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Abstract 

It is now understood that introgression can serve as powerful evolutionary force, providing 

genetic variation that can shape the course of trait evolution. Introgression also induces a 

shared evolutionary history that is not captured by the species phylogeny, potentially compli-

cating evolutionary analyses that use a species tree. Such analyses are often carried out on 

gene expression data across species, where the measurement of thousands of trait values 

allows for powerful inferences while controlling for shared phylogeny. Here, we present a 

Brownian motion model for quantitative trait evolution under the multispecies network coa-

lescent framework, demonstrating that introgression can generate apparently convergent 

patterns of evolution when averaged across thousands of quantitative traits. We test our the-

oretical predictions using whole-transcriptome expression data from ovules in the wild 

tomato genus Solanum. Examining two sub-clades that both have evidence for post-specia-

tion introgression, but that differ substantially in its magnitude, we find patterns of evolution 

that are consistent with histories of introgression in both the sign and magnitude of ovule 

gene expression. Additionally, in the sub-clade with a higher rate of introgression, we 

observe a correlation between local gene tree topology and expression similarity, implicating 

a role for introgressed cis-regulatory variation in generating these broad-scale patterns. Our 

results reveal a general role for introgression in shaping patterns of variation across many 

thousands of quantitative traits, and provide a framework for testing for these effects using 

simple model-informed predictions. 

Author summary 

It is now known from studying large genetic datasets that species often hybridize and 
cross with each other over many generations – a phenomenon known as introgression. 
Introgression introduces new genetic variation into a population, and this variation can 
cause traits to be shared among the introgressing species. When researchers study the evo-

lution of trait variation among species, this source of trait sharing is rarely accounted for. 
Here, we present a statistical model of the effects of introgression on trait variation. This 
model predicts that, when averaged across many thousands of traits, introgressing species 
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are consistently more similar than expected from standard approaches. Researchers study-

ing gene expression often consider the expression of many thousands of genes, making 
this a case where the expected effects of introgression are likely to manifest. We tested our 
model prediction using ovule gene expression data from the wild tomato genus Solanum, 
in two groups of species with evidence of historical introgression. We found that patterns 
of expression similarity in both groups are consistent with their histories of introgression 
and the predictions from our model. Our results highlight the importance of accounting 
for introgression as a source of trait variation among species. 

Introduction 

Introgression—the historical hybridization and subsequent backcrossing of previously isolated 
lineages—has come to the forefront of phylogenomics with the availability of genome sequenc-

ing (reviewed in [1,2]). Introgression has been recognized as a powerful and frequent source of 
adaptive variation, with many charismatic examples including wing pattern mimicry in butter-

flies [3,4], coat color in snowshoe hares [5], herbivore resistance in sunflowers [6], high-alti-

tude adaptation in humans [7], and fruit color in wild tomatoes [8]. Introgressed alleles do not 
have to underlie discrete traits to influence the course of evolution: alleles that contribute to 
quantitative trait variation can also lead to more similarity than expected between the intro-

gressing lineages [9]. 
Empirically investigating the effects of introgressed ancestry on quantitative trait evolution 

remains a challenge, despite recent theoretical and methodological advances [9–11]. This is 
because many processes besides introgression can shape the distribution of any particular char-

acter, including incomplete lineage sorting and convergence. It is therefore necessary to sample 
a large number of traits in order to demonstrate a genome-wide effect of introgression. Gene 
expression is commonly used in comparative analyses between species [12–14], allowing for the 
study of thousands of quantitative traits in a phylogenetic framework. Introgressed variants act-

ing on gene expression either in cis or in trans may affect the evolution of gene expression across 
the genome. This could have potentially deleterious effects on fitness, which would be consistent 
with previous evidence for widespread selection against introgressed alleles [15–18]. 

Incomplete lineage sorting (ILS) and introgression both introduce shared history that could 
influence the evolution of quantitative traits, though neither of these processes are captured by 
a standard species phylogeny. Therefore, to paint a complete picture of trait variation among 
species, it is necessary to include these sources of topological discordance in order to avoid 
errors inherent to methods that typically only consider the species topology [19]. Mendes et al. 
[20] showed that when gene tree discordance is unaccounted for, standard comparative 
approaches will return inflated evolutionary rate estimates and will underestimate phyloge-

netic signal. Despite these challenges, no approach has included all sources of gene tree discor-

dance into a single framework for quantitative trait evolution. Some methods have extended 
the classic Brownian motion model for quantitative trait evolution to include shared histories 
due to ILS alone [20], while other work has applied the Brownian motion model to a phyloge-

netic network with introgression but no ILS [9]. A method including both sources of discor-

dance would provide a complete picture of the most common causes of shared evolutionary 
history and their effects on quantitative traits. This would in turn allow for more accurate 
inferences of key evolutionary parameters, such as the trait evolutionary rate. 

To address the effects of historical introgression on quantitative traits, we first develop a 
Brownian motion model of trait evolution that includes both ILS and introgression, showing 
the expected effects of introgression on the similarity in quantitative traits across species. This 
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model leads directly to predictions about patterns of trait-sharing on a three-taxon tree, which 
we test by leveraging whole-transcriptome gene expression data [21] from the wild tomato 
clade in the genus Solanum. This clade includes 13 species that have radiated within the last 
2.5 million years, and contains high rates of gene tree discordance due to both ILS and intro-

gression [22,23]. Using ovule expression data from two independent species triplets with dif-

ferent levels of introgression, we find that transcriptome-wide patterns of variation in both 
triplets are consistent with histories of introgression, with quantitatively stronger signals in the 
sub-clade with greater introgression. Our analyses demonstrate that introgression can have 
measurable effects across the genome, on thousands of quantitative traits. 

Results 

Brownian motion on a species tree 

To accurately model trait variation among species, we require an understanding of the evolu-

tionary history that relates those species, and a model for how traits are expected to evolve 
given that history. We present results using Brownian motion, a statistical model that is com-

monly applied to quantitative traits. The evolutionary history relating species has classically 
been provided by a species phylogeny. Under Brownian motion, the character states on the 
tips of this phylogeny follow a multivariate normal distribution, with the variance and covari-

ances of this distribution provided by the branch lengths of the phylogeny [24]. 
Consider a phylogeny of three species with the topology ((A,B),C) (Fig 1). In units of 2N 

generations, species A and B split at time t1, and C split from the ancestor of A and B at time 

Fig 1. Modelling quantitative trait evolution under the combined effects of ILS and introgression. 1) From a phylogenetic network with known parameters, the 
multispecies network coalescent model can be used to predict the expected frequency and branch lengths of each gene tree topology. 2) These gene trees contribute to 
trait covariances through their internal branches, and to trait variances through their total heights. The contribution of each gene tree to the overall quantities in T is 
weighted by its expected frequency. 3) Once the values of T are estimated, character states under Brownian motion can be simulated by drawing from a multivariate 
normal with a mean of 0 and variance of σ2T. 

https://doi.org/10.1371/journal.pgen.1009892.g001 
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t2. The expected phylogenetic variances and covariances for three species can be expressed in a 
3x3 matrix, which we denote T: 

T ¼ 

VarðAÞ CovðABÞ CovðACÞ 

CovðBAÞ VarðBÞ CovðBCÞ 

CovðCAÞ CovðCBÞ VarðCÞ 

2 

6
4

3 

7
5 ð1Þ 

This matrix is multiplied by the evolutionary rate parameter of the Brownian motion model, 
σ2 , to obtain trait variances and covariances. When only the species phylogeny is considered 
(i.e. there is no ILS or introgression), the trait variances (the diagonal elements of T) are 
determined by the total time along which evolution can occur for each lineage, so Var(A) = 
Var(B) = Var(C) = t2. The covariances are determined by the length of shared internal 
branches. In the species tree, only species A and B share an internal branch, so: 

CovðABjno ILS or introgressionÞ ¼ s 2 ðt 2 � t1 Þ ð2Þ 

Where σ2 corresponds to the trait evolutionary rate per unit time, and Cov(AB) = Cov(BA). 
In the absence of other processes, the species pairs BC and AC have zero covariance. How-

ever, trees inferred at individual loci can disagree with the species phylogeny, in which case 
these species pairs could have shared internal branches, and therefore non-zero covariances. 
This widespread phenomenon is known as gene tree discordance [22,25–31] and has multiple 
biological causes [32]. Gene trees with the topologies ((B,C),A) or ((A,C),B) contain internal 
branches shared by species B+C and A+C, respectively (Fig 1). This results in non-zero covari-

ance terms between these two species pairs in T, covariance that cannot arise from evolution 
solely on the species phylogeny. The consequence of this discordance is that some traits may 
be closer in value between species that are not closely related in the species tree. We must 
therefore include discordance in our model to appropriately capture this trait covariance. 

Modelling the effects of only incomplete lineage sorting on quantitative 
trait variances and covariances 

One of the most common causes of gene tree discordance is incomplete lineage sorting, which 
occurs when ancestral lineages persist through successive speciation events [33,34]. For a 
rooted triplet, there are four possible gene trees in the presence of ILS: one concordant tree 
that occurs by lineage sorting with probability 1 � e� ðt2 � t1Þ , and three trees produced by ILS, 
each with probability 1

3 
e� ðt2 � t1Þ . One of the three ILS trees is concordant, while the other two 

are discordant. These probabilities are the basis for the multispecies coalescent model. To 
obtain the expected trait variances and covariances in T, Mendes et al. [20] weight the expected 
gene tree heights and internal branch lengths, respectively, by their expected frequencies 
under the multispecies coalescent model. We present those results here with a slightly different 
formulation for consistency with the new results presented below. For the covariance between 
A and B, we have: 

Cov ABjno introgressionð Þ ¼ s 2 1 � e� ðt 2 � t1 Þ 
� � et 2 ðt 2 � t 1 Þ 

et 2 � et 1 

� � 

þ 
1 
3 
e� ðt2 � t1 Þ 

� �� � 

ð3Þ 

In Eq 3, σ2 corresponds to the trait evolutionary rate per 2N generations, which is the scale 
over which time is measured in the multispecies coalescent model. Inside the square brackets, 
the first term is the probability of the gene tree produced by lineage sorting, multiplied by that 
tree’s expected internal branch length in units of 2N generations. The second term is the 
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probability of the concordant tree produced by ILS, which has an expected internal branch 
length of 1 in units of 2N generations. 

Species pairs BC and AC can only have covariance from discordant trees produced by ILS, 
which gives: 

Cov BCjno introgressionð Þ ¼ Cov ACjno introgressionð Þ ¼ s 2 1 
3 
e� ðt2 � t1 Þ 

� � 

ð4Þ 

Again, in these trees the internal branches are of length 1 in units of 2N generations, and so are 
not shown explicitly. 

For the expected trait variances, all three species share the same expected variance, which is 
the total height of all the gene trees weighted by their probabilities. These are: 

VarðAjno introgressionÞ ¼ VarðBjno introgressionÞ ¼ VarðCjno introgressionÞ 

¼ s 2 ½ð1 � e� ðt2 � t1 Þ Þðt 2 þ 1Þ þ ðe� ðt2 � t1 Þ Þðt 2 þ 1 þ 1=3Þ� ð5Þ 

Where the first term in the square brackets is the contribution from the lineage sorting tree, 
and the second term is the contribution from the three ILS trees. 

Modelling the effects of introgression and ILS on quantitative trait 
variances and covariances 

Now, we extend these expressions for species variances and covariances to include both ILS 
and introgression. We envision an instantaneous introgression event between species B and C 
(Fig 1), which occurs at time tm. This event can be in either direction, with the probabilities of 
a locus following a history of C ! B introgression or B ! C introgression represented using 
δ2 or δ3, respectively. To capture the processes of ILS and introgression simultaneously, we 
imagine that each possible history at an individual locus can be represented by a “parent tree” 
within which lineage sorting or ILS occurs according to the multispecies coalescent process 
[10,35–37]. This is sometimes referred to as the multispecies network coalescent [38,39]. For 
our model, we consider three parent trees (see S3 Fig): one with no introgression, which occurs 
with probability 1 – (δ2 + δ3), and two parent trees for the two possible directions of introgres-

sion, which occur with probabilities of either δ2 or δ3 (these probabilities represent the "rate" of 
introgression in our model). Each of these three parent trees can generate four possible gene 
trees with three possible topologies (Fig 1, arrow 1), which vary in the frequency of topologies 
and expected branch lengths depending on each parent tree’s parameters (as in the model of 
ILS-only described in the previous section). 

To obtain expressions for the expected variances and covariances under this model, we 
must sum the contributions of all gene trees within each parent tree, and then sum the contri-

bution of each parent tree (Fig 1, arrow 2). For the covariance between A and B, this gives: 

Cov ABjILS and introgressionð Þ 

¼ s 2 1 � ðd 2 þ d 3 Þð Þ 1 � e� ðt 2 � t 1 Þ 
� � et2 ðt 2 � t1 Þ 

et2 � et1 

� � 

þ 
1 
3 
e� ðt 2 � t 1 Þ 

� �� � 

þ d 2 

1 
3 
e� ðt 2 � tm Þ 

� � 

þ d 3 

1 
3 
e� ðt 1 � tm Þ 

� �� � 

ð6Þ 

Note that the term inside the inner square brackets in Eq 6 is the same as in Eq 3, but is now 
weighted by the probability of a history with no introgression. In addition, there are two addi-

tional terms denoting the contributions of trees generated by ILS that follow a history of intro-

gression (because ILS occurs regardless of the history at a locus). For a complete derivation, 
including the expectations of each gene tree within each parent tree, see S1 Text. 
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For the covariance between B and C, we have: 

Cov BCjILS and introgressionð Þ 

¼ s 2 1 � ðd 2 þ d 3 Þð Þ 
1 
3 
e� ðt2 � t1 Þ 

� � 

þ d 2 1 � e� ðt 2 � tm Þ 
� � et2 ðt 2 � tm Þ 

et2 � etm 

� � 

þ 
1 
3 
e� ðt2 � tm Þ 

� �� � 

þ d 3 1 � e� ðt1 � tm Þ 
� � et1 ðt 1 � tm Þ 

et1 � etm 

� � 

þ 
1 
3 
e� ðt1 � tm Þ 

� �� �� � 

ð7Þ 

Introgression occurs between B and C in our model, so B and C are sister in the parent trees 
that represent the two directions of introgression (see S1 Text, S3 Fig). This means that these 
parent trees can each produce two gene trees with BC as sister species: one from lineage sorting 
and one from ILS. The contributions of these two gene trees in each parent tree are captured 
in the last two terms of Eq 7. The first term corresponds to the contribution of ILS from the 
parent tree without introgression, i.e. Eq 4. 

Finally, for the covariance between A and C, we have 

Cov ACjILS and introgressionð Þ ¼ s 2 1 � ðd 2 þ d 3 Þð Þ 
1 
3 
e� ðt 2 � t 1 Þ 

� � 

þ d 2 

1 
3 
e� ðt 2 � tm Þ 

� � 

þ d 3 

1 
3 
e� ðt 1 � tm Þ 

� �� � 

ð8Þ 

Since gene trees where A and C are sister can only be produced by ILS in our model, Eq 8 is 
simply the sum of the gene trees with this topology produced by each of the three parent trees. 

Lastly, we consider the expected trait variance with introgression. As with the covariances, 
we sum the total contribution of each gene tree within a parent tree, and then sum these con-

tributions across each parent tree. All three share the same gene tree heights and therefore 
have the same expected variances. This gives: 

VarðAÞ ¼ VarðBÞ ¼ VarðCÞ 

¼ s 2 ½ð1 � ðd 2 þ d 3 ÞÞ½ð1 � e� ðt 2 � t1 Þ Þðt 2 þ 1Þ þ ðe� ðt2 � t1 Þ Þðt 2 þ 1 þ 1=3Þ� þ d 2 ½ð1 

� e� ðt 2 � tm Þ Þðt 2 þ 1Þ þ ðe� ðt 2 � tm Þ Þðt 2 þ 1 þ 1=3Þ� þ d 3 ½ð1 � e� ðt 1 � tm Þ Þðt 1 þ 1Þ 

þ ðe� ðt 1 � t m Þ Þðt 1 þ 1 þ 1=3Þ�� ð9Þ 

The first term represents the contribution of the parent tree with no introgression, the same as 
in Eq 5. The second two terms represent the contributions to the total variance from C ! B 
and B ! C introgression, respectively. When T is updated to include all these expectations, it 
becomes possible to model character states under Brownian motion while accounting for both 
ILS and introgression. 

Testing for the effect of introgression on quantitative traits 

To evaluate whether patterns of quantitative trait variation are consistent with a history of 
introgression, we use a simple test statistic that employs the same logic as the D3 test for intro-

gression [40]; see also the f3 statistic [41]. Imagine that species A, B, and C have values q1, q2, 
and q3 for a hypothetical quantitative trait, respectively. Given the species tree ((A,B),C), and 
assuming the Brownian motion model of trait evolution described in the previous sections, the 
expected distance between trait values q2 and q3 should be equal to the expected distance 
between q1 and q3. This is because species C is equidistant to species A and B in the phylogeny, 
and this tree determines quantitative trait variances and covariances. The same relationship 
between distances is expected when considering the ILS-only model, because of symmetries in 
expected gene tree frequencies and branch lengths, and therefore in trait covariances (see 
Eq 4). 

However, introgression can introduce additional covariance between one pair of species, 
resulting in that pair having more similar trait values than the other non-sister pair (see Eqs 7 
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and 8). This naturally leads to the following test statistic: 

Q3 ¼ 
jq2 � q3j � jq1 � q3j 
jq2 � q3j þ jq1 � q3j 

ð10Þ 

The numerator of Q3 takes the difference in trait distances between the two pairs of non-sister 
species; when there is no introgression, this numerator—and therefore Q3—has an expected 
value of 0. When a significant non-zero value of Q3 is observed, the statistic is consistent with a 
history of introgression. In addition, the sign of the statistic can tell us which species were 
involved in introgression (but not the direction of introgression). For example, a negative Q3 

value would be consistent with introgression between species B and C, since that would result 
in q2 and q3 having more similar values (and therefore a smaller distance between them). The 
denominator of Q3 is the sum of the two trait distances, which normalizes the statistic between 
0 and 1, allowing it to be compared across traits with different mean values. We imagine that 
this statistic will be applied to many individual quantitative traits, each providing a separate 
value of Q3. The significance for a dataset consisting of many traits can then be evaluated either 
by testing for a mean value of Q3 significantly different from 0, or by using a sign test with the 
null expectation that positive and negative Q3 values should be equally frequent (see the analy-

ses below for more details). 
To confirm the effects of introgression predicted by the model, and the ability of Q3 to 

detect it, we performed a power analysis. First, to illustrate the conceptual basis for Q3, we con-

trasted two conditions: an ILS-only condition and an ILS + introgression condition (Fig 2). Both 
scenarios use the three-taxon tree described in previous sections, simulating quantitative traits as 
the sum of contributions of many genes (and therefore gene trees; see Materials and Methods). 
For 20,000 independent simulated traits we calculated the mean and standard error of the differ-

ence in trait value at the tips of the tree between each pair of species (Fig 2). As predicted by our 
model, the taxa involved in introgression had a higher covariance and more similar trait values 
than the non-introgressing pair of taxa when averaging across the 20,000 traits (Fig 2). 

Second, we performed a power analysis across 90 different parameter combinations: three 
values each of the timing of introgression, the level of ILS, and the number of genes, and four 
values of the rate of introgression. We simulated 100 datasets for each set of parameters and 
asked how often Q3 was significantly different from 0 in the direction predicted by introgres-

sion. We found the most important parameter to be the rate of introgression: at a rate of 1% 
(i.e. 1% of the genome has been introgressed), power was consistently low (1-6%) regardless of 
other simulation parameters (Figs 3 and S1). At higher rates of introgression, power was 
increased when introgression was more recent relative to speciation, when the level of ILS was 
lower, and when more genes (traits) were considered. When 5,000 genes were used, power 
reached 67% under the best-case scenario (S1 Fig); this increased to 97% with 15,000 genes 
(Fig 3). Simulations under a no-introgression scenario yielded false positive rates of less than 
5% across all conditions (S2 Fig). 

Gene expression variation is consistent with inferred histories of 
introgression in Solanum 

We used previously generated introgression and gene expression datasets from the wild 
tomato clade, Solanum section Lycopersicon, to empirically evaluate the effects of introgression 
on thousands of expression traits. This clade includes the domesticated tomato, S. lycopersi-
cum, and its 12 wild relatives, which have all originated in the last 2.5 million years. The first 
dataset is a phylogenetic analysis of 29 accessions (i.e. populations) across these 13 tomato spe-

cies and two outgroups [22]. This dataset includes an introgression analysis based on D-
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Fig 2. Quantifying the effect of introgression on quantitative trait variation. For ILS-only (top row) and ILS + introgression (bottom row) conditions, we show the 
expected variance/covariance matrix (middle-left column, variances not shown for clarity) and the average difference in quantitative trait values between each pair of 
species across 20,000 simulated traits (middle-right column). The expectations for the Q3 statistic are also shown (far-right column). 

https://doi.org/10.1371/journal.pgen.1009892.g002 

Fig 3. Power analysis of the ability of Q3 to detect a signature of introgression from 15,000 simulated genes (σ2 = 1). Each cell reports the proportion of 100 
simulated datasets where Q3 was significantly different from 0 in the direction expected from the simulated history of introgression. Within each matrix, the x-axis is the 
time of introgression relative to speciation (larger values mean relatively more recent introgression), and the y-axis is the rate of introgression. There is one matrix for 
each of three times between speciation events, which determine the levels of ILS (decreasing from left to right, as the times increase). The greatest power comes in 
scenarios with little ILS, high rates of introgression, and recent introgression events. 

https://doi.org/10.1371/journal.pgen.1009892.g003 
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statistics [42,43] across all possible quartets, which provides a comprehensive overview of pat-

terns of introgression in the clade. The second dataset is normalized quantitative expression of 
14,556 genes expressed in ovules from six accessions across five tomato species. This includes 
published data for five accessions across four species [21], while data from the other two spe-

cies are previously unpublished. Expression levels for each gene are represented as reads per 
kilobase of transcript, per million mapped reads (RPKM). Samples were collected on the day 
of flower opening for 1-4 individuals of each species grown in a common greenhouse [21]. 

Combining these two datasets, we sought to identify triplets of species with both evidence 
of introgression (from sequence data) and available gene expression data, so that we could 
apply the Q3 statistic. Additionally, we wanted these triplets to vary in the magnitude of intro-

gression, so that the magnitude of the effect of introgression on trait variation could be evalu-

ated in addition to the presence or absence of an effect. With these considerations in mind, we 
identified two triplets. The first consists of the accessions LA3475 (S. lycopersicum), LA1589 (S. 
pimpinellifolium), and LA0716 (S. pennellii), with LA3475 and LA1589 as sister taxa, and evi-

dence of introgression between LA1589 and LA0716 (D = 0.057, P = 0.0015; values from [22]) 
(Fig 4A). Using the Dp statistic [23] on site pattern counts from [22], we obtained a value of 
0.0013, corresponding to a genomic rate of introgression of 0.13%. We hereafter refer to this 
triplet as the “low” triplet because of the relatively low observed rate of introgression. The 
other triplet consists of LA3778 (S. pennellii), LA1777 (S. habrochaites), and LA1316 (S. chmie-
lewskii), with LA3778 and LA1777 as sister taxa, and significant introgression between LA1777 
and LA1316 (D = 0.135, P = 2.34 x 10-35; values from [22]) (Fig 4A). We obtained a Dp value of 
0.0744 for this triplet, corresponding to a rate of introgression of 7.44%; this value is likely an 
underestimate, as Dp tends to underestimate the true value at higher rates of introgression 
[23]. As the rate of introgression is much higher for this triplet, we refer to it as the “high” 
triplet. 

We used expression values from 14,556 genes available in both the low and high triplets. 
For each gene we calculated a separate value Q3, averaging across genes to obtain a mean value 
for each triplet. We obtained transcriptome-wide mean Q3 values of -0.012 and -0.019 for the 
low and high triplet, respectively (Fig 4B). The values we observe are consistent with the histo-

ries of introgression inferred from the sequence data in both sign and magnitude. Both triplets 
have negative values, which is consistent with introgression between S. pimpinellifolium and S. 
pennellii in the low triplet, and between S. habrochaites and S. chmielewskii in the high triplet 
(see Fig 4A for the accessions assigned as q1, q2, and q3 in each triplet). The Q3 value is also 
more negative in the high triplet, which is consistent with the higher level of introgression 
inferred from sequence data. 

The signal of introgression from quantitative traits was also statistically significant in both 
triplets, using either method for assessing significance. Using a bootstrapping approach to ask 
whether the mean values were different from 0 (see Materials and Methods), we obtained 
P = 0.0012 and P < 0.0001 for the low and high triplets, respectively (Fig 4B). We obtained 
similar results when testing for a significant excess of either positive or negative Q3 values (i.e. 
a sign test) at individual genes using bootstrapping (Fig 4C; see Materials and Methods). For 
the low triplet, we observed 7432 negative and 7124 positive genes (P = 0.0134); for the high 
triplet, 7533 negative and 7020 positive genes (P < 0.0001). Again, the larger number of nega-

tive Q3 values in the high triplet is consistent with a higher amount of introgression. 

Gene-level analysis of expression data 

The expression level of genes can be affected by either cis-acting or trans-acting variants. 
Because cis-acting variants are most often found near the gene they affect [44,45], we might 
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expect these regulatory elements to share the same local gene tree topology as the nearby genic 
protein-coding region; any signature of introgression would likely be reflected in both regions. 
While recombination either before or after introgression will uncouple the tree topology in the 
regulatory region from that in the coding region, we might expect to see an association 
between patterns of similarity in expression levels and patterns of gene tree discordance if cis-
acting variants are common. 

To test for such a relationship, we looked for an association between coding-region tree 
topologies and expression similarity among species in both triplets. Using trees estimated from 
each protein-coding gene [22], we identified 11,061 genes for which both the tree topology 
and expression values from all species were available. For each gene, we obtained the rooted 
tree topology for the relevant triplet and also determined which pair of species was most simi-

lar in expression value. We assume that expression similarity reflects the local topology at 
whichever locus has the largest effect on expression, such that the most similar pair of species 
represents the sister species in this topology. 

S. lycopersicum S. pimpinellifolium S. pennellii 0715 S. pennellii 3778 S. habrochaites S. chmielewskii 

Low triplet High triplet 

Rate = 0.13% Rate = 7.5% 

A) 

B) C) 

Q3 

Tr
ip

le
t 

q q q q q q 

Fig 4. Ovule gene expression variation in tomatoes is consistent with inferred histories of introgression. A) Histories of speciation and introgression for 
our chosen triplets in Solanum. B) Mean and standard error of Q3 across all genes in each triplet. C) Difference in the number of genes with a negative vs. 
positive Q3 value for both triplets. Density plots show the distribution of this difference across 10,000 bootstrapped datasets. Observed values for the two triplets 
relative to the bootstrap distributions are shown with arrows. 

https://doi.org/10.1371/journal.pgen.1009892.g004 
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In the low triplet, we found no significant relationship (P = 0.776, χ2 test of independence) 
between protein-coding gene tree topology and expression similarity (Fig 5A). In the high trip-

let, however, we did observe a significant relationship (P = 0.019, Fig 5B). For gene trees with a 
topology consistent with introgression (where S. habrochaites and S. chmielewskii are sister), 
there were significantly more genes where expression was also most similar between these spe-

cies than expected by chance (476 observed vs. 449 expected). In other words, we found that 
gene expression similarity is correlated with the tree topology of protein-coding genes in the 
high triplet, in a fashion consistent with cis-acting effects of introgressed variation on 
expression. 

Discussion 

Phylogenetic comparative methods provide powerful tools for studying the origins of trait varia-

tion among species. However, the rampant gene tree discordance uncovered in many phyloge-

nomic studies paints a more complicated picture of the shared history among species. To date, 
most models of trait evolution employed by comparative methods have assumed that only the spe-

cies phylogeny contributes to trait covariance, and have ignored covariance due to discordant 
gene trees. Our model builds on previous work [9,20] to incorporate both ILS and introgression 
into a single framework that captures the most common causes of discordance and their effects 
on quantitative trait evolution. We show that introgression leads to more discordance and stron-

ger patterns of covariance in quantitative traits among non-sister species than ILS alone, parallel-

ing results for binary traits under the same multispecies network coalescent framework [10]. 
Our model makes several assumptions and simplifications related to expected levels of 

genetic covariance between species. First, we have modeled post-speciation introgression as a 
single instantaneous pulse of exchange between one pair of non-sister species. Many other pos-

sible introgression scenarios are possible, such as multiple pulses or continuous periods of 
gene flow. Although each of these scenarios will increase the variance in gene tree topologies, 
we expect that they will still leave a detectable signature on quantitative traits because they still 
lead to gene tree asymmetries. In contrast, other gene flow scenarios—such as introgression 
between sister taxa, or between both pairs of non-sister taxa in a triplet at equal rates—will not 
result in a detectable signature of gene tree asymmetry. Second, we have assumed that the 
expected frequencies and coalescence times of loci contributing to trait variation follow neutral 
expectations. Through a local reduction in Ne, directional selection may reduce the rate of 
gene tree discordance due to ILS, while increasing the rate of discordance due to introgression 
[18,46,47]. This increase in the rate of introgression relative to ILS may allow for greater power 
to detect a signal of introgression in quantitative traits, as we show in our power analysis. This 
implies that positive selection, especially on introgressed variants [48], will make it more likely 
for quantitative traits to covary between non-sister taxa. 

We also make key assumptions about the model of trait evolution. Our model assumes that 
traits evolve under a Brownian motion process, rather than alternative processes such as the 
Ornstein-Uhlenbeck (OU) [49] or early-burst [50,51] models. While it may be uncommon for 
traits to evolve according to an early-burst model [52], many quantitative characters are likely 
to be constrained in some way, which can be modelled by the OU process. For gene expression 
in particular, evidence suggests that over long phylogenetic timescales the OU process is a bet-

ter fit to the data [53–55]. However, multiple non-biological factors may favor the fit of OU 
models over Brownian motion, including small amounts of error in measured quantitative 
traits [56]. While we do not expect the model of trait evolution to affect asymmetries between 
species in thousands of traits, future work incorporating additional models of trait evolution, 
and their effect on trait covariances in particular, would be useful. 
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A key assumption of our statistical analysis is that each gene expression trait evolves inde-

pendently. However, many genes show correlated patterns of expression, either because of 
locally shared cis-acting elements or because of trans-acting factors that affect the expression 
of many genes across the genome [44,45]. If, for instance, such a trans-acting factor is intro-

gressed and affects many genes in a similar way, then treating each gene as an independent 
observation would constitute pseudoreplication of measurements. However, there are two 
pieces of evidence that suggest pseudoreplication is not a major problem in our analyses. First, 
previous data from experimental introgression lines between S. lycopersicum and S. pennellii 
are not consistent with a large role of introgressed loci on background gene expression: Guer-

rero et al. (2016) [57] found that each introgressed gene had downstream effects on the expres-

sion of only 0.4 genes on average. Second, we find here that the number of genes where 
expression is more similar between introgressing species is higher in the triplet with a higher 
rate of introgression. This is again consistent with largely local effects of each introgressed 
locus on gene expression. Based on these observations, we conclude that we likely have many 
thousands of independent data points testing the relationship between introgression and 
expression variation, even if the true correlation structure is unknown. 

Our power analysis suggests that we should have had low power to detect an effect of intro-

gression in the low triplet, which has a rate of introgression of less than 1%. One explanation 
for the fact that we do detect an effect is that the introgressed variation in this triplet affects the 
downstream regulation of a large set of correlated genes, though the discussion in the previous 
paragraph likely rules out this possibility. Very recent introgression is also an unlikely explana-

tion, as our power analysis shows that the timing of introgression does not have an effect at 
low rates. As previously discussed, directional selection on introgressed variation in the low 
triplet could also improve the power; evaluating this possibility would be an interesting future 
direction. Finally, we may simply have been fortunate to observe a positive result, even with 
reduced (but non-zero) power in this area of parameter space. Distinguishing random chance 
from other processes would also be facilitated by testing additional triplets; unfortunately, we 
have exhausted the independent triplets possible from our data, having used six of the eight 
available accessions with gene expression data. Very few multispecies transcriptomic datasets 
are currently available in systems with widespread introgression, though similar tests may be 
possible from data in the butterfly genus, Heliconius [54,58]. Analyzing or generating such 
datasets in other systems would help to confirm the generality of our findings. 

Our analysis of gene expression is consistent with the idea that introgression between wild 
tomato species has broadly influenced variation in gene expression among species. An alterna-

tive explanation is that species with more similar gene expression may be more likely to intro-

gress, possibly due to reduced negative fitness consequences from hybrid dysregulation. There 
are again a number of pieces of evidence that argue against the latter interpretation. Guerrero 
et al. (2016) [57] found no evidence for an association between the magnitude of differential 
expression between tomato introgression lines and the sterility of hybrids. While those experi-

ments had fewer generations of hybridization than wild introgressed populations—and were 
conducted in a greenhouse—they do not indicate that general expression levels are a barrier to 
introgression. Furthermore, here we observe a correlation between expression similarity at 

Fig 5. Relationships between coding sequence tree topology (rows) and gene expression similarity (columns) in the low (A) and high (B) 
triplets. Note that for expression similarity, we did not explicitly construct trees from expression data—the tree representation is simply meant 
to depict observed expression distances. Only discordant trees and expression patterns are shown, but χ2 P-values (0.776 and 0.019 for panels A 
and B, respectively) are reported from the full 3x3 table (see S1 and S2 Tables for the full tables). The cases where both the tree topology and 
pattern of expression are consistent with the inferred history of introgression for that triplet are highlighted in blue. Each cell reports the 
observed number of genes (O) in each category, and the number expected (E) from the χ2 distribution. 

https://doi.org/10.1371/journal.pgen.1009892.g005 
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specific genes and the tree topology inferred from their protein-coding sequences (Fig 5B). 
This association suggests a direct causal effect of introgressed genes on their expression: cis-
regulatory differences at introgressed loci lead to a relationship between local tree topologies 
and expression levels (cf. [59]). Such a relationship is highly unlikely to instead be due to a bar-

rier to introgression. The fact that we do not observe the same correlation in the "low" triplet 
(Fig 5A) could be due either to a comparative lack of statistical power in this triplet, or due to 
more recombination between the protein-coding regions the tree topologies were inferred 
from and the cis-regulatory regions driving expression. Introgression will reduce the opportu-

nities for recombination, which could explain why the "high" triplet retains a higher signal. 
Alternatively, it may be that trans-acting variation is much more common in this triplet, a sce-

nario that would not lead to an association between local gene tree topologies and local gene 
expression. We cannot definitively distinguish among these possibilities given only the data 
presented here. Finally, it is possible that some form of experimental or technical artefact 
could be responsible for asymmetries in many traits, though we note that the sister species in 
both triplets examined here always show the greatest similarity in gene expression (S1 and S2 
Tables). The association we observe between tree topologies and expression similarity at indi-

vidual genes is also inconsistent with an artefact. 
Overall, our results demonstrate both theoretically and empirically that introgression can 

affect patterns of quantitative trait evolution. While considerable attention and excitement has 
justifiably been devoted to the power of introgression as an evolutionary force shaping trait 
variation, this is a double-edged sword, as most phylogenetic comparative methods do not 
account for gene tree discordance. Previous work has shown that discordance due solely to ILS 
can lead to overestimates of the rate of quantitative trait evolution and to underestimates of 
phylogenetic signal [20]. The effects of introgression in misleading our inferences will be 
worse, as it both increases overall discordance and generates asymmetries in trait sharing. 
Future phylogenetic comparative approaches should strive to evaluate the contributions of 
both ILS and/or introgression on trait evolution, allowing for more accurate evolutionary 
inferences. Doing so will pave the way for more powerful inferences about the evolutionary 
forces that shape trait variation among species. 

Materials and methods 

Description of datasets 

We use ovule gene expression data that is described in Moyle et al. [21]. The dataset consists of 
normalized quantitative expression for 14,556 genes measured in six accessions across five spe-

cies (two different accessions of S. pennellii were used in the two triplets). For each accession, 
samples were collected on the day of flower opening for 1-4 biological replicates (individual 
plants) grown in a common greenhouse. When applicable, we took the average expression 
value across replicates within each accession for our analyses. Raw sequencing reads for this 
dataset are available on the SRA under BioProject PRJNA714065. The dataset containing nor-

malized expression for each replicate, in addition to the scripts for all analyses, are available 
from https://github.com/mhibbins/intro_quant_traits. 

We use phylogenomic data that is described in Pease et al. [22]. The dataset consists of tran-

scriptomes from 29 accessions across 13 species, including the six accessions used in our analy-

ses. Pease et al. [22] used MVFtools to estimate transcriptome-wide D-statistics for all possible 
rooted triplets (2925 total values) across the 27 ingroup accessions. From this dataset we 
selected the two triplets to use in our analyses. Pease et al. [22] also inferred gene trees for each 
individual protein-coding region (19,116 genes total) using RAxML [60]; we used this data in 
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our gene-level analyses. Both datasets are published in the Dryad repository https://doi.org/10. 
5061/dryad.182dv. 

Simulation of quantitative traits & power analyses 

We simulated the effect of introgression on quantitative trait values (as shown in Fig 2) under 
two models: an ILS-only model and a model with ILS and introgression. For the ILS-only 
model, we used values of 1 and 1.3 for the speciation time of A and B, and the speciation of C 
from the ancestor of A and B, respectively (all in units of 2N generations). The introgression 
condition maintained the same speciation times, with the addition of an introgression event 
from C into B at a time of 0.5, with δ2 = 0.1. Using these parameters, we used our model to 
construct expected variance/covariance matrices with σ2 = 1 using a custom R function (script 
available at https://github.com/mhibbins/intro_quant_traits/blob/main/scripts/bm_model_ 
sims.R). We then simulated trait values by drawing from a multivariate normal distribution 
using the R function mvrnorm with means of 0 and the constructed matrices. 

We performed a power analysis to assess the statistical power of Q3. Using the simulation 
approach described above, we simulated 100 trait datasets under all combinations of the fol-

lowing parameters: 5000, 10000, and 15000 for the number of genes; 0.1, 0.5, and 1 for t2 – t1; 
0.1, 0.25, and 0.5 for t1 – tm; and 0, 0.01, 0.05, and 0.1 for the rate of introgression. We evalu-

ated significance for each dataset using a one-sample t-test with H0: Q3 = 0. A result was con-

sidered a true positive for our analysis when P < 0.05 and the sign of the mean simulated Q3 

value was consistent with the simulated history of introgression. 

Testing quantitative traits for introgression 

We calculated average expression values across individual replicates of each accession before 
estimating Q3 for each gene. To assess the significance of both our estimated Q3 means and 
signs, we used bootstrap-resampling. For the mean Q3 values, we tested the null hypothesis of 
Q3 = 0 by randomly sampling 10,000 datasets of 14,556 genes each with replacement from the 
empirical gene expression dataset, and estimating the mean value of each. We assessed the 
rank i of the observed Q3 values among these resampled datasets, and a two-tailed P-value was 
estimated using the following formula: 

P ¼ 1 � 2 � j0:5 � ði=nÞj 

where n is the number of observations (in this case, 10,000). This formula measures the devi-

ation of the observed value from the center of the bootstrapped dataset, which has a rank of 
5000. For the sign of individual genes’ Q3 values, we tested the null hypothesis that the num-

ber of negative and positive signs are equal by randomly sampling 10,000 datasets of 14,556 
genes each. For each resampled dataset we counted the number of negative and positive Q3 

values, ranking the datasets from the one with the greatest excess of negative values to the 
greatest excess of positive values. The rank of the observed data against these resampled 
datasets was calculated, and two-tailed P-values were evaluated using the same formula as 
above. 

For the analysis of the relationship between gene-level tree topology and expression similar-

ity, we made use of gene trees inferred using RAxML by ref. [22]. We used the Python package 
ete3 [61] to prune these gene trees down to the accessions involved in our test triplets. We then 
obtained the overlapping set of genes for which both topologies and expression data were 
available, and recorded the expression “topology” based on the minimum pairwise distance in 
expression values. The counts of gene tree topology and expression topology were placed into 
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a 3x3 contingency table for each triplet, and we tested for a significant association using a χ2 

test of independence. 
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