and 
more formal approaches that penalize models with greater 
numbers of parameters via the Akaike information criterion 
(Box, Jenkins, and Reinsel 1994). 

Assumptions of Autoregressive Processes 

Many of the results in time series analysis are based on 
the assumption that the data are stationary, though methods 
specific to nonstationary data are available. While the math-
ematical definition of stationarity is beyond the scope of 
this paper (see, e.g., Chatfield 1989; Fuller 1996), a few 
of the requirements of the stationarity assumption are rel-
evant to the analysis of genomic data. First, there is no trend 
to the data. If there is a trend in the average value or the var-
iance of the observations across the series, transformation 
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of the data is often recommended in order to make the series 
stationary (Chatfield 1989; Box, Jenkins, and Reinsel 
1994). Second, the correlation between successive mea-
sures is constant across the series. This implies that the 
correlation between Xi and Xi1 or Xi and Xi11 is the same 
as it is between any two other neighboring observations. 
The use of equally spaced observations in a spatial series 
is largely due to this assumption: if observations are not 
regular, then the correlations between them can vary. There 
are a number of ways of dealing with irregularly spaced 
observations, including sampling of the data to ensure equal 
spacing and fitting a spline to the data to fill-in missing 
measurements (Chatfield 1989, p. 199). While sampling 
will result in a loss of data, fitting a spline assumes an au-
tocorrelated nature to the data and so may not be conserva-
tive when testing for the presence of autocorrelation. If both 
the above assumptions hold, we can see that it does not mat-
ter which end of a chromosome we start our series with as 
there should be no directionality to the data. In the analysis 
presented below, I do find that the initial data violate as-
sumption 1, largely due to loci at the ends of the chromo-
some. I removed these data prior to the full analysis to meet 
both stationarity assumptions. 

Correcting for Autocorrelation 

For first-order autoregressive processes, there is a sim-
ple relationship that can be used to correct for autocorrela-
tion. The number of true independent observations (n*; also 
referred to as the ‘‘effective sample size’’) for an autocorre-
lated series of n measures is given by Dawdy and Matalas 
(1964): 

n* 5 n½ð1  qÞ=ð1 1 qÞ ð2Þ 
This formula implies that as the autocorrelation goes to 
zero n* equals n and that as it goes to unity (complete au-
tocorrelation) there is only one independent observation. 
Because genomic data are generally positively autocorre-
lated (q . 0), such a correction will lower the number 
of observations in a data set (n* , n) and will increase 
the SE and CIs. 

Drosophila simulans Data 

One of the first genome-scale population genetic data 
sets comes from the shotgun sequencing of six inbred lines 
of D. simulans (Langley et al., personal communication). 
Each of five lines was sequenced to 1.53 coverage, while 
the sixth was sequenced to 33 coverage. This means that 
the whole genome is not covered for any single line and 
that sequence coverage at any given base has an average 
of approximately three alleles (Langley et al., personal 
communication). Additionally, as part of the same project, 
one inbred strain of Drosophila yakuba was sequenced to 
103 coverage; using this and the D. melanogaster genome 
sequence (Adams et al. 2000) allow us to estimate di-
vergence on only the lineage leading to D. simulans. For 
the data presented here, only approximately 5 Mb in the 
middle of the X chromosome was analyzed for both poly-
morphism and divergence. In order to meet stationarity as-
sumptions, I avoided using the ends of the chromosome as 

both the mean and variance in polymorphism were lower 
due to reduced recombination (Langley et al., personal 
communication). 

In the following, I show how to use the framework of 
spatial autocorrelation to better describe genomic data from 
D. simulans to correct for the autocorrelation inherent in 
many data sets and to uncover the processes responsible 
for this autocorrelation. 

Results 

Data from 10-kb nonoverlapping windows, each re-
quired to have at least three alleles across the majority 
(.50%) of the window, were examined for autocorrelation 
in p (the average number of nucleotide differences per base; 
Tajima 1983). Over the length of the 5-Mb sequence, there 
is an autocorrelation between neighboring windows (fig. 
1a), with the autocorrelation parameter q of a first-order au-
toregressive process estimated as 0.51 (P , 1.0 3 1015; all 
analyses were performed in R [www.r-project.org]). If we 
examine the decay in autocorrelation measured between 
windows at lags from 0 and 30 (fig. 2a), we see an approx-
imately exponential decline with increasing distance as pre-
dicted for first-order autoregressive models. There is an 
autocorrelation of 1 at lag 0 (as every window is completely 
autocorrelated with itself), an autocorrelation of 0.51 at lag 1, 
and decreasing autocorrelations at greater lags. Much of the 
longer range autocorrelation observed is simply due to the 
intervening short-range autocorrelations: using a partial au-
tocorrelation analysis (not shown), there is no significant au-
tocorrelation effect at lags greater than 1 after taking into 
account the autocorrelation at lag 1. While this does not 
mean that there is no dependence in the data at distances 
greater than 10 kb (see below), it does support the use of 
a first-order autoregressive process rather than models of 
higher order. 

Examining the autocorrelation in divergence across 
the same 10-kb windows, we see a similar pattern (fig. 
1c): a relatively high value of q estimated across the se-
quence (0.38; P , 1.0 3 1015). The similarity in patterns 
of autocorrelation is not surprising as many of the same 
forces responsible for autocorrelation in polymorphism also 
affect divergence. Indeed, there is a correlation between 
levels of polymorphism and divergence for this region 
(Pearson’s r 5 0.44; P , 2.2 3 1016), as expected under 
the neutral theory of molecular evolution (Kimura 1968). 
Autocorrelation appears to be consistently higher for poly-
morphism than for divergence, most likely because demo-
graphic processes and linked selection affect polymorphism 
but not divergence (Birky and Walsh 1988). Nonetheless, it 
can be seen from the polymorphism and divergence data 
that there is a long-range dependence in both measures, 
with measured correlation present over distances upward 
of 300 kb for p and almost 100 kb for divergence (fig. 
2a and b). 

One question raised by the above analyses is how to 
determine the most appropriate window size to use. Choos-
ing a window size can be arbitrary (even a ‘‘day’’ or a 
‘‘month’’ is arbitrary in standard time series analysis), and 
depending on the scale of the expected effect different win-
dow sizes may be appropriate. To examine the consistency 
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of the observed autocorrelation in polymorphism, I re-
peated the same analysis across the 5 Mb of X chromo-
some with nonoverlapping windows of 100 kb (fig. 1b). 
Again there was a significant autocorrelation in levels of 
polymorphism, with q 5 0.59 (P , 1.0 3 104), which 
implies that measurement of autocorrelation is not very sen-
sitive to window size. However, this result still does not in-
dicate the appropriate window size to use: choosing large 
window sizes may overwhelm small-scale effects, while 
choosing small window sizes may obscure larger effects 
by introducing noise. 

As discussed above, autocorrelation in both poly-
morphism and divergence will cause us to overestimate 
the true number of biologically independent samples taken. 
Using equation (2), we can correct for this overestimation, 
taking into account autocorrelation to estimate the true 
number of independent measurements. For example, the 
standard error of the mean is given by r/On, where r is 
the standard deviation and n is the number of measure-
ments. Taking a random stretch of 20 consecutive 10-kb 
windows of p from the D. simulans data used here, the 
mean is 0.016. Correcting for autocorrelation using q 5 
0.51 gives n* 5 6.5. Plugging in this adjusted number 
of measurements results in a SE of 0.0019 rather than 
0.0011 without correction, an increase of almost 100% 

in the error around the estimate of the mean. The simple 
calculation presented in equation (2) leads to an adjustment 
in the sample size and, consequently, more accurate hy-
pothesis testing and inference. There are many instances 
in genomic studies where this correction will help to better 
quantify the amount of evidence in favor of competing 
hypotheses. 

Discussion 

One of the most important assumptions of standard 
statistical analyses is that multiple observations are inde-
pendent of one another. Confidence in estimates of the 
mean and other parameters is often expressed as a function 
of the number of independent observations obtained, and 
hypothesis tests are often based on the error around these 
estimates (Lehmann 1986). When data are autocorrelated, 
however, this independence assumption is violated—there 
may be fewer truly independent observations than is be-
lieved. Overcounting of observations will then lead to an 
inflated confidence in parameter estimates, evident as un-
derestimation of the SE about the mean or of CIs. The result 
is overly permissive hypothesis testing and false rejection 
of the null (Lehmann 1986). 
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FIG. 1.—Levels of polymorphism and divergence along 5 Mb of the X chromosome. (a) Polymorphism measured in 500 nonoverlapping 10-kb 
windows. (b) Polymorphism measured in 50 nonoverlapping 100-kb windows. (c) Divergence measured in 500 nonoverlapping 10-kb windows. These 
windows correspond to the same windows in (a). 
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It is clear that many aspects of genomic data show au-
tocorrelation (e.g., Tishkoff et al. 1996; Reich et al. 2002; 
Gaffney and Keightley 2005; Hinds et al. 2005; Stajich and 
Hahn 2005). In order to take full advantage of the informa-
tion contained within thousands of measurements, we there-
fore need to control for the autocorrelated nature of these 
observations. How can we both correct for autocorrelation 
and estimate the actual number of independent observa-
tions? There are a number of ways of correcting for the bias 
introduced by spatial autocorrelation, as addressed previ-
ously in fields like ecology, hydrology, and climatology 
(e.g., Legendre 1993). Here I proposed using a method that 
explicitly estimates the true number of independent obser-
vations (eq. 2). While this approach does not obviate all of 
the problems introduced by autocorrelated data (such as 
higher order dependencies), it does help to correct for prob-
lems in a common class of analyses. As an alternative to the 
approach advocated here, data can be selected or sampled to 
maximize the additional information they provide. Data 
spaced farther apart or completely beyond the range of au-
tocorrelation will contain more information per observation 
than densely spaced data. In this way the problems of auto-

correlation may be avoided, though at the cost of much infor-
mation. The results and models used in this paper are clearly 
just a first attempt at resolving a very complex problem. 

Adjusting for Multiple Hypothesis Tests 

While dependence among measurements can result in 
overly liberal hypothesis tests and spurious significance, it 
may also have a conservative effect on hypothesis testing. 
This effect occurs because of the manner in which one cor-
rects for multiple hypothesis tests: when multiple tests are 
carried out, significance levels must be adjusted to account 
for the increased probability of type I errors (false posi-
tives). Generally, Bonferroni or other corrections are made 
such that a, the family-wise error rate, is adjusted down-
ward for the number of tests: a* 5 a/n (Sokal and Rohlf 
1995). The adjusted value, a*, is then used as the level be-
low which P values must fall for tests to be considered sig-
nificant (Sokal and Rohlf 1995). However, if tests are 
autocorrelated, then correcting for an overinflated number 
of apparently independent tests will make this P value cut-
off too low, resulting in conservative hypothesis testing 
(e.g., McIntyre et al. 2000; Nyholt 2004; Stajich and Hahn 
2005). 

Problems with overcorrecting for autocorrelated hy-
pothesis tests can occur in many situations in population 
genomics, only two of which I outline here. First, autocor-
relation in test statistics such as Tajima’s D (Tajima 1989) 
may result in conservative hypothesis tests. Because of se-
lective sweeps, various demographic scenarios, or simply 
shared histories between neighboring loci, the mutation 
frequency spectrum (and consequently Tajima’s D) can 
be similar over large regions of the genome. If one is cal-
culating Tajima’s D for many loci in order to find unusu-
ally evolving genes or regions, autocorrelation can result in 
testing the same or similar data many times, thereby reduc-
ing power. Second, association studies aimed at mapping 
loci responsible for quantitative variation (Lander and 
Schork 1994; Risch and Merikangas 1996) may be affected 
by autocorrelation. In association studies, multiple markers 
may be in linkage disequilibrium with one another, result-
ing in autocorrelated tests. Indeed, in their seminal paper 
on interval mapping of quantitative trait loci, Lander and 
Botstein (1989) used a diffusion process to model and cor-
rect for the autocorrelation between significant, closely 
spaced markers. When large, genome-wide association 
studies are conducted using hundreds or thousands of 
markers, the problem of multiple testing is exacerbated be-
cause of the large number of tests performed (Hirschhorn 
and Daly 2005). Even in smaller scale association studies, 
however, such as those that aim to find the functional var-
iant responsible for variation at a single locus, multiple 
markers may be tested that are autocorrelated with one 
another (e.g., Genissel et al. 2004). This will be a larger 
problem in humans because of the large distances (and 
therefore increased number of alleles) that must be exam-
ined to find functional regulatory variants (Rockman and 
Wray 2002). 

One way to adjust for the actual number of independent 
tests (i.e., measures of a test statistic) performed would be to 
use the correction provided by first-order autoregressive 
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FIG. 2.—Autocorrelation in polymorphism and divergence. (a) Auto-
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processes outlined above (eq. 2). Such a correction would 
account for the repeated nature of autocorrelated tests and 
ensures that family-wise error rates are not overly conser-
vative. It would do so by adjusting Bonferroni calculations 
so that a* 5 a/n*. (This calculation would have to be made 
chromosome by chromosome in order to meet the assump-
tions of one-dimensional models.) Unless repeated mea-
sures are negatively autocorrelated (an unlikely scenario 
in genomic data), Bonferroni corrections calculated in this 
way result in a higher value for a* and less stringent P value 
cutoffs. For instance, if 100 tests are conducted with an 
autocorrelation of q 5 0.5 between tests, then the adjusted 
P value for a nominal 0.05% false positive rate is 0.0015 
(50.05/33), according to the method proposed here, rather 
than 0.0005 when considering the tests to be independent. 
This is a threefold increase in the P value that must be 
reached for tests to be considered significant (see Cheverud 
2001 and Nyholt 2004 for alternative approaches to such 
a correction). 

Further Uses for Spatial Stochastic Processes 

The use of stochastic models for spatial series suggests 
a number of additional approaches to the analysis of pop-
ulation genomic data. Recent interest in finding targets of 
adaptive evolution has focused on carrying out so-called 
genomic scans of selection on large data sets (reviewed 
in Storz 2005). The general approach taken is to either 
use a sliding window analysis along each chromosome 
or to simply look for outlying loci within the whole ge-
nome. While both of these methods may suffer from prob-
lems due to autocorrelation among loci, they are also 
statistically unsatisfying because of the many heuristics that 
must be employed (for instance, in the size of the window 
and the size of the step taken when sliding the window). We 
recently proposed (Turner, Hahn, and Nuzhdin 2005) 
using population genetic hidden Markov models (Pop-
GenHMMs; cf. Felsenstein and Churchill 1996; Siepel 
and Haussler 2004) to find regions of interest regardless 
of predetermined window size. Similar approaches have 
been used to define regions of high linkage disequilibrium 
in humans (Daly et al. 2001; Falush, Stephens, and Pritchard 
2003) and to find regulatory sequences evolving under 
constraint in yeast (Chin, Chaung, and Li 2005). Pop-
GenHMMs can be used to determine windows that are sig-
nificantly different from the surrounding sequence by any 
number of summary statistics or per-nucleotide measure-
ments and may suggest a natural scale for the size of 
windows used in other analyses (A. Kern and M. Hahn, 
personal communication). 

Even when regions with extreme patterns of polymor-
phism or divergence are identified, however, we lack 
a framework that provides a genome-wide expectation of 
the size and frequency of such regions under the hypothesis 
of neutral evolution. Spatial stochastic processes may pro-
vide the framework needed by explicitly modeling the rise 
and fall of nucleotide variability along a chromosome. 
Results on the ‘‘exceedance’’ of a series can be used to give 
a distribution of the expected number and size of regions 
exceeding (or falling below) particular values of a statistic 
or measure (e.g., Leadbetter 1995). This is analogous to 

a series going above or below some threshold level in poly-
morphism or divergence in its random walk along a chromo-
some. Such distributions could be used as a null against 
which the observed number of such regions—for example, 
stretches with p 5 0—can be tested. Exceedance analysis 
and population genetic HMMs are just two ways in which 
spatial stochastic models may be extended to deal with pop-
ulation genomic data. 

Conclusions 

Autocorrelation between neighboring loci can lead to 
violations of the assumption of independent sampling and, 
as a consequence, to invalid or misleading inferences in 
genomic studies. While the autocorrelation due to shared 
histories on nonrecombining chromosomes such as the 
mitochondrion has long been recognized, I have shown 
here that dependencies between loci can be due to many 
biological factors and can be present across the genome. 
Treating a chromosome as a one-dimensional space allows 
for the use of well-known results in stochastic processes, as 
well as extensions of these previous results to problems 
unique to genomics. Though I have stressed the importance 
of correcting for autocorrelation in population-based stud-
ies, the ideas presented here are just as valid for interspecific 
comparisons or single-genome studies. As data sets grow 
and autocorrelation is recognized in many spheres, the 
analysis of genomic data will come hard upon the 
unforeseen—and possibly unimagined—problem of too 
many loci. 
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