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Abstract. Genetic networks show a broad-tailed 
distribution of the number of interaction partners per 
protein, which is consistent with a power-law. It has 
been proposed that such broad-tailed distributions 
are observed because they confer robustness against 
mutations to the network. We evaluate this hypoth-
esis for two genetic networks, that of the E. coli core 
intermediary metabolism and that of the yeast pro-
tein-interaction network. Specifically, we test the 
hypothesis through one of its key predictions: highly 
connected proteins should be more important to the 
cell and, thus, subject to more severe selective and 
evolutionary constraints. We find, however, that no 
correlation between highly connected proteins and 
evolutionary rate exists in the E. coli metabolic net-
work and that there is only a weak correlation in the 
yeast protein-interaction network. Furthermore, we 
show that the observed correlation is function-spe-
cific within the protein-interaction network: only 
genes involved in the cell cycle and transcription 
show significant correlations. Our work sheds light 
on conflicting results by previous researchers by 
comparing data from multiple types of protein-in-
teraction datasets and by using a closely related 
species as a reference taxon. The finding that highly 
connected proteins can tolerate just as many amino 
acid substitutions as other proteins leads us to con-

clude that power-laws in cellular networks do not 
reflect selection for mutational robustness. 
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Introduction 

Recent advances in the mathematical theory of ran-
dom graphs (Watts 1999; Watts and Strogatz 1998) 
have led to an explosion of research concerned with 
the architecture of biological networks (Albert et al. 
2000; Barabasi and Albert 1999; Bhalla and lyengar 
1999; Jeong et al. 2000, 2001; Wagner 2000, 2001; 
Wagner and Fell 2001; Watts 1999). This research has 
shown that the topology of many biological networks, 
including metabolic networks (Jeong et al. 2000; 
Wagner and Fell 2001) and protein-interaction net-
works (Jeong et al. 2001; Wagner 2001), share two 
important features. First, they have a small diameter, 
L, defined as the shortest path between network 
nodes, averaged over all nodes. Second, the frequen-
cy, P(D), of nodes with D immediate neighbors is a 
broad-tailed distribution consistent with a power-law, 
i.e., P(D)  D)c, with a constant c characteristic of the 
network (Jeong et al. 2000; Wagner and Fell 2001). 

The discovery of power-laws and small-worldness 
has given rise to an intriguing hypothesis relating 
large-scale network structure to mutational robust-
ness (Albert et al. 2000). This hypothesis rests on the 
observation that random node removal leaves the 
diameter of networks with power-law connectivity 
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largely unchanged. In a biological network, node 
removal corresponds to synthetic-null or gene-
knockout mutations. In contrast to networks with 
power-law connectivity, more homogeneous random 
networks respond to node removal with a rapidly 
increasing diameter (Albert et al. 2000). This striking 
structural stability has led to the suggestion that we 
observe networks with power-law connectivity in cells 
because of their robustness to random node removal 
(Albert et al. 2000; Jeong et al. 2000). However, 
power-law networks are extremely dependent on the 
small number of highly connected nodes: removal of 
these can lead to huge changes in network architec-
ture and diameter. 

Do small network diameters matter to cells? A 
possible advantage of small mean path lengths in 
metabolic networks stems from the importance of 
minimizing transition times between metabolic states 
in response to environmental changes (Edwards and 
Palsson 2000). Metabolic networks with small diam-
eters thus might adjust more rapidly to environmen-
tal change. Answering this question by direct 
experimentation, however, is currently impossible, 
for doing so would require comparing biological 
networks of different large-scale structure in vivo. 
Absent direct experimental tests showing whether 
genetic network diameter matters to organisms, one 
can still test key predictions of this hypothesis. One 
such prediction is that highly connected proteins 
should be more important to the cell and, thus, be 
subject to severe selective and evolutionary con-
straints. One way to test this prediction is to study the 
rate of evolution of proteins in these networks. We 
examine this rate in two genetic networks: the Sac-
charomyces cerevisiae protein-interaction network 
(Ito et al. 2001; Uetz et al. 2000; Wagner 2001) and 
the Escherichia coli metabolic network (Wagner and 
Fell 2001). 

Several recent papers have studied the relationship 
between a gene product’s position in protein-inter-
action networks and its rate of evolution. Using 164 
genes in the yeast protein-interaction network and 
their Caenorhabditis elegans orthologs, Fraser and 
coauthors (2002) found a weak negative correlation 
between protein distance and the degree of connec-
tedness of network proteins. Two recent analyses 
used the more closely related yeast S. pombe as a 
reference taxon but different protein-interaction data 
to construct networks (Fraser et al. 2003; Jordan et 
al. 2003a). Fraser and coauthors again found a sig-
nificant, though weak, negative correlation between 
network degree and rate of evolution. Jordan and 
coauthors, however, found no significant correlation 
in either their original analysis or their later corrected 
analysis (Jordan et al. 2003b). Below, we attempt to 
resolve this controversy using several reference taxa, 
including a very recent ancestor of S. cerevisiae, S. 

paradoxus (Kellis et al. 2003), as well as multiple 
types of protein-interaction data. 

Materials and Methods 

Constructing Cellular Networks 

Wagner and Fell (2001) represented the E. coli core metabolic 
network as a graph in which two proteins are connected if a re-
action product of one is a substrate for the other. In other words, 
proteins are connected if they share at least one metabolite. We 
define the connectedness, D, of a protein in this network as the 
number of proteins it is connected to. The resulting metabolic 
network is comprised of 237 distinct proteins with a range of 
connectedness, D, from 1 to 46 (Wagner and Fell 2001). 

In our analysis of the Saccharomyces cerevisiae protein-inter-
action network, our primary dataset (hereafter Pooled Data I) 
consists of three independent, large-scale datasets on pairwise 
protein interactions, two of which were generated using the yeast 
two-hybrid assay (Ito et al. 2001; Uetz et al. 2000). The third da-
taset was generated using various non-two hybrid techniques 
(Mewes et al. 1999). In our graph representation of this network, 
nodes (proteins) are connected to other proteins if they interact in 
vivo according to the experimental data. We define the connec-
tedness, D, of a protein as its number of protein interaction part-
ners. The protein-interaction data we use contain enormous 
amounts of experimental noise (Ito et al. 2001; Uetz et al. 2000; von 
Mering et al. 2002). However, the relevant feature of the network, 
the distribution of the number of interaction partners per protein, 
is robust. It is identical in all three datasets, and highly connected 
proteins in one dataset are also highly connected in the others 
(Wagner 2002). We are thus confident that the broad-tailed con-
nectivity distribution is not an artifact of experimental technique. 

For comparative purposes, we also study the filtered interaction 
dataset of von Mering and coauthors (2002; hereafter Pooled Data 
II), where we have accepted only interactions annotated with 
‘‘medium’’ or ‘‘high’’ confidence by these authors. This is a dataset 
very similar to that of Fraser and coauthors (2003) and includes 
information on pairwise protein interactions, as well as information 
on the composition of purified protein complexes (Gavin et al. 
2002; Ho et al., 2002). We also pooled two datasets from the high-
throughput spectrometric identification of purified protein com-

plexes (Gavin et al. 2002; Ho et al., 2002) for a third dataset, which 
is a subset of Pooled Data II. Self-interactions were excluded from 
the data of Gavin and coauthors, and we used the filtered data 
presented by Ho and coauthors. 

To compare the degree distributions of the protein complex data 
and Pooled Data II datasets to that of Pooled Data I, we used a 
maximum likelihood approach to fit each dataset to the continuous 
power-law distribution described by the probability density function: 

pðxÞ / x b; 1  x < 1; b > 1 ð1Þ 

To determine the significance of the differences in the power-law 
exponent b seen between datasets, we employed a likelihood ratio 
test. The test is based on comparing the likelihood of Pooled Data II 
and protein complex data under the constraint that these two da-
tasets have the same degree distribution as Pooled Data I, to the 
maximum likelihood estimate of the degree distribution for the two 
datasets. In terms of Eq. (1), we estimate the maximum likelihood 
value of b for Pooled Data I, referred to hereafter as bI. We then 
calculate the likelihood Lc of observing the Pooled Data II and the 
protein complex data with b fixed at bI. This constrained likelihood 
will never be greater than the likelihood L of observing either da-
taset when b is allowed to take on its maximum likelihood value. The 
ratio of the likelihoods L/Lc between the unconstrained (L) and the 
constrained (Lc) models is a measure of whether Pooled Data II and 

204 



the protein complex data follow a different degree distribution than 
does Pooled Data I. To gauge the statistical significance of L/Lc, we  
first simulate 10,000 sample degree distributions where b = bI. Each 
of these simulations has the same number of data points as either 
Pooled Data II or the protein complex data but follows the degree 
distribution of Pooled Data I. We then calculate L/Lc for these 
simulated datasets (because the simulations have finite size, the 
maximum likelihood estimate [MLE] for b in a simulation will al-
most never be exactly bI). Performing this calculation for all 10,000 
simulations yields a distribution of L/Lc, which indicates how much 
L may differ from Lc due only to chance. If L/Lc for our real data 
does not fall within the range of values seen in the simulations, then 
the two datasets have significantly different distributions. 

We discuss results in detail for Pooled Data I. However, we 
note that our results are qualitatively identical when separately 
considering each of the datasets contained within Pooled Data I. 

Estimating Evolutionary Rate 

We were interested in whether the connectivity (number of inter-
action partners) of a gene’s product affects that gene’s rate of se-
quence evolution. We used two related approaches to study this 
question. First, we identified genes in the yeast network with closely 
related duplicates and used the ratio Ka/Ks of amino acid replace-
ment to silent substitutions (Kimura 1977) to measure selective 
constraint. Specifically, we searched the genome of S. cerevisiae 
(Goffeau et al. 1996) for the nearest paralog (if any) of each gene in 
the yeast protein-interaction network (an intragenome search). The 
E. coli genome (Blattner et al. 1997) has too few duplicate genes for 
an intragenome analysis. Our second approach uses reference ge-
nomes to find orthologs of network genes in both the E. coli and 
the yeast networks. In S. cerevisiae we identified orthologous genes 
in the genomes of Schizosaccharomyces pombe (Wood et al. 2002) 
and Saccharomyces paradoxus (Kellis et al. 2003). For E. coli, we  
used Haemophilus influenzae (Fleischmann et al. 1995) as the ref-
erence species. We estimated the value of Ka, the rate of amino acid 
replacement substitutions for each pair of orthologs, allowing us to 
determine the correlation between Ka and protein degree. Because 
S. paradoxus and S. cerevisiae are very closely related (Kellis et al. 
2003), we were also able to estimate the synonymous distance (Ks) 
between orthologs for this comparison. To avoid mistaking gene 
duplicates for truly orthologous genes in all these between-genome 
comparisons, we retained only gene pairs where neither species 
contained any duplicates. 

We used our previously described tool, GenomeHistory (Co-
nant and Wagner 2002), to identify orthologs and paralogs. Ge-

nomeHistory uses gapped BLASTP (Altschul et al. 1997) to 
identify related genes which are globally aligned using ClustalW 
(Thompson et al. 1994). Ka and Ks are calculated by maximum 
likelihood estimation under the model of Goldman and Yang 
(1994). We accepted all BLAST hits with E-values less than 1 · 
10)8 for the S. cerevisiae–S. pombe/S. paradoxus comparison and 1 
· 10)7 for the E. coli–H. influenzae comparison. We further re-
quired 40% global amino acid identity between any two putative 
orthologs or paralogs. For the estimation of Ka and Ks, we re-
moved gap residues, calculated base frequencies separately at each 
codon position, and estimated the transition/transversion ratio 
from the data. 

Using the identified paralogs and orthologs, we calculated the 
correlation between evolutionary distance and the degree of protein 
connectivity (D). For the S. cerevisiae paralogs and orthologs in S. 
paradoxus, we calculated the correlation coefficients (both Pearson 
and Spearman) between Ka/Ks for the closest paralog and D using 
only unsaturated duplicate pairs with Ks < 3. For the remaining 
two sets of orthologs (S. pombe and H. influenzae) we calculated the 
correlation coefficients between Ka and D (using only pairs where Ka 

< 1). We were unable to use Ka/Ks ratios for the latter two analyses, 

as most Ks values showed saturation (see below). Excluding pairs 
with high divergence values (Ks > 3,  Ka > 1) not only avoids the 
high variances associated with estimating such values, but also 
serves to exclude spurious gene pairs where homology is uncertain. 

To determine if a relationship between selective constraint and 
degree of connectivity of yeast proteins depended upon protein 
function, we used a previously described high-level functional 
classification of the yeast genome (Conant and Wagner 2002) based 
on the Gene Ontology database (The Gene Ontology Consortium 
2000). This classification system groups annotations into 10 high-
level categories, which we have further reduced into five overall 
groups: (1) All Metabolism (includes Energy, Metabolism, and 
Protein Metabolism),(2) Cell Cycle/DNA Processing, (3) Cyto-
skeleton, (4) All Transcription (includes Transcription and Tran-
scription Factors), and (5) Transport. Using the S. paradoxus 
orthologs, we calculated the statistical association within these five 
groups between D and Ka/Ks. In addition, we repeated the above 
intra- and intergenome analyses excluding ribosomal proteins and 
found that so doing did not change our results (not shown). 

Significance tests for Pearson’s product–moment correlation 
require normally distributed data, an assumption violated by the 
broad-tailed distribution of the network degree, D (Wagner 2001; 
Wagner and Fell 2001). We thus adopted a permutation approach to 
test for significant correlations. Degree observations were randomly 
reordered with respect to evolutionary distances and the resulting 
Pearson and Spearman correlations calculated. The correlations 
from the original data were then compared to a distribution of 
correlations obtained from 10,000 permutations of those data. 

Identifying Gene Pairs with Saturated Synonymous 
Substitutions 

Saturation is a problem when estimating the fraction of synony-
mous substitutions, Ks, that occurred between two genes. Satura-
tion occurs when every synonymous site has undergone at least one 
substitution, and it makes accurate estimates of Ks impossible. 
However, because Ks gives only the average number of synonymous 
substitutions per synonymous site, it is misleading to speak of 
saturation occurring at a certain value of Ks (such as Ks = 1). 
Instead, one must also account for the degree of variation among 
sites and the sequence length. Analytical calculation of the prob-
ability of saturation is possible for simple evolutionary models such 
as the Jukes–Cantor model (Li 1997) but cannot be done easily for 
the codon-based models needed to calculate Ks. Instead, we use a 
heuristic saturation test. It relies on the fact that we have obtained 
maximum likelihood estimates of (MLEs) Ks, such that (for un-
saturated sequences) no other value of Ks will give a higher likeli-
hood than the MLE. Saturated sequences may have undergone an 
arbitrary number of substitutions and thus have no unique MLE 
value of Ks. Put differently, under saturation there should be no 
decrease in likelihood if the divergence (Ks) of two sequences in-
creases beyond the MLE estimate. This concept is illustrated in 
Fig. 1. In practice, two distinct cases of saturation must be dis-
tinguished. First, if two sequences are ‘‘exactly’’ saturated (such as 
genes whose sequence identity equals exactly 25%), then the like-
lihood, L, no longer changes past some critical value Ks. Second, if 
the sequences are ‘‘oversaturated,’’ such as when a (chance) nu-
cleotide identity of less than 25% is observed, then L will asymp-

totically increase as Ks approaches infinity (see Fig. 1B). We take 
advantage of these facts by calculating, for each sequence pair, the 
MLE Ks value (determined by numerical optimization and there-
fore always finite), as well as the likelihood of a Ks value 10 times 
larger. To use our numerical analysis method, we make the implicit 
assumption that the likelihood function is free of local maxima in 
the neighborhood of the MLE. If the likelihood of (10Ks) is greater 
than or equal to the likelihood of Ks, then we call a sequence pair 
saturated and exclude it from further analysis. 
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Results and Discussion 

The Yeast Protein-Interaction Network 

In the S. cerevisiae protein-interaction network, two 
proteins are neighbors if they physically interact in 
vivo. Our primary dataset consists of data (Pooled 
Data I; see also Materials and Methods) on such 
pairwise interactions from large-scale two-hybrid 
experiments (Ito et al. 2001; Uetz et al. 2000) and 
from experiments not using the two-hybrid approach 
(Mewes et al. 1999). We first calculated Ka/Ks (the 
ratio of amino acid replacement to silent substitu-
tions per site) between each network protein and its 
closest paralog in the yeast genome. Ka/Ks is the most 
reliable indicator of selective constraint on protein 
evolution because it accounts for mutation rate var-
iation among genes. For the paralog comparison, we 
used a total of 65 gene pairs, with 1 £ D £ 13 and 
0.006 £ Ka/Ks £ 0.74. Figure 2A shows that there is a 
weakly significant Pearson’s correlation between 
protein degree D and Ka/Ks but no significant 
Spearman’s correlation (Pearson’s r, )0.187, p = 
0.047; Spearman’s s, )0.151, p = 0.12). Using para-
logs for this analysis has shortcomings, including the 
fact that paralogs may diverge at different rates and 
that recent duplicates (rare in our data) diverge at 
rates different than old duplicates (Lynch and Conery 
2000). In addition, the range of D values in this da-
taset is quite small. 

To alleviate these shortcomings, we carried out 
complementary analyses using not paralogous but 
orthologous genes from various species. We first used 
the recently published genome sequence of the yeast 
species S. paradoxus, which is closely related to S. 
cerevisiae (Kellis et al. 2003). Use of this species al-
lows us to compare protein connectivity, D, to the 
ratio Ka/Ks for many more orthologous genes than 
the 65 paralogs above. Specifically, we identified 1393 

orthologous gene pairs with protein-interaction in-
formation from Pooled Data I. In these data, D 
ranges between 1 and 76, while Ka/Ks ranges between 
0.003 and 0.64. There was a weak but highly signifi-
cant correlation between D and the selective con-
straint (Ka/Ks) experienced by a gene (r, )0.10; s, 
)0.11; p < 0.0001 for both) (Fig. 2B and Table 1). 
(Comparing just Ka to D in S. paradoxus using 
Pooled Data I produces a similar Spearman correla-
tion: s, )0.10.) 

We also used a reference taxon other than S. 
paradoxus to compare our results with data recently 
presented by other researchers. Fraser and coauthors 
(2002, 2003), using either C. elegans or S. pombe as a 
reference taxon, found a weak but significant negative 
correlation between amino acid distance and D.These 
results are in contrast to those of Jordan and coau-
thors (2003a, b), who found no such correlation. We 
examined the relationship between D and amino acid 
distance (measured by Ka) in different protein-inter-
action datasets with S. pombe as a reference. Using 
our Pooled Data I, which includes no data from 
purified protein complexes, we found no relationship 
between D and Ka (r, )0.02 [p = 0.27]; s, 0.04 [p = 
0.17]; n = 605), a result in accord with Jordan and 
coauthors, who used a similar dataset. In contrast to 
these authors, Fraser and coauthors (2003) used data 
from multiple experimental methods including mass 
spectrometry of purified protein complexes in their 
analyses. We analyzed a similar dataset from von 
Mering and collaborators (2002; Pooled Data II), 
which contains both data on pairwise protein-inter-
actions and data from protein complexes. Analyzing 
1175 gene pairs from S. cerevisiae and S. pombe with 
this dataset, we indeed found a correlation similar in 
magnitude to that obtained by Fraser and coauthors. 
(r, )0.21; s, )0.22; p < 0.0001 for both). 

We are thus able to explain the discrepancy in 
results between Jordan and coauthors (2003a, b) and 
Fraser and coauthors (2002, 2003) by using slightly 
different protein-interaction datasets. The reference 
taxon used by both of these groups, S. pombe, is less 
than ideal because it is only a distant relative of S. 
cerevisiae, with a most recent common ancestor 0.3– 
1.3 billion years ago (Wood et al. 2002). We thus 
repeated the analysis with the much more closely re-
lated S. paradoxus as the outgroup. In addition to the 
identification of many more orthologs, use of S. 
paradoxus allows us to control for mutation rate bi-
ases among genes by using the ratio Ka/Ks instead of 
simply Ka. Pooled Data II (cf. Fraser et al. 2003) 
again yields significant correlations (r, )0.14; s, 
)0.24; p < 0.0001 for both) (Fig. 3A and Table 1) 
that are stronger than that using our Pooled Data I 
(r, )0.10; s, )0.11; p < 0.0001 for both; see also 
Table 1). The major difference between Pooled Data I 
and Pooled Data II is the inclusion of protein inter-

Fig. 1. Diagrammatic view of the principle upon which our heu-
ristic test for saturation in Ks is based. A In cases where Ks is not 
saturated, there exists a distinct likelihood maximum which can be 
identified numerically. B When synonymous substitutions have 
saturated, the likelihood will remain constant or actually increase 
(the illustrated case) as Ks approaches infinity. 
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actions from purified protein complexes in the latter. 
We therefore estimated the statistical association of 
Ka/Ks and connectivity, D, when D was computed 
strictly from the protein complex data of Gavin and 
coauthors (2002) and Ho and coauthors (2002) in-
cluded in Pooled Data II. These data suggest a 
stronger (Spearman’s) association than does our 
Pooled Data I (r, )0.04 [p = 0.18]; s, )0.14 [p < 
0.0001] (Table 1). Figure 3 illustrates the effect of 
using either Pooled Data II or just the protein com-
plex data (compare to Fig. 2B). We conclude that the 
strong correlations seen by Fraser and coauthors 
(2002, 2003) and our own analyses of Pooled Data II 
data are due at least in part to the inclusion of data 
from purified protein complexes. 

Mass spectrometry assays such as those of Gavin 
and coauthors (2002) and Ho and coauthors (2002) 
identify all members of a protein complex, rather 
than direct interactions between two proteins. Such 
data are less appropriate for our analysis because 
many member proteins of a large complex need not 

interact directly and because any one protein need 
not interact with a large number of other proteins to 
be part of a large complex. We also note that distri-
butions of protein-interaction connectedness have 
significantly different statistical properties if data 
from purified complexes are included. We calculated 
maximum likelihood estimates (MLEs) for the pow-
er-law exponent b for both Pooled Data I and Pooled 
data II, as well as for data stemming only from pu-
rified complexes (see Materials and Methods and Eq. 
[1]). The purified complex data and the Pooled Data 
II have b = 1.64 and b = 1.71, respectively, values 
significantly different from the MLE of our Pooled 
Data I (b = 2.74, p < 0.0001) (Table 1). Qualita-
tively, this implies that there are many more genes 
with a large number of interactions in the purified 
complex data, exactly as one would expect from such 
data. We suspect that analyses using protein-complex 
data may therefore overstate the magnitude of the 
association between evolutionary constraint and 
network connectivity. 

Fig. 2. Connectivity (D) in the yeast protein-
interaction network (Pooled Data I) vs. selective 
constraint (Ka/Ks) of a gene and (A) its nearest 
paralog or (B) its ortholog in the S. paradoxus 
genome. 

Fig. 3. Effects of dataset selection on the 
magnitude of statistical association between D 
and Ka/Ks (measured with S. paradoxus ortho-
logs). A Protein interaction data taken from the 
medium- and high-confidence interactions of 
von Mering and coauthors (2002; Pooled Data 
II). B Protein interaction data taken from mass 
spectrometry experiments on purified protein 
complexes (Gavin et al. 2002; Ho et al. 2002) 
included in Pooled Data II. 
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The E. coli Metabolic Network 

The E. coli core metabolic network encompasses the 
catabolic and biosynthetic metabolism central to the 
cell’s function. Wagner and Fell (2001) constructed a 
graph representation of this network in which genes 
are connected by an edge if the chemical reactions 
their products catalyze share at least one substrate. 
We measured Ka by comparing genes in the network 
to their orthologs in the closely related Haemophilus 
influenzae genome (see Materials and Methods). Of 
the 133 genes in the E. coli metabolic network with 
related genes in H. influenzae, we used only gene pairs 
that have no paralogs in either species. Figure 4 
shows the relationship between connectedness and Ka 

for the E. coli genes and their orthologs (Pearson’s r, 
)0.056; Spearman’s s, 0.146; n = 108; 1 £ D £ 41; 
0.111 £ Ka £ 0.731). Permutation analyses indicate 
that neither correlation is significant (r, p = 0.29; s, 
p = 0.067). 

This dataset includes many fewer genes than the 
protein-interaction comparisons and may, therefore, 
suffer from reduced statistical power. However, the 
lack of a correlation between selective constraint 
and degree of connectedness in the E. coli meta-
bolic network is consistent with the results of 
Fraser and coauthors (2002, 2003) for the protein-
interaction network. These researchers found that 
the weak negative correlation between evolutionary 
rate and protein connectivity was not due to the 
fact that highly connected genes are more impor-
tant to the organism but, instead, due to the 
greater proportion of a highly connected protein’s 
surface that is in contact with other proteins. In a 
metabolic network, where genes are connected not 

through physical contact but by shared metabolites, 
there should be no such effect. This is exactly what 
we observe. 

How Strong Is the Effect of Protein Connectivity on 
Selective Constraint? 

Many factors may contribute to differences in evo-
lutionary rates among genes. Rates may differ simply 
because of differences in structure or function; other 
candidate factors determining rates of evolution in-
clude physical position in the genome (Williams and 
Hurst 2000), expression level (Akashi 2001), and 
‘‘essentialness’’ (Hurst and Smith 1999), as well as the 
estimation errors introduced by gene length and GC-
content (Kumar and Subramanian 2002). This makes 
it difficult to measure the effects of a single factor on 
selective constraint. In order to determine the influ-
ence of several factors other than connectivity, we 
carried out two further analyses. First, we used an 
analysis of variance (ANOVA) for our primary yeast 
dataset, Pooled Data I, and for the E. coli data. Each 
ANOVA included degree of connectedness (D), co-
don adaptation index (CAI; a correlate of expression 
level [Akashi 2001]), gene length, and GC-content as 
separate effects in the model (all analyses carried out 
in JMP, SAS Institute, Inc.). Second, we broke the 
yeast Pooled Data I protein-interaction dataset into 
five major functional categories to see whether there 
were function-specific correlations (see Materials and 
Methods for details). 

As in the above analysis, only the yeast ortholog 
comparison showed a significant effect of protein 
connectedness on selective constraint in the ANOVA 
for Pooled Data I (S. cerevisiae–S. paradoxus [F = 
16.2, p < 0.0001], S. cerevisiae paralogs [F = 1.7, p = 
0.19], E. coli–H. influenzae orthologs [F = 0.05, p = 
0.82]). CAI and GC-content also had significant ef-
fects in the Pooled Data I ortholog comparison (CAI: 
F = 59.5, p < 0.0001; GC-content: F = 7.1, p = 
0.008), but only CAI was a significant effect in the 
other two comparisons (yeast paralogs: F = 4.56, p = 
0.037; E. coli–H. influenzae orthologs: F = 18.1, p < 
0.001). The fact that CAI is associated with evolu-
tionary constraint is not surprising, since it is known 
from a number of organisms that expression level and 
evolutionary rate are negatively correlated (Akashi 
2001). Degree of connectedness and CAI were sig-
nificantly correlated with each other in the E. coli 
metabolic network (r = 0.168, p = 0.08; s = 0.265, p 
= 0.006) (highly connected genes were expressed at 
higher levels), but they were not significantly corre-
lated in the yeast protein-interaction network. The 
full ANOVAs have controlled for many effects in 
attempting to detect the correlation between con-
nectivity and selective constraint; nonetheless, they 
explain very little of the variation in Ka/Ks. The R

2 

Fig. 4. Amino acid sequence divergence (Ka) from H. influenzae 
orthologs vs. connectivity (D) in the core intermediary metabolic 
network of E. coli (Wagner and Fell 2001). 
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for the full Pooled Data I S. cerevisiae—S. paradoxus 
ANOVA is 0.061; using only connectivity as an effect 
in the model gives an R2 = 0.01. 

Using S. cerevisiae–S. paradoxus orthologs taken 
from Pooled Data I, we separated genes by function 
and calculated individual correlations for five major 
categories: cytoskeleton, metabolism, transport, cell 
cycle/DNA processing, and transcription. Interest-
ingly, the relationship between network degree and 
evolutionary constraint is highly dependent on a 
gene’s function. Genes involved in metabolism, 
transport, and the cytoskeleton show no significant 
relationship between D and Ka/Ks (p always > 0.05) 
(see Table 2). However, genes involved in the cell 
cycle and transcriptional processes show a signifi-
cant, though weak, effect (s: )0.20 and )0.25) (Ta-
ble 2). The overall correlation that we observe for 
these data, therefore, is an average of these two 
cases, as the cell cycle and transcription correlations 
are higher than the overall correlation (s: )0.11) 
(Table 1). 

Is there any reason to expect certain functional 
categories to show stronger correlation than others? 
The connectivity distributions do not consistently 
differ between the categories (Table 2), so there do 
not appear to be systematic differences in the num-
bers of interactions the genes in each category take 
part in. One possibility is that the divergent roles 
proteins take on in the different categories are re-
sponsible for this disparity. For instance, the func-
tions of metabolic enzymes are defined by their 
specific interactions with small molecules, whereas 
the function of transcription factors and cell-cycle 
regulators often involves mediation of protein inter-
actions in larger protein complexes. In this context, it 
is surprising that cytoskeletal proteins do not show a 
strong effect, but we also note that these proteins 
constitute our smallest sample, rendering statistical 
inference more difficult. 

Are Highly Connected Proteins Especially Important 
to the Cell? 

Biological networks are extremely robust to perturba-
tion (Albert et al. 2000; Edwards and Palsson 2000; 
Hartwell et al. 1999; Jeong et al. 2001; Wagner 2000; 
Watts 1999). Both drastic environmental changes and 
loss-of-function mutations in a variety of genes often 
have no detectable effect on the phenotype of an or-
ganism, even if the lost gene is considered a priori to be 
important for cellular activity (Ross-Macdonald et al. 
1999; Smith et al. 1996; Winzeler et al. 1999). This ro-
bustness may be a function of a network’s architecture: 
broad-tailed distributions (such as power laws) of the 
number of interactors observed in genetic networks 
have been hypothesized to confer robustness against 
mutations (Albert et al. 2000). However, these net-
works are vulnerable to loss of highly connected nodes. 
Here we have tested the robustness hypothesis through 
one of its key predictions: highly connected proteins 
should be subject to greater selective constraint. The S. 
cerevisiae protein-interaction network shows evidence 
of a significant association, but its magnitude is small. 
The E. coli metabolic network shows no significant 
association. 

Table 1. Correlations between connectivity and selective constraint in yeast 

Dataset Source 
Experimental 
technique 

Number of 
genes Spearmans’s s a 

Power-law exponent 
(MLE) 

Pooled Data I Mewes et al. (1999), 
Ito et al. (2001), 
Uetz et al. (2000) 

Two-hybrid and 
non-two-hybrid 

1874 )0.11 (p < 10)4) 2.74 

MIPS Mewes et al. (1999) Various, no 
two-hybrid 

674 )0.13 (p = 0.002) 2.60 

Ito/Uetz Ito et al. (2001), 
Uetz et al. (2000) 

Two-hybrid 779/501 )0.07/)0.01 
(p = 0.04/0.45) 

3.68/2.37 

Pooled Data II von Mering et al. (2002) Two-hybrid and 
protein complexes 

2609 )0.24 (p < 10)4) 1.71 

Protein Complexes Gavin et al. (2002), 
Ho et al. (2002) 

Protein complexes 
identified by 
mass spectroscopy 

820 (combined) )0.14 (p < 10)4) 1.64 

a Spearman’s correlation of D and Ka/Ks, using orthologs from S. paradoxus. 

Table 2. Function-specific correlations between connectivity and 
selective constraint in the yeast protein-interaction network 

Functional 
classification 

Number of 
genes Spearman’s sa 

Power-law 
exponent 
(MLE) 

Cytoskeleton 49 )0.11 (p = 0.23) 2.76 
Metabolism 231 0.04 (p = 0.27) 2.92 
Transport 75 0.11 (p = 0.17) 2.08 
Cell cycle/DNA 
processing 

138 )0.20 (p = 0.008) 2.14 

Transcription 134 )0.25 (p = 0.002) 2.42 

a Spearman’s correlation of D and Ka/Ks, using orthologs from 
S. paradoxus. 
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We cannot completely exclude the possibility that 
genes in these two networks have acquired their 
functions (and numbers of network interactors) very 
recently, after the divergence of E. coli from H. in-
fluenzae or S. cerevisiae from S. paradoxus. In that 
case, estimates of selective constraint might reflect 
past rather than present function. However, the H. 
influenzae core metabolic network is likely very sim-
ilar to that of E. coli, not only because of their close 
evolutionary relationship, but also because core me-
tabolism is nearly universal among free-living non-
extremophiles (Edwards and Palsson 1999; Morowitz 
1992; Tatusov et al. 1996). In addition, 56% (133) of 
the genes in the E. coli metabolic network have a 
similar gene in H. influenzae. This percentage is much 
larger than the approximately 26% of genes shared 
overall between the two species (Blattner et al. 1997). 
S. cerevisiae is closely related to S. paradoxus and 
shares an even larger set of genes and interactions 
(Kellis et al. 2003). 

We have used Ka and Ka/Ks to test the prediction 
that highly connected genes are more important to an 
organism. That is, we have used these measures of 
evolutionary constraint (the number of mutations 
tolerable in a coding region) as indicators of the im-
portance of a gene. Of course, alternative indicators 
of importance are conceivable. For example, remov-
ing highly connected genes from a network may be 
more detrimental than removing less-connected 
genes, which could indicate the importance of highly 
connected genes. Evidence for this was obtained from 
gene knockout data and the protein-interaction net-
work from yeast, where Jeong and coauthors (2001) 
found that highly connected proteins are much more 
likely to be essential for survival than less-connected 
proteins. Using gene-knockout data to assess the 
importance of highly connected genes or proteins, 
however, has disadvantages. First, even apparently 
neutral knockouts may have subtle but undetectable 
fitness effects. In the huge populations characteristic 
of microbes like yeast, growth rate differences of 10)6 

between mutant and wild-type may be evolutionarily 
important, but chemostat experiments have difficulty 
resolving differences smaller than 10)3 (Dykhuizen 
and Hartl 1983). Second, laboratory experiments 
cannot assess fitness differences over the entire envi-
ronmental spectrum important for life in the wild. An 
apparently neutral knockout mutation in one envi-
ronment may have severe fitness effects in environ-
ments not easily re-created in the laboratory. For 
these reasons, we think that our results are a more 
accurate reflection of the importance of genes in a 
genetic network. Using a protein’s evolutionary rate 
takes advantage of an evolutionary record of muta-
tions experienced over millions of years, mutations 
whose effects manifested themselves in the environ-
ments the organism experienced during its evolution. 

Our results, as well those of others (Fraser et al. 
2002, 2003), show that a gene’s position in a network 
has only a very limited impact on its importance as 
defined by evolutionary constraints. There is some 
controversy as to the exact level of association, with 
Fraser and coauthors arguing for a stronger rela-
tionship in yeast than Jordan et al (2002a, b). We have 
shown here that the choice of protein-interaction da-
tasets matters when looking for correlations with 
distant reference taxa but that the choice of datasets 
has less of an effect when using more closely related 
organisms. Our analyses of multiple types of protein-
interaction data, using a more closely related reference 
taxon unavailable to earlier authors, come down 
somewhere in the middle of previous studies, with a 
very weak but statistically significant association (r or 
s » –0.1). Our results also show that the correlation 
between connectivity and evolutionary rate is func-
tion-specific: only certain functional classes of pro-
teins show a significant correlation. And they fail to 
support the claim that power-law connectivity in cel-
lular networks reflects selection for robust network 
diameters: analysis of a metabolic network, where 
genes do not physically interact, failed to show any 
correlation. What, then, can we learn from a purely 
qualitative, topological analysis of genetic networks? 
The work of Rausher and coauthors (1999) on anth-
ocyanin biosynthesis genes raises the possibility that a 
gene’s role in controlling flux through a metabolic 
pathway may determine its rate of evolution. This 
suggests that a gene’s position in a network, although 
uninformative on its own, may become informative 
when supplemented by additional biological infor-
mation. Future genetic network analyses that include 
details on enzyme kinetics and rates of flux across 
nodes may provide the information needed to better 
understand how the position, function, and interac-
tions of proteins are likely to influence which genes are 
targeted by natural selection. 

Acknowledgments. M.W.H. thanks M. Rausher, M. Rockman, 
M. Rutter, A. Sweigart, M. Uyenoyama, and R. Zufall for com-

ments and suggestions; an NSF Doctoral Dissertation Improve-

ment Grant provided support. G.C.C. is supported by the 
Department of Energy’s Computational Sciences Graduate Fel-
lowship program, administered by the Krell Institute. A.W. ac-
knowledges financial support through NIH Grant GM63882 and 
the Santa Fe Institute. 

References 

Akashi H (2001) Gene expression and molecular evolution. Curr 
Opin Genet Dev 11:660–666 

Albert R, Jeong H, Barabasi A-L (2000) Error and attack tolerance 
of complex networks. Nature 406:378–382 

Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller 
W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: A new 

210 



generation of protein database search programs. Nucleic Acids 
Res 25:3389–3402 

Barabasi A-L, Albert R (1999) Emergence of scaling in random 
networks. Science 286:509–512 

Bhalla US, lyengar R (1999) Emergent properties of networks of 
biological signaling pathways. Science 283:381–387 

Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley 
M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, 
Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, 
Mau B, Shao Y (1997) The complete genome sequence of 
Escherichia coli K-12. Science 277:1453–1462 

Conant GC, Wagner A (2002) GenomeHistory: A software tool 
and its application to fully sequenced genomes. Nucleic Acids 
Res 30:3378–3386 

Dykhuizen DE, Hartl DL (1983) Functional effects of PGI allo-
zymes in Escherichia coli. Genetics 105:1–18 

Edwards JS, Palsson BO (1999) Systems properties of the Hae-
mophilus influenzae Rd metabolic genotype. J Biol Chem 
274:17410–17416 

Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in 
silico metabolic genotype: Its definition, characteristics, and 
capabilities. Proc Natl Acad Sci USA 97:5528–5533 

Fleischmann RD, Adams MD, White O, et al. (1995) Whole-ge-

nome random sequencing and assembly of Haemophilus influ-
enzae Rd. Science 269:496–512 

Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW 
(2002) Evolutionary rate in the protein interaction network. 
Science 296:750–752 

Fraser HB, Wall DP, Hirsh AE (2003) A simple dependence be-
tween protein evolution rate and the number of protein-protein 
interactions. BMC Evol Biol 3:11 

Gavin AC, Bosche M, Krause R, et al. (2002) Functional organi-
zation of the yeast proteome by systematic analysis of protein 
complexes. Nature 415:141–147 

The Gene Ontology Consortium (2000) Gene Ontology: Tool for 
the unification of biology. Nature Genet 25:25–29 

Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann 
H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, 
Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG 
(1996) Life with 6000 genes. Science 274:563–567 

Goldman N, Yang Z (1994) A codon-based model of nucleotide 
substitution for protein-coding DNA sequences. Mol Biol Evol 
11:725–736 

Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From 
molecular to modular cell biology. Nature 402:C47–C52 

Ho Y, Gruhler A, Heilbut A, Bader GD, et al. (2002) Systematic 
identification of protein complexes in Saccharomyces cerevisiae 
by mass spectrometry. Nature 415:180–183 

Hurst LD, Smith NGC (1999) Do essential genes evolve slowly? 
Curr Biol 9:747–750 

Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) 
A comprehensive two-hybrid analysis to explore the yeast 
protein interactome. Proc Natl Acad Sci USA 98:4569–4574 

Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi A-L (2000) 
The large-scale organization of metabolic networks. Nature 
407:651–654 

Jeong H, Mason SP, Barabasi A-L, Oltvai ZN (2001) Lethality and 
centrality in protein networks. Nature 411:41–42 

Jordan IK, Wolf YI, Koonin EV (2003a) No simple dependence 
between protein evolution rate and the number of protein-
protein interactions: Only the most prolific interactors tend to 
evolve slowly. BMC Evol Biol 3:1 

Jordan IK, Wolf YI, Koonin EV (2003b) Correction: No simple 
dependence between protein evolution rate and the number of 
protein-protein interactions: Only the most prolific interactors 
tend to evolve slowly. BMC Evol Biol 3:5 

Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) 
Sequencing and comparison of yeast species to identify genes 
and regulatory elements. Nature 423:241–254 

Kimura M (1977) Preponderance of synonymous changes as evi-
dence for the neutral theory of molecular evolution. Nature 
267:275–276 

Kumar S, Subramanian S (2002) Mutation rates in mammalian 
genomes. Proc Natl Acad Sci USA 99:803–808 

Li W-H (1997) Molecular evolution. Sinauer Associates, Sunder-

land, MA 
Lynch M, Conery JS (2000) The evolutionary fate and conse-

quences of duplicate genes. Science 290:1151–1155 
Mewes HW, Heumann K, Kaps A, Mayer K, Pfeiffer F, Stocker S, 

Frishman D (1999) MIPS: A database for genomes and protein 
sequences. Nucleic Acids Res 27:44–48 

Morowitz HJ (1992) Beginnings of cellular life. Yale University 
Press, New Haven, CT 

Rausher MD, Miller RE, Tiffin P (1999) Patterns of evolutionary 
rate variation among genes of the anthocyanin biosynthetic 
pathway. Mol Biol Evol 16:266–274 

Ross-Macdonald P, Coelho PSR, Roemer T, Agarwal S, Kumar A, 
Jansen R, Cheung KH, Sheehan A, Symoniatis D, Umansky L, 
Heldtman M, Nelson FK, Iwasaki H, Hager K, Gerstein M, 
Miller P, Roeder GS, Snyder M (1999) Large-scale analysis of 
the yeast genome by transposon tagging and gene disruption. 
Nature 402:413–418 

Smith V, Chou KN, Lashkari D, Botstein D, Brown PO (1996) 
Functional analysis of the genes of yeast chromosome V by 
genetic footprinting. Science 274:2069–2074 

Tatusov RL, Mushegian AR, Bork P, Brown NP, Hayes WS, 
Borodovsky M, Rudd KE, Koonin EV (1996) Metabolism and 
evolution of Haemophilus influenzae deduced from a whole-
genome comparison with Escherichia coli. Curr Biol 6:279–291 

Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W: Improv-

ing the sensitivity of progressive multiple sequence alignment 
through sequence weighting, position-specific gap penalties and 
weight matrix choice. Nucleic Acids Res 22:4673–4680 

Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, 
Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-

Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vi-
jayadamodar G, Yang MJ, Johnston M, Fields S, Rothberg JM 
(2000) A comprehensive analysis of protein-protein interactions 
in Saccharomyces cerevisiae. Nature 403:623–627 

von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, 
Bork P (2002) Comparative assessment of large-scale data sets 
of protein-protein interactions. Nature 417:399–403 

Wagner A (2000) Mutational robustness in genetic networks of 
yeast. Nature Genet 24:355–361 

Wagner A (2001) The yeast protein interaction network evolves 
rapidly and contains few duplicate genes. Mol Biol Evol 
18:1283–1292 

Wagner A (2002) Estimating coarse gene network structure from 
large-scale gene perturbation data. Genome Res 12:309–315 

Wagner A, Fell D (2001) The small world inside large metabolic 
networks. Proc Roy Soc Lond Ser B 280:1803–1810 

Watts DJ (1999) Small worlds. Princeton University Press, Princ-
eton, NJ 

Watts DJ, Strogatz SH (1998) Collective dynamics of small-world 
networks. Nature 393:440–442 

Williams EJB, Hurst LD (2000) The proteins of linked genes evolve 
at similar rates. Nature 407:900–903 

Winzeler EA, Shoemaker DD, Astromoff A, et al. (1999) Func-
tional characterization of the S. cerevisiae genome by gene de-
letion ad parallel analysis. Science 285:901–906 

Wood V, Gwilliam R, Rajandream MA, et al. (2002) The genome 
sequence of Schizosaccharomyces pombe. Nature 415:871–880 

211 


