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Comparison of whole genomes has revealed that changes in the size of gene families among organisms is quite 
common. However, there are as yet no models of gene family evolution that make it possible to estimate ancestral 
states or to infer upon which lineages gene families have contracted or expanded. In addition, large differences in 
family size have generally been attributed to the effects of natural selection, without a strong statistical basis for 
these conclusions. Here we use a model of stochastic birth and death for gene family evolution and show that it can 
be efficiently applied to multispecies genome comparisons. This model takes into account the lengths of branches on 
phylogenetic trees, as well as duplication and deletion rates, and hence provides expectations for divergence in gene 
family size among lineages. The model offers both the opportunity to identify large-scale patterns in genome 
evolution and the ability to make stronger inferences regarding the role of natural selection in gene family 
expansion or contraction. We apply our method to data from the genomes of five yeast species to show its 
applicability. 

[Supplemental material is available online at www.genome.org.] 

One of the major goals of evolutionary biology has been to iden-
tify the genetic changes underlying phenotypic differences be-
tween organisms, and to distinguish the evolutionary forces re-
sponsible for these changes. Past studies have necessarily focused 
on small numbers of nucleotide differences between orthologous 
genes, largely because of the technical limitations on DNA se-
quence collection. The recent sequencing of many whole ge-
nomes, however, has erased this limitation. Researchers may now 
focus on large-scale genomic differences between organisms that 
play an important role in adaptive evolution, including large 
changes in the size of gene families (e.g., Tatusov et al. 1997; 
Lander et al. 2001; Snel et al. 2002; Lynch and Conery 2003). 

While the newfound ability to observe gene family expan-
sions and contractions has stimulated many new hypotheses, we 
still lack a statistical framework that would allow for strong in-
ferences regarding gene family evolution. Especially interesting 
to evolutionary studies are the causes of changes in gene family 
size. Unlike the analysis of nucleotide sequence evolution— 
where there are well-accepted methods for testing for the action 
of natural selection (e.g., Yang and Bielawski 2000)—there are no 
such methods in the analysis of gene family evolution. Gener-
ally, researchers have ascribed large differences in gene family 
size between genomes to natural selection, without any consid-
eration of the expected difference in size due to random gene 
gain or loss over long periods of time (e.g., Oakeshott et al. 1999; 
Garczarek et al. 2000; Lander et al. 2001; Szathmary et al. 2001; 
Holt et al. 2002; Lespinet et al. 2002; Ranson et al. 2002; Copley 
et al. 2003; Lutfalla et al. 2003). While many of these differences 

may certainly be due to natural selection promoting the expan-
sion or contraction of gene family size, most are simple compari-
sons in which one species is found to have a larger or smaller 
number of genes. 

The inability to make statistical inferences about the role of 
natural selection in the evolution of gene family size may be due 
to the lack of a null model. With no expectation for how similar 
or different in size families are likely to be, researchers are unable 
to make probabilistic statements about observed disparities. 
While simple statements about the equivalence of two numbers 
can be made with tests of homogeneity (such as a 2), these tests 
do not take into account the time since divergence of two taxa. 
Observing a gene family with 100 members in one taxa and 50 in 
another is certainly striking if they have diverged for 5 million 
years, but if they have not shared a common ancestor for 250 
million years the biological significance of the difference is less 
obvious. In addition, when data are available on gene family size 
in more than two taxa, it would be informative to use phyloge-
netic relationships among the species to identify lineage- or 
branch-specific expansions and contractions (e.g., Lespinet et al. 
2002). A statistical model of gene family evolution that allows for 
both hypothesis testing and phylogenetic inference, therefore, 
would be very useful. 

We propose to use the well-studied stochastic birth and 
death (BD) process as a model for gene family evolution. Birth 
and death models have been widely studied in statistics (Darwin 
1956; Bailey 1964; Feller 1968), and have also found use in popu-
lation genetics and phylogenetics (e.g., Slatkin and Rannala 
1997; Sims and McConway 2003). The observation in multiple 
genomes that both gene family sizes and gene duplicate ages are 
approximately Poisson-Dirichlet distributed suggested that they 
could be explained by a random gain and loss process (Huynen 
and van Nimwegen 1998; Lynch and Conery 2000, 2003; Yanai 
et al. 2000; Qian et al. 2001; Karev et al 2002; Gu and Zhang 

6These authors contributed equally to this work. 
7Corresponding author. 
E-mail mwh@Indiana.edu; fax (812) 855-6705. 
Article and publication are at http://www.genome.org/cgi/doi/10.1101/ 
gr.3567505. 

Methods 

15:1153–1160 ©2005 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/05; www.genome.org Genome Research 1153 
www.genome.org 

https://www.genome.org
https://www.genome.org
http://www.genome.org/cgi/doi/10.1101
mailto:mwh@Indiana.edu
https://www.genome.org


2004; Zhang and Gu 2004). Indeed, the first use of stochastic 
birth and death models for studying gene domain duplication 
and deletion was by Karev et al. (2002), and for studying gene 
duplication and deletion was by Reed and Hughes (2004) and Gu 
and Zhang (2004). Karev et al. (2002) showed that a random BD 
model explained the distribution of gene family sizes within a 
genome very well. Here we attempt to extend this approach to 
study divergence in gene families between species. It should be 
noted that stochastic BD processes are quite different from the 
conceptual model of gene birth and death used by Nei and col-
leagues to explain sequence similarity among closely linked gene 
duplicates (Nei et al. 1997). 

In this study we associate the evolution of a gene family over 
a phylogeny with a probabilistic graphical model (PGM). The use 
of such a PGM allows for probabilistic inferences on the rate and 
direction of change in gene family size. Furthermore, we show 
how this methodology can be used to identify those families and 
those branches that are evolving nonrandomly. We demonstrate 
the usefulness of our approach on the whole genomes of five 
closely related yeast species—Saccharomyces cerevisiae, S. para-
doxus, S. mikatae, S. kudriavzevii, and S. bayanus. 

Results 

Calculating the likelihood of gene family data 

In order to draw statistically motivated conclusions from gene 
family-size data in several related species, we use a probabilistic 
graphical model (PGM) (Lauritzen 1996; M.I. Jordan, in prep.) that 
represents the probability distribution over the observed gene fam-
ily data. By specifying a stochastic birth and death (BD) model and 
a prior distribution for the common ancestor (or root node), the 
graphical models machinery makes it possible to efficiently com-
pute the likelihood of the observed data by a process called mar-
ginalization (see Methods; Supplemental materials). By using this 
likelihood as a test statistic, a corresponding P-value can be com-
puted (see next section). In addition, the PGM approach provides 
a way to infer the most likely values of ancestral states. 

In this study we are interested in assessing the likelihood of 
gene families with respect to the BD model, independent of the 
unknown gene family size in the common ancestor. In other 
words, the prior on the root node value should be noninforma-
tive, and a natural choice seems to be the uniform distribution 
(cf. Felsenstein 1981). Unfortunately, even a uniform prior intro-
duces an undesirable bias here, similar to other cases in phylo-
genetics (e.g., Zwicki and Holder 2004). In our case the use of 
such a uniform prior consistently attributes larger likelihoods to 
smaller gene families (see Fig. 1). In addition, since the P-values 
presented in the next section are computed as the probability 
that a random gene family has a likelihood smaller than that of 
the observed gene family, a uniform prior would result in con-
sistently smaller P-values for large gene families. Other priors 
would introduce other biases, most often also favoring small 
gene families. 

An intuitive explanation for the bias we observe, which we 
refer to as the “large family bias,” is that a small family size in the 
common ancestor generally leads to small family sizes in the leaf 
species. The number of possible assignments from an ancestrally 
small gene family is relatively small, such that the likelihood of 
any individual assignment will be relatively large (since likeli-
hoods sum to one). Gene families that were large in the common 
ancestor, on the other hand, will give rise to many more out-

comes in the leaf nodes, and will thus tend to have smaller like-
lihoods and P-values for any individual outcome. 

In principle, one can compensate for this bias by using a 
prior that heavily favors large family sizes. However, this is hard 
to do in practice and theoretically unsatisfying (such a prior 
would have to be improper, meaning that it does not integrate to 
1). It may also be undesirable, as it relies on the assumption that 
small and large gene families evolve in similar ways—an assump-
tion we do not wish to make if it can be avoided. Therefore, we 
prefer to use an exact, if slightly more involved approach that 
solely depends on the relative sizes of the gene families in the leaf 
node species and avoids the use of a prior on the root family size 
by treating it as a nuisance parameter (see, e.g., Lindsey 1996; 
Demortier 2003). To achieve this, our method relies on condi-
tional likelihoods: likelihoods that are conditioned on a specific 
value for the root family size and can be computed just as effi-
ciently by a similar marginalization procedure. In the next sec-
tion we explain how these conditional likelihoods can be used to 
calculate conditional P-values. 

Apart from an efficient method to compute likelihoods and 
conditional likelihoods, PGMs make it possible to compute the 
most likely assignment of the unspecified internal nodes; here, 
the ancestral gene family sizes. The algorithm is a variant of the 
marginalization procedure and is known in the graphical models 
literature as the max-product algorithm. For more details, we 
refer the reader to the relevant literature (e.g., Pearl 1988; M.I. 
Jordan, in prep.). 

Furthermore, our framework also makes it possible to esti-
mate the maximum likelihood value of , the birth and death 
rate parameter for our phylogenetic tree. This parameter de-
scribes the probability that any gene will be gained or lost, and 
hence has a large effect on the rate of gene family evolution. In 
the Discussion we compare our estimate of  to the estimate of 
Lynch and Conery (2003) that was taken from just the S. cerevi-
siae genome sequence, and show that the two are very close. 

Testing hypotheses about gene family evolution 

Often we wish to know how probable it is to observe gene family 
data under the null hypothesis of random change. Because the 

Figure 1. Here, we visually explain the “large family bias” problem. The 
solid line shows the likelihood of gene families with sizes (k(k(k(kk)))) as a 
function of k, for values of k from 1 to 50. The dashed line shows the 
average likelihood of gene families evolved from a common ancestor with 
family size equal to k. The average is computed over 100 random samples 
for each value of k. Clearly, the likelihoods for large gene families are 
consistently and significantly smaller. 
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BD model uses information about the time in the phylogenetic 
tree and the birth and death rates of genes, it offers an ideal null 
model for hypothesis testing. Using a BD model in this way 
makes it possible to identify gene families that have undergone 
unusual expansions or contractions. This method furthermore 
enables us to identify the branch in the phylogeny upon which 
the unlikely change took place. 

As argued above, likelihoods or conditional likelihoods can-
not directly be used to identify unusual gene families, because 
larger gene families will by necessity result in lower likelihoods 
under a stochastic BD process (the “large family bias”). Instead, 
we can use our conditional likelihoods as test statistics to calcu-
late conditional P-values, each one conditioned on one of the 
possible root-node assignments. Such a conditional P-value is 
defined as the probability that a random gene family (with fixed 
root family size) has a smaller conditional likelihood than the 
given gene family. Then, because the true root-node value is un-
known, we conservatively pick the largest conditional P-value, 
which we can show to represent a tight upper bound on the true 
P-value in our problem (see Methods; Supplemental material). 
Such an upper bound on the P-value is called a supremum P-
value in statistics, and it is often used for composite hypothesis 
testing with one or more nuisance parameters (Lehmann 1959; 
Demortier 2003). Because of its tightness as an upper bound in 
our problem, we refer to the supremum P-value as simply the 
P-value in the remainder of this study. In the Methods section we 
show how it can efficiently and accurately be computed using a 
sampling procedure. 

Furthermore, we propose two methods to identify the 
branch in the phylogeny upon which nonrandom changes oc-
curred (for families with a low P-value). Our first method com-
putes a P-value corresponding to the observed data after the de-
letion of one branch in the PGM, and this once for each branch 
(for each gene family). If, after the deletion of a branch, the 
resulting P-value rises above some threshold P-value (0.01 here), 
then the branch that was cut is implicated in nonrandom evo-
lution. Our second method uses a likelihood ratio test to compare 
a model allowing the  parameter to vary along each branch 
singly to the model with one  for the whole tree (see Methods; 
Supplemental materials). It is notable that, in all cases, the 
branch with the largest likelihood ratio was also the branch that 
yielded the largest P-value after cutting it, as computed by the 
first method. 

Global view of Saccharomyces gene family evolution 

We used the machinery described above to study the evolution of 
gene family size in five whole fungal genomes. To our knowl-
edge, the five sequenced Saccharomyces genomes are the best ex-
ample of a closely related group of eukaryotes, where multiple 
whole genomes have been sequenced and where there is also a 
well-supported phylogenetic tree with branch lengths. 

The consensus phylogenetic tree of the five Saccharomyces 
species (Fig. 2) comes from the study of Rokas et al. (2003) that 
used 106 orthologous genes from each of the species, singly and 
by concatenation. The tree had 100% bootstrap support at every 
node. In Newick notation, the tree in Figure 2 is written (S. baya-
nus (S. kudriavzevii(S. mikatae(S. paradoxus S. cerevisiae)))). Branch 
lengths were inferred from the data in Rokas et al. (2003) and 
Kellis et al. (2003). They are indicated in Figure 2 as time, t, in  
million years. We estimated the evolutionary rate parameter  as 
0.002 per million years (see Supplemental materials). 

To define gene families, we took all of the genes in all five 
species together and generated a pairwise matrix of distances 
among genes (see Supplemental materials). We then clustered 
genes using the TRIBE-MCL algorithm (Van Dongen 2000; En-
right et al. 2002), and counted the number of genes in each 
family that came from each species. By clustering all of the genes 
at the same time, we are able to confidently compare the size of 
families between genomes. 

In the 32 million years since the most recent common an-
cestor of the five species, 1254 of the 3517 gene families shared 
among them have changed in size; the remaining set are mono-
morphic across the tree (of course, equal numbers of losses and 
gains in any single gene family will be unobservable). Using our 
PGM we were able to infer the most likely ancestral gene family 
sizes for all of these gene families. This makes it possible to count 
changes in gene family size on all eight branches of the tree, and 
enables us to infer their direction by a comparison of the species 
at the top and bottom of each branch in the tree. Expansions 
outnumbered contractions on four of the eight branches, and 
contractions outnumbered expansions on the remaining four. 
Table 1 shows the number of families that expanded, contracted, 
or stayed the same on each branch of the tree. 

We can see that along branches 2 and 3, leading to S. kudria-
vzevii and S. mikatae, many more families have expanded than 
contracted. Concomitant with this, these two genomes have 
more genes (7144 and 7236) than any of the other three (6265, 
6128, and 6700 for S. bayanus, S. paradoxus, and S. cerevisiae; see 

Figure 2. The phylogenetic tree. Branch lengths t are given in millions 
of years. The branch numbers used in this study are shown in circles. 

Table 1. The number of gene families that showed an expansion, 
no change, or a contraction along the eight branches, according 
to the most likely assignments of the gene family sizes of 
the ancestors 

Branch # Expansions 
No 

change Contractions 
Average 

expansion 

1 (t = 32) 97 3181 239 0.050 
2 (t = 27) 383 3032 102 0.095 
3 (t = 22) 509 2922 86 0.147 
4 (t = 12) 96 3383 38 0.019 
5 (t = 12) 44 3426 47 0.021 
6 (t = 5) 3 3491 23 0.005 
7 (t = 10) 10 3313 194 0.052 
8 (t = 5) 2 3515 0 0.001 

The first column contains the branch number, along with the length of 
the branch, t, in millions of years. The next three columns show how 
often an expansion, no change, or a contraction occurred along this 
branch. The last column shows the average gene family expansion 
among all families along each branch, where a contraction is counted as 
a negative expansion. 
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Methods). This correlation is likely due to the expanding gene 
families and not to some other aspect of genome evolution; the 
average gene family size is larger in S. kudriavzevii and S. mikatae 
than in the other three species (1.56 and 1.61 vs. 1.41, 1.43, and 
1.43). 

We can also examine the average change in gene family size 
along each branch (Table 1). Again, we see that branches 2 and 3 
have the largest positive changes of any branch, supporting the 
role of gene family expansion in genome expansion in these 
species. Though branch 5 (leading to S. cerevisiae) has slightly 
more contractions than expansions, the net change in family size 
is positive on average (0.021). Examining the data reveals the 
reason for this apparent contradiction: the RNaseH and helicase 
gene families have had huge expansions along this lineage (see 
Discussion). If we remove these two families, the average net 
change along this branch becomes negative (0.002). In general, 
however, most changes in gene family size are quite small, and 
the resulting average change is correlated with the number of 
expansions and contractions. 

Because an ancient genome duplication most likely pre-
ceded the common ancestor of these Saccharomyces species (Kellis 
et al. 2004), it may be that many of the patterns we see are due to 
differential loss of genes among lineages. If this nonequilibrium 
condition is correct, then many inferred expansions along one 
lineage or another may, in fact, be lineage-specific retention of 
specific families. Nonetheless, our identification of unusually 
evolving branches is still correct (see next section); it is only the 
process responsible for these deviations that remains a question. 

Identification of unusually evolving gene families in 
Saccharomyces 

As explained above, the PGM also allows us to compute P-values 
to identify gene families that are highly unlikely under the ran-
dom BD process. Of the 1254 gene families that differed in num-
ber between genomes, 58 had P-values <0.01 (35 are expected). 
The unlikely families are summarized in Table 2 and in the 
Supplemental materials, along with the specific branch that is 
responsible for the violation (when such a branch could be iden-
tified). The two methods that we used to identify the offending 
branch agreed in every case. 

Two of the most unlikely gene families in Table 2, where it 
seems difficult to explain the low P-value by just one branch, 
correspond to transposable elements (TEs). While it is interesting 
to see these large changes, transposable elements violate the as-
sumptions of the BD model in a number of ways and it can 
therefore be seen as a validation of our approach that they are 
identified as unlikely (see Discussion). Regardless of their lack of 
agreement with our model, the observation that one TE family 
has expanded and that one has contracted in S. cerevisiae suggests 
that there may be competition between these intracellular para-
sites (Leonardo and Nuzhdin 2002). 

One of the most interesting gene families identified by our 
method is the significant expansion of the flocculin family in the 
ancestor of S. cerevisiae and S. paradoxus, and the continuing ex-
pansion in S. cerevisiae (both likelihood ratio tests are significant). 
These genes are involved in yeast flocculation—the manner in 
which yeast come together in solutions. Flocculation is one of 
the most important traits that have been selected for in the do-
mestication of the brewer’s yeast, S. cerevisiae (Jin and Speers 
1998). Domesticated yeast fall to the bottom of tanks once all of 
the sugars have been consumed in any fermenting brew, avoid-

ing the need for any complicated removal; wild yeast species stay 
suspended in the liquid or flocculate too early (Jin and Speers 
1998). These phenotypes are largely affected by the flocculin 
gene family. 

Discussion 
In this study we have presented and evaluated a method for 
studying the evolution of gene families over a phylogeny. Based 
on data from multiple whole genomes, the method can be used 
to examine the rates and direction of change in gene family size 
among taxa. Our method also allows for hypothesis testing: we 
have shown how we can identify gene families that have had 
unlikely histories given a model of random gene birth and death. 
Importantly, the PGM methodology used here scales linearly 
with the number of new genomes added; the most challenging 
aspect of future analyses may simply be getting reliable phyloge-
netic trees for the species considered. This PGM approach is con-
ceptually similar to the maximum-likelihood approach taken by 
others to study the evolution of phenotypic quantitative charac-
ters (e.g., Mooers and Shluter 1998; Pagel 1999). As with simple 
Brownian motion approximations of the evolution of pheno-
typic characters, many mechanistic and biological aspects of 
gene duplication and loss are not directly addressed by the BD 
model; nonetheless, we think that our method is an important 
first step. 

Our analyses have revealed a large number of changes in 
gene family size across the Saccharomyces tree: 1254 of 3517 fami-
lies changed in size. Every branch of the phylogeny was inferred 
to have changes along it, with longer branches having commen-
surately more changes (Table 1). One concern we had prior to our 
analysis was that the uneven sequence coverage of these five 
genomes would affect our results; this did not appear to be the 

Table 2. List of the most significant gene families identified as 
unlikely under the BD model 

Family name 
name 

Family sizes in 
Newick notation 

Predicted 
branch 

Likelihood 
ratio 

Stress response (15 (33 (24 (30 31)))) 1 6e6 
Amino acid 

biosynthesis (3 (8 (6 (6 5)))) 1 36 
PGM/PMM (1 (3 (3 (2 1)))) 1 9 
Ribosomal L1 (1 (4 (1 (1 1)))) 2 3e3 
Chaperone (1 (4 (2 (2 1)))) 2 47 
/ hydrolase (2 (2 (6 (2 2)))) 3 2e4 
Dihydrouridine 

synthase (1 (1 (6 (1 1)))) 3 6e5 
Trichothecene 

pump (5 (5 (7 (10 6)))) 4 6e3 
RNA polymerase 

Rpb1 (4 (3 (5 (7 4)))) 4 1e3 
Transposon (2 (8 (15 (34 83)))) 5 4e54 
Helicase (1 (3 (3 (2 34)))) 5 1e39 
Thiol oxidase (1 (1 (4 (2 3)))) 6 1e3 
Leucine rich repeat (4 (3 (1 (2 1)))) 6 38 
Flocculation (10 (6 (8 (11 14)))) 7 85 
Transposon (17 (14 (15 (1 5)))) 7 6e10 
Myosin (5 (9 (9 (5 5)))) 7 76 

The first column gives the gene family name; the second column de-
scribes the gene family size among the five Saccharomyces species in 
Newick notation. The third column gives the branch that is predicted to 
be responsible for the overall low p-value of the family using the likeli-
hood ratio test, and the fourth column gives the corresponding likelihood 
ratio. Newick numbers in bold indicate the branch identified. 
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case. S. cerevisiae is, in fact, the only eukaryotic with a fully se-
quenced genome—all of the other yeast genomes are covered to 
differing extents. S. paradoxus was sequenced to 7 coverage 
(i.e., shotgun sequencing was done equivalent to seven times the 
length of the genome), while S. bayanus, S. kudriavzevii, and S. 
mikatae were sequenced to 2–3 (Cliften et al. 2003). Despite 
this unevenness among taxa, our results do not seem to have 
been affected: S. kudriavzevii and S. mikatae were predicted to 
have both the largest number of genes and the largest number of 
gene family expansions. If the lack of sequence coverage had 
been a problem, we would have expected these genomes to show 
fewer genes and smaller gene family sizes on average. 

As described above, the null BD model can be used to test 
whether gene families are, on average, diffusing evenly along the 
tree. This model can be violated when processes such as natural 
selection give a direction to the expected random walk, causing 
extreme expansions or contractions to gene family size. We were 
able to detect such changes on almost every branch of the tree, 
and on every external branch leading to an extant species (Table 
2). In cases where we did not reject the null hypothesis, it does 
not mean that natural selection is not acting on members of a 
gene family, only that we cannot detect its role in affecting the 
differences in size of the family. Natural selection may have 
played a role in the fixation of a small number of duplicates 
within a family, but, much like other statistical tests in molecular 
evolution, we only have the power to detect the repeated occur-
rence of events. 

One of the most extreme examples that we found was in the 
helicase family, where S. cerevisiae has 34 members of this family, 
while none of the other species have more than three. While we 
have no firm biological explanation for this pattern, it is highly 
possible that in the domestication of yeast, increased rates of cell 
division—and therefore, of DNA replication—were selected for. 
We were also able to identify an expansion of the flocculin gene 
family in S. cerevisiae (as well as in its common ancestor with S. 
paradoxus), a change that is unsurprising considering the fact 
that flocculation has been selected for in the domestication of 
this brewer’s yeast (Jin and Speers 1998). Like other genes that 
have undergone artificial selection during domestication (e.g., 
Wang et al. 1999), the flocculin gene family may show the sig-
nature of adaptive natural selection. This is the first example to 
our knowledge, however, of selection on gene family size being 
implicated in domestication. 

Any inference of natural selection with our method comes 
with a number of caveats that must be mentioned. Small P-values 
do not necessarily imply natural selection, only that the data do 
not fit the null model. One caveat to our null is that we have 
implicitly assumed that there is no relationship between family 
size and duplication and deletion rates. It may be, for instance, 
that large gene families are more likely to undergo nonhomolo-
gous pairing, unequal crossing over, and therefore more duplica-
tion and eventual fixation due to drift (Li 1997). A homogeneous 
birth and death model may also not be absolutely correct for 
small gene families, as under the BD model families will always 
eventually reach the absorbing state of zero genes. Because many 
genes appear to be conserved over very long periods of time (e.g., 
Theissen et al. 2003), there may be a decreased loss rate in small 
families in order to prevent extinction of required gene func-
tions. The possibility of nonhomogeneities in very large or very 
small gene families suggests that models incorporating these pro-
cesses be studied. Karev et al. (2002) found that a random BD 
model with added parameters for birth and death rates for the 

largest and smallest families fit the distribution of gene families 
in a single genome slightly better than a completely homoge-
neous model. The improved fit to the data, however, was not 
shown to be significantly better than models without the two 
extra parameters. The framework we have provided here should 
allow for the testing of models that include heterogeneous gain 
and loss rates across gene families. Although large families are 
expected to show greater change in number between species sim-
ply because there are more chances for gain and loss—and the 
opposite is true for small families—we will in the future be able to 
test whether the observed changes are more or less than are ex-
pected. This approach will also be able to inform us as to whether 
families with different physical distributions, such as those ar-
rayed in tandem, show inherently different rates of birth and 
death than more dispersed families. 

The issue of gene families having intrinsically different birth 
and death rates extends beyond the consideration of family size. 
For example, one family of genes that does not follow this as-
sumption is transposable elements (TEs): they can multiply in 
number in a nonmendelian manner, and are often selected 
against by the organisms they inhabit. Because the parameters 
for gain and loss of TEs can be quite different from those for other 
gene families (see, e.g., Li 1997; Kidwell 2002), the disparity in TE 
number between genomes can be due to processes unique to this 
family. So our finding that TEs are at the top of our list of unusual 
gene families is not surprising. Results for transposable element 
families or other genomic parasites using the BD model, there-
fore, should not be parameterized with gain and loss rates in-
ferred from the majority of protein-coding genes. 

In addition to the assumptions of equivalent birth and 
death mechanisms among families, one other very important 
aspect of any random-point process is the assumption of inde-
pendence among individual genes. The BD model assumes that 
each gene in a family has an independent probability of being 
duplicated or deleted; any large-scale chromosomal duplication, 
deletion, or polyploidization may act on multiple members of a 
family at once. This is potentially a common violation of the 
model in light of the frequency of larger scale duplications and 
deletions that include gene duplicates (Friedman and Hughes 
2001). As a result, we cannot compare taxa that are separated by 
a whole-genome duplication in the same manner as has been 
presented here. This also means that any unusual gene family 
should be examined in more detail to determine the nature of the 
changes in gene family size; obvious duplications of large regions 
containing multiple members of a family, for example, may 
moderate conclusions about natural selection. 

Our hypothesis-testing framework requires an estimate of , 
the birth and death parameter determining the rate of evolution. 
In the Supplemental materials, we show how we can estimate the 
value of  that makes the entire data set maximally likely (using 
Expectation Maximization); reassuringly, the resulting value we 
obtained (0.002 per million years) is very close to the previous 
estimate of  found using data from only the birth rate in S. 
cerevisiae (0.004 per million years; Lynch and Conery 2003). We 
believe that the assumption of equal birth and death rates is 
consistent with the data: if we compare fully sequenced genomes 
between relatively closely related species that are not separated 
by a polyploidization event, we find that they contain similar 
numbers of genes. Even among species whose time to most re-
cent common ancestor (TMRCA) is many millions of years (Myr), 
we find similar numbers of genes; among mammals (human, 
mouse: 25,000 genes; TMRCA = 75 Myr; Abril et al. 2002); nema-
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todes (Caenorhabditis elegans and C. briggsae: 19,000 genes; TM-
RCA = 100 Myr; Stein et al. 2003); and dipterans (mosquito, fruit 
fly: 13,500 genes; TMRCA = 260 Myr; Holt et al. 2002). These 
similarities indicate that there is no general trend toward larger 
or smaller genomes or gene families between these species. In the 
future, we hope to extend the model by making it possible to 
allow  to vary along branches of a phylogenetic tree so that we 
can estimate  independently for each branch, and to allow birth 
and death rates to differ when significant genome expansions are 
detected. We can also analyze the data under a range of values for 
the branch lengths, t, as the analyses presented here assume that 
the estimates are accurate. These refinements may then provide a 
clearer picture of the evolution of gene family size. 

Conclusions 

This study has attempted to provide the machinery needed to 
study gene family evolution among multiple whole genomes. 
The methodology can be used for parameter estimation, infer-
ences on the direction and magnitude of evolutionary change, 
and hypothesis testing. As more genome sequences become 
available, we hope that this framework makes it possible to iden-
tify the genetic changes that are responsible for the phenotypic 
diversity found in nature. Correlated changes between families or 
with environmental conditions can then tell us about the mecha-
nisms and modes of natural selection (Harvey and Pagel 1991). 

Methods 

Birth and death model of gene family evolution 
Suppose that we have a family of individual genes whose total 
size (number of genes) at time t is given by the discrete random 
variable X(t). Then, the probability that the random variable X(t) 
takes the value c, given that X(0) = s will be denoted by 
P(X(t) =  c|X(0) = s) (see Bailey 1964). Let us assume that every 
gene in the family is equally capable of either being duplicated 
(birth) or lost via deletion or pseudogenization (death); here, we 
include both the processes of origination and fixation within the 
terms “birth” and “death”. The probability of any gene being 
duplicated (and fixed) in time t is t or being lost (and fixed) 
is t. It follows that in a family of size X(t) at time t, the possible 
transitions are: 

● Probability of one gain X(t) t + o(t). 
● Probability of one loss X(t) t + o(t). 
● Probability of more than one of these events o(t). 
● Probability of no change 1 = ( + ) X(t)t + o(t). 

The probability of two such events occurring, o(t), is neg-
ligible for t very small. As the size of a gene family grows, the 
probability of there being a gain or loss also grows. If the gene 
family contains zero members in a particular lineage, then there 
is no chance of birth or death, and this is considered an absorb-
ing state; we are therefore only concerned with situations in 
which the initial number of genes in a family, X(0) = s, is non-
zero. 

If we consider the case where s  1 with equal gain and loss 
rates per gene ( = µ), then the transition probabilities are: 

PXt = c |X0 = s =  
j=0 

mins,c 

j 
ss−1 

s+c−j−1 s+c−2j1 − 2j , (1) 

where  is given by  = t 

1+t 
. Then the stochastic mean and vari-

ance for X(t) given X(0) = s are (see Bailey 1964): 

MeanXt|X0 = s = s, 

VarXt|X0 = s = 2st. (2) 

Here, we find that the expected size of the gene family is 
simply equal to the initial number, s. This is because, with equal 
birth and death rates, the gene family is neither consistently 
expanding nor contracting, so that the probability of either in-
creasing or decreasing is equivalent. 

Calculating likelihoods using probabilistic graphical models 
Based on the birth–death (BD) model and the structure of a phy-
logenetic tree, we can construct a probabilistic graphical model 
(PGM) that parameterizes the probability distribution over the 
gene family sizes in the tree. The BD model represents the con-
ditional distributions corresponding to the branches. Of course, 
only the gene family sizes in the tips of the tree are known, so we 
are interested in the marginal probability of the leaf (tip) nodes, 
rather than in the probability of a complete assignment of all 
nodes in the tree. This can be computed by averaging over all 
possible assignments of unspecified internal nodes (except for 
the root node, on which we are conditioning), a process called 
marginalization in the graphical models literature. Because of the 
large number of possible internal state assignments, efficient al-
gorithms have been developed in the PGM literature to carry out 
this calculation; these are known as message passing or sum-
product algorithms (see, e.g., Felsenstein 1981; Lauritzen 1996; 
M.I. Jordan, in prep.). See the Supplemental materials for more 
details. 

Testing hypotheses about gene family evolution 
As noted before, the root-node gene family size is not known, so 
a genuine P-value for the observed values of the leaf species can-
not be computed, even in principle. However, for each gene fam-
ily we can compute conditional P-values as we call them, condi-
tioned on a specific value for the root family size. Such a condi-
tional P-value is computed based on the corresponding 
conditional likelihood as a test statistic, as the probability that a 
random gene family with the same root family size (on which it 
is conditioned) has a smaller conditional likelihood. The condi-
tional P-value that is computed based on the true (but unknown) 
root value is equal to the true P-value that we are interested in. 
Since there is no way to find out which root family size is actually 
the true one, for each gene family we computed all conditional 
P-values, conditioned on all choices for the root family size from 
one up to 100, and picked the largest. (The conditional P-values 
always show a single sharp peak around a specific root family 
size, which was well below 100 for all gene families studied in 
this study.) This maximal conditional P-value is referred to as the 
supremum P-value in the literature (e.g., Demortier 2003), and 
clearly represents an upper bound on the true P-value, which is 
equal to one of the conditional P-values. A fortiori, if the supre-
mum P-value is small, the observed gene family sizes are unlikely 
to be explainable by the BD model. A common concern about the 
use of the supremum P-value is its sensitivity, or how tight an 
upper bound on the P-value it represents (see Berger and Boos 
1994; Demortier 2003). In the Supplemental materials, we de-
scribe a way to assess this; it turns out that it is very tight in our 
problem, warranting its use as a genuine P-value. 

We developed two methods to calculate the conditional P-
values—an analytic method that calculated them exactly, and a 
sampling method that was much faster. Briefly, the sampling 
method generated data under the BD model over the phyloge-
netic tree, conditioned on a root-node size. For each resulting 
sample, the conditional likelihood was calculated, and doing this 

Hahn et al. 

1158 Genome Research 
www.genome.org 

https://www.genome.org


for many samples gave a null distribution of conditional likeli-
hoods. The observed conditional likelihood of the data was then 
compared with this null distribution to give a conditional P-
value. The exact and approximate methods agreed completely 
when 10,000 samples were taken. 

Identifying the unlikely branch 
For the gene families that we have identified as unlikely under 
the BD model (i.e., the ones with a low P-value), we further want 
to identify the branch in the phylogenetic tree that is responsible 
for this violation. We have two ways of doing this, both of which 
always agreed with one another on the data used in this study 
(see Supplemental materials for more details). The first method 
investigates how much the P-value improves after allowing “total 
freedom” along one of the branches. This is done by recomput-
ing the P-value for the gene family after deleting that branch in 
the PGM. If deleting a specific branch yields a large improvement 
in P-value, this implies that the remainder of the branches did, in 
fact, follow the BD model, and hence the deleted branch is re-
sponsible for the low overall P-value. 

The second method works by allowing each branch, in turn, 
to have its own value for  potentially different from the rest of 
the tree; this value was found by expectation-maximization. The 
likelihood of the data under this two-parameter model was then 
compared with the likelihood under a one-parameter model that 
was constrained to a single  for all branches in a likelihood ratio 
test. 

Note that because branches are investigated one at a time, 
an implicit assumption of these approaches is that only one 
branch in the phylogenetic tree violates the BD model. Table 2 
lists the branch with the largest likelihood ratio that is signifi-
cant, assuming that a likelihood ratio test of the two models is 2 

distributed. We refer to the Supplemental material for more de-
tails. 
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