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Methods 

Here we discuss the details of the methods. We first explain how probabilistic 

graphical models (PGM) can be of use in the study of gene family evolutions. 

Then, we discuss how they can be used to perform hypothesis tests for gene 

families given their size in a number of species for which the phylogeny is known. 

Lastly, we explain how the gene families have been determined for the five 

Saccharomyces genomes used in this paper. 

Studying gene family evolution over a phylogeny using Prob-

abilistic Graphical Models 

A graphical model based on the phylogenetic tree 

Given the BD model for the evolution of gene family size, the topology of the 

phylogenetic tree, the branch lengths of this tree, and the evolutionary rate 

parameter λ, it is possible to calculate the conditional likelihood (conditioned 

on root species family size R = r) of any tree with fully specified gene family sizes 

at all descendant species: Σ = σ (where Σ is used as the set of random variables 

S for all species in the phylogeny; σ contains the particular assignments s to 

these random variables S in Σ). Indeed, this conditional likelihood can most 

conveniently be written in the following factorized way: 

P (Σ = σ|R = r) = 
 

S∈(Σ\L(R)) 

⎡ 

⎣ 
 

C∈C(S) 

P (C = c|S = s)

⎤ 

⎦ , (1) 

where P (C = c|S = s) is given by the BD model, with t the time elapsed 

between C and S (suppressed in the above equation for readability). We use 

the notation R for the random variable that is the root species’ family size; 

C(S) for the set of child species of a species whose gene family size is given by 
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the random variable S (see Figure 2), and L(S) for the set of random variables 

corresponding to the leaf species descending from the species whose gene family 

size is denoted by S. (Note that no probability distribution for the root species’ 

family size is given. This is why we can only compute the likelihood conditioned 

on the value r for R.) 

The factorization in Eq. (1) can be made more explicit by representing the 

probability distribution as a tree-structured directed PGM as in Figure 1, where 

every node corresponds to one of the nodes in the phylogeny, and the conditional 

probabilities associated with the arrows are given by the BD transition proba-

bilities. In this PGM, the root species corresponds to the root of the tree, the 

leaf species correspond to the leaf nodes, and a child species of another species 

corresponds to the child node of that other species’ node. 

We are thus able to compute the conditional likelihood of a given assignment 

of gene family sizes over an entire tree descending from a certain root species 

by simply computing the product of all BD probabilities corresponding the 

branches in the graphical model of Figure 1. This assumes that also the gene 

family sizes of the species corresponding to non-leaf nodes are specified. 

Computing the conditional likelihood 

However, we are generally not interested in the conditional likelihood of a com-

pletely specified phylogenetic tree Σ = σ conditioned on R = r. Rather, we want 

to know the likelihood of observing the data for the leaf nodes L(R) = (R) 

only—because this is what can be observed—conditioned on the root species’ 

size (here, L(R) is the set of leaf random variables that represent the family 

sizes of the leaf species descending from the root species; (R) is a particular 

given assignment of these gene family sizes). This can be computed by averag-
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ing over all possible assignments of unspecified internal nodes (except for the 

root node), a process called marginalization in the graphical models literature. 

Note that we still have to condition on the root species’ family size because no 

probability distribution is specified for it. However, we will see later how such 

conditional likelihoods still allow for the computation of very good estimates of 

the p-values, which is our main goal here. 

While the marginalization step involves averaging over a very large set of 

internal node assignments, namely a number exponential in the size of the tree, 

it is a nontrivial result of the theory of PGMs that these computations can 

be performed in a very efficient way, by resorting to algorithms referred to 

as the message-passing algorithm or the sum-product algorithm (see Jordan, in 

preparation; Pearl 1986, 1988). Concretely, our algorithm proceeds by recurring 

up to the root (i.e. until S = R): 

For S ∈ (Σ\L(R)) : 

P (L(S) = (S)|S = i) = 
 

C∈C(S) 

P (L(C) = (C)|S = i), 

and for C ∈ C(S) : 

P (L(C) = (C)|S = i) = 
 

j 

P (C = j|S = i) · P (L(C) = (C)|C = j), (2) 

with start conditions: 

for S ∈ L(R) : 

P (L(S) = (S)|S = i) = 

⎧ 
⎪⎨ 

⎪⎩ 

1 if i is the given gene family size of node S 

0 otherwise. 

The complexity of this algorithm is only linear in the size of the phylogenetic 

tree. Note that for a practical implementation of the algorithm, we need to 
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make the assumption that the maximal gene family size is limited (if not, the 

summation in Eq. (2) would contain an infinite number of terms). However, 

since the conditional probability P (C = j|S = i) associated with the BD model 

drops off steeply for increasing values of j, this assumption is very reasonable 

for a large enough upper limit. For the data studied in this paper, an upper 

limit of 100 was more than sufficient. 

Inferring λ 

Thus far we have assumed that the parameter λ was given. However, we can 

learn λ from the data using Expectation Maximization (EM) (Dempster et al. 

1977). Specifically, we equate λ to that value that maximizes the conditional log 

likelihood of the complete set of gene families in our dataset, which is the sum 

of the conditional log likelihoods of the individual gene families. Here, for each 

gene family, this log likelihood was conditioned on the root species family size 

that yields the largest value. (The root family sizes could actually be regarded 

as additional parameters to be inferred by the EM algorithm, thus motivating 

this approach.) As can be seen in Figure 2, the optimal value for λ is 0.002 per 

million years for the Saccharomyces phylogeny. 

Testing hypotheses about gene family evolution 

We have described how, conditioned on the family size of the root species, the 

likelihood for the family sizes of the given species can be computed. Of course 

in practice we do not know the actual value of the root node gene family size. 

To get around this problem, we could make the conservative choice to assign 

that value to it that leads to the largest conditional likelihood. Still, this is 

not sufficient to return an interpretable result for hypothesis-testing: a larger 

root family size will undesirably yield consistently lower likelihoods, since the 
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conditional probability distribution of a child node’s family size is more spread 

out for a larger parent family size (remember that the square of the variance is 

proportional to the parent family size: Var(X(t)|X(0) = s) = 2sλt). 

Therefore, in order to obtain interpretable results, we need to use p-values 

corresponding to these likelihoods, and not the likelihoods themselves. These p-

values signify the probability of observing a particular assignment of leaf nodes, 

or an even less likely one. In the next section we describe how this is done. 

P-values and conditional p-values for gene family evolution 

As discussed in the Methods section of the paper, we can use the PGM to cal-

culate p-values exactly conditioned on each value of the root node. We then 

choose the largest of these conditional p-values as our supremum p-value: an 

upper bound on the true p-value, which is conditioned on the true but unknown 

root family size. Unlike the calculation of conditional likelihoods, however, 

analytic calculation of conditional p-values requires a time exponential in the 

number of nodes in the tree. For the dataset presented here it was only border-

line feasible (several days of computation time using Matlab on a pentium 3GHz 

processor). Therefore, as a computationally faster alternative, we propose the 

following approximation method. 

The PGM defined by the BD model and the phylogenetic tree structure can 

be used to randomly generate leaf node gene family data starting from a given 

root family size. This can be done efficiently thanks to the tree structure of 

this PGM. Subsequently, for each of these random samples, the likelihood con-

ditioned on its (known) root family size can be computed efficiently using our 

method described above. In a preprocessing step, we did this a large number of 

times for each possible value for the root family size (up to size 100). As a re-
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sult, we obtained empirical estimates of the null distributions of the conditional 

likelihoods corresponding to leaf node assignments randomly generated from 

different root family sizes. Based on these empirical distributions, conditional 

p-values can be reliably and efficiently estimated by counting the proportion of 

these random samples that have a conditional likelihood lower than the one for 

the observed gene family profile, plus half the number of random samples that 

have an equal conditional likelihood. 

The result from the sampling procedure is very accurate when 1000 or more 

samples are taken. For the Saccharomyces data we investigated and using 1000 

samples, only four gene families with a true p-value upper bound below 0.01 

were not identified with the sampling method (their p-values were estimated to 

be 0.011 or 0.012). None of the gene families with a true p-value upper bound 

larger than 0.01 wrongly rejected the BD model. When using 10, 000 samples, 

which was still much faster than the analytic method, all estimated p-values 

were in agreement with the analytically computed p-values. 

To assess the tightness of the supremum p-value as an upper bound on the 

p-value, which is important for the sensitivity of our method, we can use the 

general fact that p-values of random samples from a null model are uniformly 

distributed on the interval [0, 1] (Casella and Berger 1990). (To be exact, a 

slightly different definition of p-value has to be adopted here, namely: the prob-

ability of observing a likelihood that is lower, plus the probability of observing 

the same likelihood multiplied by a random number sampled from the uniform 

distribution on the unit interval. While this definition is less suitable for use in 

our actual method, it does allow us to assess the tightness of the upper bound 

on the p-value.) As we can see in Figure 3, the supremum p-values for a set 

of randomly generated samples is indeed very close to uniformly distributed, 
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only slightly biased towards larger values. This means that the upper bound 

is tight enough for our purpose. (If it were not tight, the distribution would 

be strongly biased towards larger p-values.) Therefore, we can refer to the 

supremum p-value as the p-value. 

For the given yeast gene families, the distribution of the upper bounds on the 

p-values is given in Figure 4. Again, we note that their distribution is close to 

uniform, only slightly unbalanced, favoring larger values. 

Identifying the unlikely branch 

For the gene families that we have identified as unlikely under the BD model 

(i.e. the ones with a low p-value), we further want to identify the branch in the 

phylogenetic tree that is responsible for this violation. There are two ways of 

doing this. 

The first way is by computing a p-value corresponding to the likelihood of the 

pair of subtrees obtained by removing a branch in the phylogenetic tree, and this 

once for each branch. In effect, the p-value is computed under a reduced model, 

where total freedom is left to the parent-child transition along that removed 

branch. If after removing one of the branches the p-value becomes larger than a 

certain threshold level, this branch may be held responsible for the low p-value 

of the complete tree. Indeed, since removal of that branch results in a large 

p-value, the remaining part of the tree cannot reject the BD model. Again, an 

upper bound on the p-value is computed as the maximal conditional p-value 

(i.e. the supremum p-value), in this case conditioned on two root values—one 

for each subtree—instead of on one. As above, the conditional p-values can be 

estimated by random sampling. 
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The second method is similar, allowing λ to be optimally tuned (via EM) 

for each branch of the tree separately and calculating the likelihood of the 

data under this model. If the likelihood improves significantly when allowing a 

branch to vary, it is probable that this is the branch responsible for the model 

violation. Using a likelihood ratio test to compare likelihoods between models 

with an extra parameter for λ on a single branch and the standard model of 

one λ for the whole tree, we were able to identify the unlikely branches. As 

expected, both methods described returned the same predicted branch in all 

cases investigated in this paper. 

Identification of gene families in Saccharomyces 

Genome sequence assemblies for S. cerevisiae, S. paradoxus, S. mikatae, S. ku-

driavzevii, and S. bayanus were obtained from Saccharomyces Genome Database 

(SGD; see Cliften et al. 2003; Kellis et al. 2003). Predicted proteins were ob-

tained for S. cerevisiae from SGD and were generated for the rest of genomes 

using SNAP (Korf 2004) trained on S. cerevisae gene models. These protein 

sets were searched in an all-against-all fashion using SSEARCH (Pearson 1991; 

Smith and Waterman 1981) to generate a matrix of pairwise distances based 

on the normalized bits scores between all protein sequences. This matrix was 

input for the TRIBE-MCL algorithm (Enright et al. 2002; Van Dongen et al. 

2000), that then produced a set of clusters with members from some or all of 

the input species. TRIBE clustering works by applying a series of expansion 

and contraction operations to the graph represented by the matrix until equilib-

rium has been reached; the result is a transformed matrix which is partitioned 

into individual gene clusters that serve as input into our analyses. Because all 

genes are clustered together, irrespective of their species of origin, the output 

is an objective measure of gene family sizes in each species. The assignment of 
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protein function for each gene was done using HMMER (Eddy 1998) and the 

Pfam database (Bateman et al. 2004) and parsed with the Bioperl SearchIO 

module (Stajich et al. 2002). These methods result in 3517 gene families that 

have representatives in all of the Saccharomyces genomes. 
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Supplementary figure legends 

Figure 1: The graphical model associated with the Saccharomyces phylogeny. 

The root is denoted by the symbol R; a generic node is referred to as S; the set 

of leaf nodes of a node S (or R) is denoted as L(S) (or L(R)); the set of child 

nodes of a node labeled S is indicated by C(S). 

Figure 2: The log probability of the dataset as a function of the parameter 

λ. The optimum lies at λ = 0.002 (per million years). 

Figure 3: The cumulative distribution of the upper bound on the p-values of 

a set of randomly generated gene families that is similar to the given dataset 

(one random gene family is generated for every given gene family, with root 

node equal to the optimal root node for that given gene family). Note that 

the cumulative distribution is close to linearly increasing on the interval [0, 1], 

which corresponds to a uniform probability density function. This is indeed the 

theoretical distribution a p-value should follow. 

Figure 4: The cumulative distribution of the supremum p-values for the gene 

families studied in this paper. 
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Additional figures 
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Figure 1 
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Additional tables 

Table 1: This table shows all gene families identified as unlikely under the BD model. The first 

column gives the gene family name; the second column describes the gene family size among 

the five Saccharomyces species in Newick notation. The third column gives the branch that 

is predicted to be responsible for the overall low p-value of the family via the likelihood ratio 

test; Newick numbers in bold indicate the branch identified. The fourth column gives the 

resulting p-value after deleting the responsible branch as identified by method 1, and the last 

column gives likelihood ratio as computed in method 2. In three cases multiple gene families 

violating the BD model had the same observed family sizes; these are listed together. 

Family name Family sizes in Pred. Method Method 

Newick notation branch 1 2 

Stress response (15 (33 (24 (30 31)))) 1 7e-3 6e6 

Amino acid biosynthesis (3 (8 (6 (6 5)))) 1 0.15 36 

PGM/PMM (1 (3 (3 (2 1)))) 1 0.09 9.3 

Ribosomal L1 (1 (4 (1 (1 1)))) 2 0.66 4e3 

Elongation factor (1 (4 (2 (1 1)))) 2 0.18 46 

Chaperone (1 (4 (2 (2 1)))) 2 0.11 12 

Phosphatidylinositol 4-kinase (2 (9 (4 (2 2)))) 2 0.06 4e4 

Carbamoyl-phosphate syn-

thase 

(2 (6 (5 (3 3)))) 2 0.05 20 

Alpha/beta hydrolase (2 (2 (6 (2 2)))) 3 0.77 2e3 

Dihydrouridine synthase (1 (1 (6 (1 1)))) 3 0.67 6e4 

Type I phosphodiesterase (1 (1 (4 (1 1)))) 3 0.67 4e3 

Guanine nucleotide exchange 

factor 

(2 (2 (5 (2 3)))) 3 0.25 1e3 

DNA binding domain (2 (2 (5 (2 1)))) 3 0.20 2e3 

Ankyrin repeat (1 (2 (7 (1 1)))) 3 0.19 7e4 

- Unknown (1 (2 (4 (1 1)))) 3 0.19 82 

- Unknown 

Acetate transporter (2 (4 (5 (2 2)))) 3 0.13 29 

TruD (1 (1 (3 (1 2)))) 3 0.11 21 

Continued on next page 
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Table 1 – continued from previous page 

Family name Family sizes in Pred. Method Method 

Newick notation branch 1 2 

Unknown (1 (1 (3 (2 1)))) 3 0.11 21 

Flavodoxin (2 (3 (5 (1 1)))) 3 0.11 2e3 

Swi2/Snf2 ATPase (17 (20 (25 (18 15)))) 3 0.07 5e3 

GTPase-activating protein (2 (4 (6 (3 2)))) 3 0.05 71 

Maltose transport (4 (7 (8 (5 4)))) 3 0.04 17 

Trichothecene pump (5 (5 (7 (10 6)))) 4 0.30 6e3 

RNA polymerase Rpb1 (4 (3 (5 (7 4)))) 4 0.28 1e3 

ATPase (1 (1 (2 (3 1)))) 4 0.13 62 

MAL transcription factor (2 (5 (4 (7 4)))) 4 0.09 2e3 

Hydroxymethylpyrimidine 

synthesis 

(3 (5 (2 (7 4)))) 4 0.02 2e3 

Transposon (2 (8 (15 (34 83)))) 5 <1e-6 4e54 

Ribosomal protein (60S) (2 (1 (1 (1 3)))) 5 0.30 1e3 

eIF4E-associated protein (1 (2 (1 (1 3)))) 5 0.23 1e3 

Hydrolase (8 (11 (12 (11 7)))) 5 0.17 3e3 

Metal-dependent phosphohy-

drolases 

(1 (1 (2 (1 5)))) 5 0.12 2e4 

Sortilin (5 (4 (7 (4 8)))) 5 0.04 1e3 

Helicase (1 (3 (3 (2 34)))) 5 0.04 1e39 

NAD kinase (3 (1 (1 (2 4)))) 5 0.03 50 

Hydroxyisocaproate dehy-

drogenases 

(3 (1 (2 (1 3)))) 5 0.03 9.3 

ABC transporter (15 (18 (17 (12 8)))) 5 0.01 4e3 

Thiol oxidase (1 (1 (4 (2 3)))) 6 0.17 1e3 

Leucine rich repeat (4 (3 (1 (2 1)))) 6 0.11 38 

Flocculation (10 (6 (8 (11 14)))) 7 0.01 85 

Unknown (7 (16 (7 (20 17)))) 7 2e-6 4e5 

Transposon (17 (14 (15 (1 5)))) 7 2e-4 6e10 

Unknown (5 (11 (14 (4 2)))) 7 6e-6 2e6 

Continued on next page 
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Table 1 – continued from previous page 

Family name Family sizes in Pred. Method Method 

Newick notation branch 1 2 

HSP70 Chaperone (13 (17 (18 (12 13)))) 7 0.14 23 

- Transcription factor (1 (3 (3 (1 1)))) 7 0.17 37 

- Pol III transcription factor 

- Tor2p binding protein 

- Ribosomal SSU (40S) 

- Adenylate cyclase 

- RRM1 

Myosin (5 (9 (9 (5 5)))) 7 0.10 76 

Cation transport enzymes (8 (10 (13 (6 5)))) 7 0.04 2e3 

S-methyltransferase (2 (5 (5 (1 1)))) 7 0.07 3e3 

- PDRE transcription factor (1 (4 (4 (1 1)))) 7 0.04 3e3 

- Vacuolar membrane protein 

1,3-beta-D-glucan synthase (3 (8 (7 (3 3)))) 7 0.01 5e3 
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