
Abstract Changes in transcriptional regulation play an 

important role in the genetic basis for evolutionary 

change. Here I review a growing body of literature that 

seeks to determine the forces governing the non-coding 

regulatory sequences underlying these changes. I address 

the challenges present in studying natural selection 

without the familiar structure and regularity of protein-

coding sequences, but show that most tests of neutrality 

that have been used for coding regions are applicable to 

non-coding regions, albeit with some caveats. While 

some experimental investment is necessary to identify 

heritable regulatory variation, the most basic inferences 

about selection require very little functional information. 

A growing body of research on cis-regulatory variation 

has uncovered all the forms of selection common to 

coding regions, in addition to novel forms of selection. 

An emerging pattern seems to be the ubiquity of local 

adaptation and balancing selection, possibly due to the 

greater freedom organisms have to fine-tune gene 

expression without changing protein function. It is clear 

from multiple single locus and whole genome studies of 

non-coding regulatory DNA that the effects of natural 

selection reach far beyond the start and stop codons. 
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Introduction 

Determining the evolutionary processes that shape 

both within-species variation and between-species 

differences in DNA sequences has been a major goal of 

population genetics for the past 30 years (Lewontin 

1974; Kimura 1983; Gillespie 1991; Li  1997). Research 

into a variety of organisms and cellular processes has 

now revealed a large of number of coding sequences 

under either positive selection or balancing selection 

(reviewed in Yang and Bielawski 2000; Fay and Wu 

2001; Nielsen 2001). While estimates of the proportion 

of non-synonymous mutations that are under selection 

reveal much about the process of evolution, coding 

regions make up only a very small fraction of eukary-

otic genomes—this likely means that they are a com-

mensurately small fraction of the nucleotide variation 

within and between species. Recent work has revealed 

the important role changes in non-coding, cis-regulatory 

sequences have in phenotypic evolution (reviewed in 

Carroll 2000; Stern 2000; Davidson 2001; Wray et al. 

2003). These cis-regulatory regions, or promoters, are 

needed to control the timing, level, and spatial location 

of transcription for thousands of proteins, and can have 

evolutionary dynamics much different from the pro-

tein-coding regions they control. Though the study of 

non-coding sequences presents unique problems for 

population genetics, it will be critical for a complete 

picture of the phenotypic and fitness consequences of 

all genetic variation. 

Transcriptional regulation is complex, indirect, 

idiosyncratic, and context dependent (reviewed in 

Wray et al. 2003). Because of this, distinguishing 

functional regulatory nucleotides and phenotypically 

relevant variants from an examination of sequence 
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alone is currently, and may always be, impossible. 

One of the main challenges for studies on regulatory 

sequences, therefore, is the ascertainment of 

functional regulatory variation that has a consequence 

for fitness. This challenge results from three main 

features of cis-regulatory DNA: (1) transcription 

factor binding site motifs are short (6–10 bp) and thus 

will appear thousands of times in a genome through 

random chance alone, (2) the proteins that interact 

with cis-regulatory sequences are themselves 

expressed in an array of times and places, precluding 

easy biochemical characterization of all necessary 

binding sites, and (3) functioning binding sites may 

often appear and disappear with little consequence 

for either phenotype or fitness. For all of these 

reasons, discovery of the genetic basis for heritable 

differences in gene expression will often require 

biochemical experiments or in vivo expression assays. 

While experimental difficulties have limited the 

number of studies exploring the effects of natural 

selection on relevant non-coding sequences, this has 

meant that the few studies that there are (Table 1) 

often have much better functional evidence than 

analogous studies of protein variation. Another con-

sequence of the experimental investment necessary is 

that studies on human variation, where evidence 

abounds on functional promoter polymorphisms 

(Rockman and Wray 2002), are over-represented. 

Despite all of the challenges inherent in studying 

non-coding DNA, a significant body of work has arisen 

documenting many modes of evolution in regulatory 

sequences: negative (purifying) selection preserving 

regulatory interactions over long periods of time, 

positive (directional) selection for sexual signaling and 

adaptation to local habitat, and balancing selection in 

host–parasite interactions and along environmental 

clines. Here I review the best examples of the action of 

natural selection on regulatory variation, and give an 

in-depth analysis of the methods researchers have used 

to detect selection. Though each study covered here 

often uses multiple tests of the neutral–equilibrium 

hypothesis, and population genetics can sometimes 

seem like just a laundry list of significant statistical 

tests, I try to focus on exemplars that highlight the 

advantages of statistics that are often best at detecting 

slightly different evolutionary processes. Finally, there 

are many different ways to group tests of neutrality: the 

way used here is simply meant to underscore the dif-

ferent experimental and statistical challenges present 

in studying non-coding sequences. 

Interspecific analyses 

Comparative analyses of non-coding regions between 

species offer some of the best evidence for the 

importance of cis-regulatory sequences. A handful of 

interspecific comparisons between different taxa have 

revealed that the number of conserved non-coding 

nucleotides is roughly similar to or greater than the 

number of conserved coding nucleotides (Shabalina 

and Kondrashov 1999; Onyango et al. 2000; Bergman 

and Kreitman 2001; Frazer et al. 2001; Shabalina et al. 

2001; Keightley and Gaffney 2003). This large amount 

of conserved intergenic sequence suggests that there 

are just as many functional non-coding regulatory 

nucleotides as there are coding nucleotides, and that, 

given equal mutation rates, approximately half of all 

functional variation is found in non-coding regions. In 

addition, evidence from multiple whole genomes 

Table 1 Genes with population genetic evidence for positive or balancing selection in regulatory regions 

Locus/taxon Reference 

ftz/Drosophila melanogaster Jenkins et al. (1995) 
desat2/D. melanogaster Takahashi et al. (2001) 
Est6/D. melanogaster Odgers et al. (2002) 
Ldh-B/Fundulus heteroclitus Crawford et al. (1999); Schulte et al. (1997) 
Fy/Homo sapiens Hamblin and Di Rienzo (2000) 
CCR5/H. sapiens Bamshad et al. (2002) 
TNFSF5/H. sapiens Sabeti et al. (2002) 
IL4/H. sapiens Rockman et al. (2003); Sakagami et al. (2004) 
F7/H. sapiens Hahn et al. (2004); Sabater-Lleal et al. (2006) 
AGT/H. sapiens Nakajima et al. (2004) 
MMP3/H. sapiens Rockman et al. (2004) 
RET/H. sapiens Emison et al. (2005) 
PDYN/H. sapiens Rockman et al. (2005) 
HLA-G/H. sapiens Tan et al. (2005) 
MHC/Mus musculus Cowell et al. (1998) 
tb1/Zea mays Wang et al. (1999) 
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suggests that even non-functioning intergenic se-

quences may be under weak purifying selection to 

avoid containing spurious transcription factor binding 

sites (Hahn et al. 2003). In order to understand the 

complete role of natural selection in shaping genomes, 

therefore, we must consider both coding and non-

coding sequences. 

Close analysis of well-characterized regulatory 

sequences has revealed conservation of functional 

elements as a common pattern (reviewed in Hardison 

2000; Wray et al. 2003). Specific transcription factor 

binding sites, or clusters of binding sites, can be 

conserved over millions of years and may still func-

tion in very similar roles (e.g., Aparicio et al. 1995; 

Frasch et al. 1995; Beckers and Duboule 1998; 

Margarit et al. 1998; Shashikant et al. 1998; Plaza 

et al. 1999; Hough et al. 2002). There are also 

examples of rapid divergence in cis-regulatory 

sequences (McGregor et al. 2001; Dermitzakis and 

Clark 2002), even when transcriptional output is 

maintained (e.g., Wu and Brennan 1993; Tamarina 

et al. 1997; Ludwig et al. 2000; Romano and Wray 

2003). 

The norm in the study of coding sequences for 

measuring selective constraint is a comparison of the 

number of substitutions per site in non-synonymous 

sites (Ka) to synonymous sites (Ks) (Kimura 1977). A 

Ka/Ks ratio <1 is consistent with a history of negative 

selection and constraint, although it does not rule out 

positive selection, while a Ka/Ks ratio >1 indicates 

strong positive selection, although it does not mean 

that negative selection is not also acting (Hughes 1999). 

By analogy, we can measure the ratio of the substitu-

tions per site in binding sites (Kb) and intervening sites 

(Ki) in regulatory regions, with the same interpretation 

of results. In a number of well-characterized 

cis-regulatory regions, we can estimate this ratio: for 

DQB1 (0.03/0.077) and HLA-A (0/0.40) in primates, 

Kb/Ki = 0.39 and 0, respectively. For even-skipped 

(0.018/0.567) in Drosophila and leghemoglobin 

(0.254/0.853) in legumes, Kb/Ki = 0.32 and 0.30, 

respectively (all unpublished results). These and other 

limited results (Dermitzakis and Clark 2002; Moses 

et al. 2003) support the idea that negative selection 

plays a major role in the conservation of functional 

regulatory sequences, as it does in coding regions. If no 

determination of the binding site nucleotides can be 

made, one can still compare the entire inferred 

regulatory region to some neutral standard such as 

synonymous mutations in the adjacent coding region 

(Kohn et al. 2004; Wong and Nielsen 2004). Although 

classed tests of this form are generally weaker and tell us 

about selection at a much coarser scale, they still provide 

evidence of both positive and negative selection on cis-

regulatory regions (Kohn et al. 2004; Andolfatto 2005). 

Tests that use different classes of sequences (such as 

Kb/Ki) to compare a presumed selected class of muta-

tions to a presumed neutral class of mutations come 

with some important caveats in the analysis of pro-

moters. First, because functional cis-regulatory 

sequences are often only characterized in a single 

species, assignment of functional homology to a set of 

homologous nucleotides in species comparisons is not 

always warranted (e.g., Moses et al. 1990). Experimen-

tally verified binding sites present in a well-studied, fo-

cal species may be absent in other species; conversely, 

sequences with no known function in the focal species 

may actually be binding sites in the other species used in 

a comparison. Both types of errors will lead to mis-

classification of nucleotides and to some error in esti-

mates of the strength and direction of selection. This 

mis-classification will also occur when regulatory 

regions have been incompletely characterized: many 

binding sites will be missed. 

A second caveat is that the genetic code of binding 

sites is unknown. We have little, if any, information on 

the effect on binding affinity of changes in binding sites. 

Although the classification of any change within a 

binding site as selected is therefore largely a hypothesis, 

it may be just as good as considering any amino acid 

change in a protein to be functionally relevant. Some 

up-and-coming technologies (e.g., Mukherjee et al. 

2004) hold the promise to elucidate the binding affinities 

of every nucleotide motif for every transcription factor, 

and thus to give us a genetic code for binding sites 

(Bulyk et al. 1999, 2001). Unfortunately, results so far 

reveal an additional complexity not often considered in 

coding regions: non-additivity of mutations (i.e., AAA 

and ATT have equivalent binding affinities, but not 

AAT; Benos et al. 2002). For evolutionary studies this 

implies that more distantly related sequences may 

actually function in a more similar manner. 

The third major caveat in applying classed tests of 

selection to promoter sequences concerns the manner 

in which positive selection acts. While repeated 

substitution of amino acids in a protein seems like good 

evidence for positive selection, it is harder to imagine 

how this might work in a promoter region. This follows 

from some important features of cis-regulatory 

sequences: binding sites are often not restricted to 

specific positions, binding sites arise through point 

mutation quite often, and multiple changes in a binding 

site often result in the complete loss of binding affinity 

(reviewed in Wray et al. 2003). None of these reasons 

preclude natural selection from acting in this manner, 

they simply suggest that instances where repeated 
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substitutions due to directional selection are detectable 

will be rare. We might imagine a situation, though, 

where selection acts to abolish multiple binding sites in 

a region (possibly after gene duplication and diver-

gence in expression domains). This may be a situation 

where an excess of binding site substitutions is easily 

detected. 

Given all of these caveats, there are in fact a few 

examples of positive selection being detected through a 

comparison of binding site substitutions to non-binding 

site substitutions. Most take advantage of within-species 

variation, and are covered below under Classed tests of 

multisite data, but we will examine two examples of 

interspecific comparisons here. The factor VII (F7) 

locus produces a coagulation factor important for 

proper hemostasis in humans. Hahn et al. (2004) 

sequenced the well-characterized cis-regulatory region 

of this locus in humans and the other great apes and 

showed that there were a disproportionate number of 

substitutions within binding sites only along the branch 

leading to humans. Kb/Ki was significantly greater than 

1 along this branch (Kb/Ki = 14.6), and hence there was 

good evidence for repeated positive selection as a force 

influencing the transcriptional regulation of F7 in 

humans. Recent population genetic analyses have 

confirmed this result (Sabater-Lleal et al. 2006). In a 

slightly different use of this type of test, Rockman et al. 

(2005) studied divergence in the cis-regulatory region of 

the prodynorphin (PDYN) locus in humans and other 

primates. Prodynorphin produces endogenous opiates 

with major effects on human behavior. The authors 

found five fixed differences along the lineage leading to 

modern humans within a 68-bp element known to affect 

the transcription of PDYN. This number of fixations is 

at least ten times as high as that expected from the rate 

of substitution in either the flanking non-coding DNA 

or the PDYN coding region, and likelihood-based tests 

showed it to be highly significant. Further population 

genetic and functional analyses confirmed the inter-

specific results (Rockman et al. 2005). 

Intraspecific analyses 

Population genetic studies of intraspecific variation 

have benefited from a long history of theoretical 

models that provide expectations under a variety of 

selective and demographic conditions (Fisher 1930; 

Haldane 1932; Wright 1969; Kimura and Ohta 1971; 

Nei 1987; Hartl and Clark 1997). Since the introduction 

of the neutral theory of molecular evolution 

(Kimura 1968; King and Jukes 1969), many population 

geneticists have focused on determining the expecta-

tions for variability under complete neutrality of 

mutations. These expectations have subsequently been 

used to construct statistical tests of the neutral 

hypothesis (e.g., Lewontin and Krakauer 1973; Watt-

erson 1977; Hudson et al. 1987; Tajima 1989; McDonald 

and Kreitman 1991; Fu and  Li  1993). Tests of neutrality 

(also referred to as ‘tests for selection’) rely variously 

upon the amount of differentiation between sub-pop-

ulations, the amount of variation at a locus relative to 

divergence, the frequency distribution of variants, and 

the ratio of selected to selectively neutral variation. 

Some of the tests are comparisons to a theoretical dis-

tribution (e.g., Tajima 1989), and therefore often have 

their assumptions violated by demographic changes in a 

population, while others are relatively robust to non-

equilibrium situations because they compare different 

loci or classes of sites that are both subject to the same 

demographic forces (e.g., McDonald and Kreitman 

1991). The tests also vary in their statistical power to 

detect selection or in the types of selection that will lead 

them to reject the neutral hypothesis. 

For the analysis of cis-regulatory sequences, an 

important distinction between the various tests for 

selection is the amount of experimental evidence they 

require. Below I present three general categories of 

population genetic analyses that each requires a 

different level of experimental investment in order to 

be informative. As with any scientific endeavor, the 

more data available, the better; however, for 

researchers interested in taking advantage of the large 

amount of experimental and sequence data already 

available for many promoter regions, knowing both the 

advantages and the limits of the framework for statis-

tical inference will be invaluable. 

Non-classed tests of multisite data 

Non-classed tests of multisite data require the least 

investment in biochemical characterization of cis-reg-

ulatory sequences. In fact, no information on func-

tional regulatory sequences or selected and neutral 

classes of mutations is necessary for the most basic of 

inferences. The disadvantage of this lack of knowledge 

is that one has limited ability to identify which muta-

tions may be under selection, or even if the target of 

selection is definitively in the cis-regulatory region 

examined. The types of population genetic studies 

considered here all require sequences from multiple 

individuals in a species across hundreds or thousands of 

bases; individual tests may also require additional data 

as described below. 
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One of the simplest tests of neutrality is the HKA 

test (Hudson et al. 1987). This test relies on the fact 

that under neutrality levels of variability and 

divergence will be directly correlated due to a constant 

neutral mutation rate. The test uses a comparison of 

polymorphism to divergence at the locus of interest to 

identical comparisons at a locus or loci that are 

presumed neutral. The two main types of selection 

detected by the HKA test, recent directional selection 

(‘selective sweeps’) and balancing selection, are well-

illustrated using cis-regulatory examples. Genetic 

analyses have identified teosinte branched1 (tb1) as a  

major quantitative trait locus for modern corn 

morphology (Doebley et al. 1995). Sequencing across 

the coding region and upstream regulatory regions in 

domesticated maize, researchers found a greatly 

reduced level of polymorphism only in the cis-regula-

tory region, consistent with a selective sweep (Wang 

et al. 1999). Comparison to an outgroup showed that 

the coding and non-coding regions had roughly 

equivalent levels of divergence (in fact the non-coding 

DNA showed slightly higher levels of divergence), and 

thus the HKA test rejected the equivalence of the 

coding and regulatory regions. In this case, a reduced 

level of variation was attributed to (artificial) selection 

on regulatory variation at tb1 contributing to the corn 

phenotype, though there was no information on the 

identity of the nucleotide or nucleotides responsible 

for the change (which may lie far outside the region 

sequenced). Bamshad et al. (2002) studied polymor-

phisms in the 5¢ cis-regulatory region of the CC 

chemokine receptor 5 (CCR5) locus in humans. Regu-

latory variation at this locus is associated with varying 

susceptibility to HIV-1 and time to progression to 

AIDS (Bamshad et al. 2002). Sequencing of the CCR5 

promoter revealed disproportionately high levels of 

polymorphism relative to divergence, consistent with 

balancing selection acting to maintain multiple alleles. 

Comparison with variation and divergence at a number 

of other human loci led the HKA test to reject neu-

trality. Once again, the inference of balancing selection 

using the HKA test was made without any specific 

information about the position of binding sites or the 

phenotypic effects of particular alleles. And like the 

tb1 example, CCR5 shows very different patterns of 

evolution in the non-coding and coding regions: a 

partial selective sweep of a deletion allele in the 

protein-coding sequence is also detectable in European 

populations (Stephens et al. 1998). 

A number of tests of neutrality use predictions 

about the mutation frequency distribution (i.e., the 

number of mutations expected at particular frequen-

cies) to detect selection (e.g., Tajima’s D, Fu and Li’s 

D, F, D*, and F*; Tajima 1989; Fu and Li 1993). An 

excess of low-frequency mutations can be evidence for 

a recent selective sweep, and an excess of high-fre-

quency mutations can be evidence for balancing 

selection. Largely because these methods require data 

from only one locus, they are highly sensitive to 

demographic effects such as population bottlenecks, 

expansion, or subdivision. In addition, multiple types 

of selection may all give the same statistical pattern 

and will therefore be difficult to distinguish (Simonsen 

et al. 1995). Despite all of these problems, these tests 

are very popular because of their ease of use and 

statistical power, and when used carefully or in an 

analysis using many loci they can tell us much about 

both selective and demographic processes (see next 

section for more detail). Odgers et al. (2002) studied 

variation in the promoter of the Esterase 6 (Est6) locus 

in Drosophila melanogaster. Two main cis-regulatory 

haplotypes, differing at 14 nucleotide sites of unknown 

individual effect, were shown to differ in their ability to 

drive expression of Est6 in the male ejaculatory duct. 

Population surveys from around the world revealed a 

great excess of high-frequency mutations within most 

populations. Tajima’s D statistic and Fu and Li’s D and 

F statistics were positive and significant, consistent with 

balancing selection maintaining the two expression-

level haplotypes (Fu and Li’s D* and F* do not depend 

on outgroup sequences to polarize mutations, but have 

less power to detect selection as a result). Once again, 

these results did not require, but were certainly 

informed by, expression assays. 

Fay and Wu’s H statistic (Fay and Wu 2000) is  

similar to the previous statistics measuring the muta-

tion frequency distribution, but is most sensitive to the 

excess of high-frequency derived mutations that may 

‘hitchhike’ along with a selective sweep. Takahashi 

et al. (2001) mapped intraspecific differences in 

cuticular hydrocarbon pheromone levels to a 16-bp 

deletion in the cis-regulatory region of the desaturase 2 

(desat2) locus of D. melanogaster. Analysis of poly-

morphism surrounding this functional variant showed 

an excess of high-frequency derived mutations and a 

significant H test. These pheromones may be involved 

in mate choice in D. melanogaster, suggesting that this 

regulatory variant is under positive selection for 

signaling between the sexes (Takahashi et al. 2001). 

A third major category of statistical tests of 

neutrality using polymorphism data from across a locus 

aims to compare the age of an allele to its frequency. 

Because the variance in expected frequency of older 

alleles is quite large, these age-of-allele tests focus on 

detecting large increases in the frequency of relatively 

young mutations. These tests seek to identify an excess 
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of identical haplotypes that would result from an 

incomplete or ongoing selective sweep (e.g., Hudson 

et al. 1994; Slatkin 2000; Sabeti et al. 2002; Toomajian 

et al. 2003; Voight et al. 2006). The tests do not require 

any prior knowledge of selected mutations, though 

a posteriori identification of a haplotype of interest can 

lead to reduced power for statistical inference (Hudson 

et al. 1994). While age-of-allele tests are not easily 

represented by simple summary statistics, there are a 

handful of tests based on summary statistics that use 

expectations on the number of haplotypes observed 

given a number of polymorphisms to test for selection 

(e.g., Strobeck’s S, Fu’s Fs, Depaulis and Veuille’s H 

and K; Strobeck 1987; Fu  1997; Depaulis and Veuille 

1998). These summary statistics may be significant 

under similar selective conditions as age-of-allele tests: 

an incomplete selective sweep of a single allele and its 

associated haplotype may greatly reduce the total 

number of haplotypes in the population. 

Two examples of selection on functional cis-regula-

tory mutations may serve to better demonstrate the use 

of age-of-allele tests. The matrix metalloproteinase 3 

(MMP3) locus encodes an enzyme important for the 

degradation of extracellular matrix in humans. A single 

nucleotide insertion/deletion polymorphism in the 

promoter of this gene is associated with large differ-

ences in transcriptional output and has been shown to 

affect transcription factor binding (Humphries et al. 

2002). Rockman et al. (2004) studied variation in the 

frequency of this functional polymorphism in multiple 

human populations and across 11.9 kb of MMP3 in two 

populations. The single-mutation analysis (covered in 

detail below under Sect. ’Single-mutation tests’) 

showed that the deletion allele had risen to unexpect-

edly high frequencies among Europeans. Examination 

of the polymorphism data across the locus revealed 

that the deletion allele was also on a haplotype 

identical in 22 of 46 sequenced chromosomes in 

Europeans, even though there were 35 single nucleo-

tide polymorphisms among all the individuals. Hud-

son’s haplotype test (Hudson et al. 1994) uses 

coalescent simulations to give the probability of seeing 

22 identical haplotypes when 35 mutations are present 

in a genealogy; this test, as well as the summary 

statistic tests of total haplotype number, was highly 

significant for MMP3, supporting the hypothesis that 

the deletion allele has been under directional selection 

in Europe (Rockman et al. 2004). 

Hudson’s test requires relatively little sequence 

data: information on polymorphism is only needed at 

the locus of interest. Other age-of-allele tests require 

sequence data from multiple loci up to hundreds of 

kilobases away from the gene of interest in order to 

measure how far the selected haplotype extends (e.g., 

Sabeti et al. 2002; Voight et al. 2006). Sabeti et al. 

(2002) used their own extended haplotype homozy-

gosity (EHH) test to look for a selective sweep around 

a cis-regulatory polymorphism associated with protec-

tion against malaria in the TNFSF5 locus. Polymorphic 

sites up to 500 kb away showed linkage disequilibrium 

with the functional regulatory variant and showed 

significant EHH. This pattern is consistent with direc-

tional selection on the promoter variant causing an 

increase in frequency of its haplotype. 

Classed tests of multisite data 

As discussed earlier under Sect. ’Interspecific analy-

ses’, tests that compare classes of mutations (i.e., in 

binding vs. non-binding sites) come with several 

important caveats in analyses of non-coding DNA. But 

these types of tests can be very powerful in detecting 

selection on cis-regulatory polymorphism, and, unlike 

non-classed tests of neutrality, classed tests come much 

closer to identifying those mutations that are actually 

under selection. In order to classify mutations as being 

either within binding site nucleotides or in intervening 

nucleotides, some amount of biochemical character-

ization of the cis-regulatory region must be done. The 

simplest experiments consist of degradation of the 

promoter DNA after a nuclear extract has been 

washed over it to allow for transcription factor binding. 

These ‘footprinting’ assays allow the experimenter to 

identify those nucleotides that are protected from 

degradation by protein binding, and classification of 

nucleotides can be done (Carey and Smale 2000). 

However, it should be noted that proteins may often 

protect nucleotides beyond those necessary for binding 

simply because of their bulk. There may therefore be 

some mis-classification of nucleotides and mutations 

when footprinting is the only method used. 

The most common classed test of polymorphism 

data is the McDonald–Kreitman test (McDonald and 

Kreitman 1991). McDonald and Kreitman suggested a 

comparison of the ratio of polymorphism to fixed 

differences of synonymous and non-synonymous 

mutations. Under neutrality, the ratio of the number of 

non-synonymous to synonymous polymorphisms 

should be equal to the ratio of the number of non-

synonymous to synonymous fixed differences. An 

excess of non-synonymous fixed differences can then 

lead to a rejection of the neutral hypothesis without 

meeting the extremely restrictive criterion for detect-

ing positive selection using interspecific data alone, i.e., 

Ka/Ks > 1. This test has been used to test for an excess 

of within binding site substitutions by a number of 
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researchers (Jenkins et al. 1995; Ludwig and Kreitman 

1995; Crawford et al. 1999). [See also Jordan and 

McDonald (1998) for an interesting but incorrect 

application of this method to regulatory sequences.] 

Jenkins et al. (1995) studied variation in the cis-regu-

latory region of the fushi tarazu (ftz) locus in D. mel-

anogaster. They found an excess of fixed differences in 

nucleotides identified as being responsible for 

transcription factor binding relative to substitutions in 

non-binding sites. These results are consistent with 

repeated positive selection leading to the fixation of 

regulatory mutations. 

As discussed earlier, the McDonald–Kreitman test 

and tests of the form Kb/Ki are both liable to be slightly 

inaccurate because of mis-identification of nucleotides 

as binding or non-binding in the ingroup or outgroup 

species used (more closely related outgroup species are 

therefore better for these analyses). There are classed 

tests of neutrality, though, that do not depend on 

outgroup comparisons or the number of fixed 

differences. Hughes and Nei (1988) used the ratio of 

pairwise non-synonymous to synonymous differences 

per site within species, denoted pa/ps, to detect selec-

tion in mouse and human major histocompatibility 

(MHC) loci. The ratio of pa/ps was significantly greater 

than 1, suggesting the action of overdominant, 

balancing selection. Cowell et al. (1998) applied this 

logic to test for selection in variation within and be-

tween binding sites in the cis-regulatory regions of the 

same MHC loci. They found an analog of pa/ps in 

regulatory regions to be greater than 1, and therefore 

evidence for balancing selection, in mouse but not 

man. Their result and further research into this and 

related regions (Mitchison and Roes 2002; Tan et al. 

2005), suggests that selection is acting to maintain both 

multiple protein variants and multiple expression 

patterns at histocompatibility loci. 

Classed tests can also take advantage of deviations 

in the frequency spectrum of mutations to detect 

selection, while controlling for demographic effects. 

Hahn et al. (2002) suggested comparing statistics such 

as Tajima’s D and Fu and Li’s D calculated separately 

for non-synonymous and synonymous polymorphisms; 

demographic processes will affect both types of muta-

tions, but certain forms of selection will only affect 

non-synonymous mutations. Their Heterogeneity test 

compares the observed difference in D statistics to 

differences generated by coalescent simulations to find 

the probability of seeing a difference as great as the 

one observed. Crawford et al. (1999) studied variation 

in the lactose dehydrogenase (Ldh-B) cis-regulatory 

region in the killifish, Fundulus heteroclitus. A cline 

in water temperature along the Atlantic coast 

corresponds with differences in expression level of 

Ldh-B. Application of the Heterogeneity test to the 

promoter sequence of this locus (D. Crawford, per-

sonal communication) reveals a highly significant dif-

ference in frequency spectra between binding and non-

binding mutations: Tajima’s D among non-binding 

mutations is –1.61, while among binding mutations it is 

+1.31. A pattern of high-frequency mutations consis-

tent with balancing selection and concordant with the 

environmental cline is thus revealed, despite a back-

ground allele frequency spectrum that is skewed to-

ward low-frequency mutations. 

Single-mutation tests 

The final type of test of the neutral hypothesis requires 

frequency data among sub-populations on a single 

mutation of interest and on several selectively neutral 

loci. Tests are then structured to compare differentia-

tion among sub-populations at the mutation of interest 

to the differentiation at neutral loci. Biochemical 

characterization of the focal cis-regulatory region can 

be limited to showing that the alleles at the site of 

interest differentially bind a transcription factor 

through electromobility shift assays. Or, if there are 

only a few non-coding mutations, this type of test offers 

the opportunity to distinguish the mutation contribut-

ing to differences in fitness with little experimental 

evidence. 

The level of differentiation in allele frequencies 

between sub-populations can be measured by FST 

(Wright 1951). Low values of FST indicate little 

population differentiation, while high values indicate 

large amounts of differentiation. High FST values can 

indicate positive selection driving changes in allele 

frequencies in individual populations, while low values 

can indicate balancing selection maintaining allele 

frequencies between populations (Lewontin and 

Krakauer 1973). The amount of differentiation 

expected between populations in the absence of natu-

ral selection is a function of the time since divergence 

and the effective population size. As such, there is no 

one value of FST that indicates whether natural 

selection has acted between various populations 

without knowledge of the expected variation due to 

drift. In order to assess the role of natural selection in 

causing differences in frequency between populations, 

therefore, one can compare the FST at a functional 

regulatory site to a distribution of FSTs among neutral 

variants genotyped in the same individuals. This type 

of single-mutation test has been previously used for 

inferring selection in coding regions (Karl and Avise 

1992; Taylor et al. 1995). Researchers have also used 
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analytical and simulation methods to identify loci with 

unusually high or low levels of differentiation (Bow-

cock et al. 1991; Beaumont and Nichols 1996), or have 

simply aimed to identify loci in the tails of a large 

distribution of FSTs (Akey et al. 2002). 

Application of single-mutation tests of differentia-

tion to cis-regulatory mutations has revealed a 

number of loci undergoing local adaptation or 

balancing selection among populations (Bamshad 

et al. 2002; Hamblin et al. 2002; Rockman et al. 2003; 

Hahn et al. 2004; Rockman et al. 2004; Rockman 

et al. 2005); here I will discuss two examples of this 

type of analysis. Hamblin et al. (2002) studied 

variation at the Duffy (FY) blood group locus. A 

single cis-regulatory nucleotide mutation eliminates 

expression of FY and confers resistance to malaria 

(Tournamille et al. 1995). The site of the null-

expression allele, which is fixed in sub-Saharan Africa 

but is at extremely low frequencies in all other 

populations, shows an FST higher than that found in 

the surrounding sequence and in ten non-functional 

non-coding regions scattered throughout the genome. 

There is thus good evidence for local adaptation of 

human sub-populations to the malarial selective agent 

through selection on this mutation (Hamblin and Di 

Rienzo 2000; Hamblin et al. 2002). Rockman et al. 

(2003) studied a polymorphism in humans whose 

derived allele creates a new binding site in the 

cis-regulatory region of the Interleukin-4 (IL4) locus. 

This added binding site increases inducibility of 

expression of IL4 and leads to faster reactions to im-

mune system challenges by foreign bodies. While in-

creased inducibility is favored when the body is 

challenged by harmful pathogens (HIV positive indi-

viduals show increased survival with the added binding 

site; Nakayama et al. 2002), the body may over-react to 

harmless foreign bodies (asthma and atopic dermatitis, 

among other diseases, are associated with the added 

binding site). Rockman et al. (2003) examined the dif-

ferentiation among multiple human populations of this 

functional regulatory polymorphism as well as 18 

mutually unlinked single nucleotide polymorphisms 

located far from any protein-coding region. Compari-

son of FST at the site of interest to the neutral FSTs 

revealed a patchy pattern of local selection: certain 

populations showed increases in frequency of the 

derived allele well beyond the extent of neutral chan-

ges, while other populations showed little change. This 

pattern may indicate differing trade-offs in selective 

benefits of the new binding site among human popula-

tions (see also Sakagami et al. 2004). 

Conclusions and future directions 

Despite the many challenges inherent in studying the 

effects of natural selection on non-coding DNA, a large 

body of work on this topic is rapidly accumulating. 

Population genetic studies of cis-regulatory variation 

have now revealed rich and varied histories of adapta-

tion for a number of loci, and have been able to link 

selective and phenotypic effects for a subset of these. 

Studies of non-coding DNA will not only enable us to 

complete our accounting for the effects of selection 

across every nucleotide of a genome, but has also 

revealed novel forms of selection (e.g., selection against 

spurious binding sites; Hahn et al. 2003) and types of 

mutations not before considered functional (e.g., 

microsatellites acting as binding sites; Rockman and 

Wray 2002). 

Statistical tests of neutrality that have been tradi-

tionally used on coding regions can also be used on non-

coding regions as long as several caveats are considered. 

An understanding of the way cis-regulatory DNA 

interacts with transcription factors and co-factors, and 

the limits of molecular biology for teasing apart these 

interactions, is important for understanding the appro-

priate application of these tests. For the near future the 

standard of evidence for demonstrating selection on 

non-coding regions will be higher than for coding; there 

are several very good examples of rejections of the 

neutral hypothesis in non-coding regions not discussed 

here because it is not clear that regulatory sequences 

are the actual targets of selection (e.g., Makova et al. 

2001; Fullerton et al. 2002; Wooding et al. 2002; 

Bersaglieri et al. 2003; Macdonald and Long 2005). 

While conservative assessments of the location of 

selected nucleotides are warranted until a 

better understanding of promoter structure and func-

tion is gained, it is almost certainly true that a significant 

number of studies of coding regions have actually 

detected the signature of selection on flanking 

cis-regulatory sequences. There are also some very 

compelling studies of functional regulatory variation 

with obvious selective effects, but for which either full 

population genetic studies have not been done (e.g., 

Bettencourt et al. 2002; Daborn et al. 2002) or where the 

action of natural selection cannot be confidently as-

signed to a specific locus or mutation (e.g., Nurminsky 

et al. 1998; Michalak et al. 2001; Olsen et al. 2002; Oota  

et al. 2004; Schlenke and Begun 2004). Future avenues of 

population genetic research into cis-regulatory variation 

may seek to construct statistical tests of neutrality spe-

cifically for non-coding features (such as microsatellites). 
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The accumulation of data on cis-regulatory variation 

means that we may soon see consistent differences 

between selection on coding and non-coding regions, 

and that we will start to be able to make generaliza-

tions about the evolution of non-coding DNA itself. 

For instance, the proportion of functional nucleotides, 

and the effects of selection, in 5¢-flanking, 3¢-flanking, 

and intronic regions containing transcription factor 

binding sites is an outstanding question in studies of 

transcriptional regulation (Wray et al. 2003). Several 

methods may begin to reveal patterns of genome-wide 

variation in regulatory nucleotides. One promising 

method compares allele frequencies between popula-

tions at hundreds of thousands of loci across the 

genome, and therefore offers the opportunity to make 

generalizations about the differences between coding 

and non-coding differentiation (e.g., Akey et al. 2002; 

The International HapMap Consortium 2005). An-

other possible approach to revealing genome-wide 

patterns of selection on regulatory variation is sug-

gested by the method of Kern et al. (2002). These 

researchers looked at levels of polymorphism 

surrounding fixed differences in Drosophila simulans. 

Fixations driven by positive selection are expected to 

show reduced variation due to hitchhiking, and a 

comparison of fixations in different selective classes 

(e.g., non-synonymous vs. synonymous) may reveal 

significant differences in levels of surrounding varia-

tion. An application of this method to an organism 

(such as Homo sapiens) with many mapped regulatory 

regions will allow for a similar comparison of variation 

around fixations within and between binding sites. 

I have argued here that differences in cis-regula-

tory sequences are a large component of the relevant 

variation seen by natural selection. The important 

role for these differences in evolution was predicted 

by a number of prescient biologists who saw that 

modular control of transcriptional regulation had the 

power to decouple protein function from the context 

in which the proteins were expressed and used 

(Wallace 1963; Zuckerkandl 1963; Britten and 

Davidson 1969; Wilson 1975). Indeed, this decoupling 

may be responsible for the abundance of examples of 

local adaptation and balancing selection presented 

here: the ability to control discrete aspects of the 

expression profile may allow populations to fine-tune 

expression of proteins in order to adjust to varying 

biotic and abiotic environmental conditions. In addi-

tion, the decoupling of regulatory variation from 

protein function allows combinations of coding and 

cis-regulatory variation to be constructed such that 

particular activity variants of proteins (e.g., fast or 

slow catalysis) may be combined with particular 

expression variants (e.g., high or low expression) to 

fine-tune not only the overall expression level of 

proteins but the expression level of specific protein 

alleles (e.g., Romey et al. 1999, 2000). Future studies 

of regulatory variation will surely reveal further 

examples where this malleability in gene expression 

has facilitated the action of adaptive natural selection. 
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