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Abstract 

Phylogenomics has revealed the remarkable frequency with which introgression occurs across the tree of life. These discoveries have been 
enabled by the rapid growth of methods designed to detect and characterize introgression from whole-genome sequencing data. A large 
class of phylogenomic methods makes use of data across species to infer and characterize introgression based on expectations from the 
multispecies coalescent. These methods range from simple tests, such as the D-statistic, to model-based approaches for inferring phyloge-
netic networks. Here, we provide a detailed overview of the various signals that different modes of introgression are expected leave in the 
genome, and how current methods are designed to detect them. We discuss the strengths and pitfalls of these approaches and identify 
areas for future development, highlighting the different signals of introgression, and the power of each method to detect them. We 
conclude with a discussion of current challenges in inferring introgression and how they could potentially be addressed. 
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Introduction 
The potential for hybridization and subsequent backcrossing be-
tween lineages—also known as introgression—has long been un-
derstood (Heiser 1949, 1973; Rieseberg and Wendel 1993; Dowling 
and Secor 1997). Recent hybridization often leads to clear 
genome-wide patterns in hybrid individuals, allowing for the 
detection of F1, F2, and early back-cross hybrids from limited 
sequence data (Nason and Ellstrand, 1993; Anderson and 
Thompson 2002). However, many generations of back-crossing 
can substantially reduce the number of loci retaining a history of 
hybridization, rendering more ancient hybridization events diffi-
cult to detect. As a result, until genome sequencing became 
widely available, it was often difficult to quantify patterns of in-
trogression effectively and reliably. In part precipitated by the 
discovery of introgression between archaic human populations 
(Green et al. 2010; Huerta-Sá nchez et al. 2014), the past decade 
has seen an explosive increase in the rate of discovery of reticu-
late evolution across the tree of life (Mallet et al. 2016; Taylor and 
Larson 2019). Although great efforts have been made in recent 
years to synthesize the biological implications of these discover-
ies (Ellstrand et al. 2013; Hedrick 2013; Harrison and Larson 2014; 
Racimo et al. 2015; Ottenburghs et al. 2017; Suarez-Gonzalez et al. 
2018; Dagilis et al. 2021), comparatively little conceptual synthesis 
has been provided on the accompanying growth in methods used 
to detect and characterize introgression. 

Modern studies of introgression are often predicated on 
“phylogenomic” datasets. These typically consist of whole-
genome or whole-transcriptome sequencing data, collected from 

or focusing on a single individual in at least three populations or 

species. Gene trees can be estimated from alignments of individ-

ual loci or nonoverlapping genomic windows (neither of which 

necessarily contain protein-coding genes), resulting in a collec-

tion of thousands of tree topologies; most methods also require a 

species tree to be specified. A common finding from phyloge-

nomic studies is the ubiquity of gene tree discordance—topolo-

gies from different loci will disagree with both each other and 

with the inferred species tree (e.g., Pollard et al. 2006; Fontaine 

et al. 2015; Novikova et al. 2016; Pease et al. 2016; Edelman et al. 

2019). Although the gene tree topologies from neighboring loci 

are more likely to be similar (Slatkin and Pollack 2006), discor-

dance occurs even between neighboring loci, as recombination 

uncouples the history of flanking genomic windows. 
When studying introgression, researchers are often interested 

not just in detection but also the characterization of introgression 

events. Such characterization can include the direction (identity 

of donor and recipient populations), the extent across the ge-

nome, the timing (in absolute terms or relative to speciation), or 

the mode (i.e., instantaneous “pulses” of hybridization vs continu-

ous gene flow) of introgression. This information is often difficult 

to glean from a discordant tree at a single locus. When many loci 

are sampled in a phylogenomic framework, it becomes possible 

to learn about the general factors causing discordance in a data-

set, allowing for introgression to be distinguished from other pro-

cesses. Data from a rooted triplet of species—or an unrooted 

quartet—are the minimum requirement to carry out powerful 

tests for introgression based on gene tree discordance using 
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genome-scale datasets. Importantly, this can be done using only 
a single haploid sequence per species (here, we use the term 
“species” loosely to refer to any lineage or population which 
shows evidence of historical long-term isolation from other such 
lineages). These approaches range in complexity from summary 
statistics based on biallelic site patterns or branch lengths to 
model-based likelihood inference methods. 

In this review, we focus on phylogenomic methods for study-
ing introgression, most of which are based on the multispecies 
coalescent (MSC) model and use data from one sample per spe-
cies. These methods, despite their simplicity, come with several 
advantages: (1) gene tree frequencies and branch lengths are fully 
described under the MSC model using one sample per species, 
and adding more samples provides little new information with 
respect to introgression; (2) much of the genealogical signal of in-
trogression detected by these methods is not mimicked by selec-
tion (Przeworski et al. 1999; Williamson and Orive 2002; 
Vanderpool et al. 2020), making them more robust to non-neutral 
processes; (3) a description of these methods can help to build bi-
ological intuition. For these reasons, modern phylogenomics 
studies often employ single-sample methods to detect introgres-
sion, even when multiple samples per species are available (e.g., 
Fontaine et al. 2015; Pease et al. 2016; Edelman et al. 2019; 
reviewed in Dagilis et al. 2021). 

We provide a detailed conceptual overview of the signals that 
various introgression scenarios are expected to leave in the ge-
nome, and the methods that are designed to detect these signals 
to infer the presence, timing, direction, and extent of introgres-
sion among species. For a more formal statistical treatment of 
these topics, we direct readers to other reviews: Degnan (2018), 
Elworth et al. (2019), and Jiao et al. (2021). We discuss common 
misuses and misinterpretations of these methods and provide 
recommendations for best-use practices. Based on these results, 
we identify areas for future theoretical and methodological ad-
vancement, as well as the challenges that remain for interpreting 
current methods. 

Biological processes that generate gene tree 
heterogeneity 
We begin our discussion of phylogenomic methods with the sim-
plest possible sampling scheme: genomic data from a single sam-
pled haploid individual from each of three focal species and an 
outgroup. By “genomic data” we mean data sampled from many 
loci across the genome, often with the standard assumption of no 
intra-locus recombination and free interlocus recombination. 
This data structure will hereafter be referred to as a quartet or 
rooted triplet. For three ingroup species, P1, P2, and P3, and an 
outgroup species, O, there are three possible tree topologies de-
scribing how they can be related: [((P1, P2),P3),O], [((P2, P3),P1),O], 
or [((P1, P3),P2),O] (Figure 1). In addition to a single bifurcating 
phylogeny describing the evolutionary history of the quartet, 
trees can be estimated for each individual locus. The frequencies 
of each topology across loci are referred to as gene tree frequen-
cies, even when they do not come from protein-coding genes. 
This heterogeneity in both the topology and branch lengths of 
gene trees is caused by two different biological processes, incom-
plete lineage sorting (ILS) and introgression, in addition to errors 
in gene tree estimation. In this section, we describe the expected 
effects of ILS and introgression on gene trees in order to explain 
how tests for introgression work; we discuss the potential 
impacts of gene tree estimation error in a later section. 

ILS as a null hypothesis for tests of introgression 
The phenomenon of ILS, in which two or more lineages fail to co-
alesce in their most recent ancestral population (looking back-
wards in time), can result in individual gene trees that are 
discordant with the species history (Figure 1). Phylogenomic 
methods must account for this phenomenon to make accurate 
inferences about introgression. Discordant gene trees occur be-
cause, when ILS occurs, it becomes possible for the order of coa-
lescent events to differ from the order of splits in the species 
phylogeny (Figure 1, top right panel). Gene tree discordance due 
to ILS is very common in modern phylogenomic datasets (e.g., 
Pollard et al. 2006; Fontaine et al. 2015; Novikova et al. 2016; Pease 
et al. 2016; Copetti et al. 2017; Wu et al. 2018a; Edelman et al. 2019), 
though some discordance may be due to gene tree inference 
errors, especially at older timescales. ILS can arise within phylog-
enies that contain no introgression events. Because both ILS and 
introgression can generate many of the same genealogical pat-
terns, it is essential to incorporate ILS into the null hypothesis of 
tests for introgression. 

Fortunately, the effects of the parameters that influence the 
probability of ILS—time between speciation events and ancestral 
population size—are well understood from the neutral MSC 
model (Hudson 1983; Tajima 1983; Pamilo and Nei 1988). For a 
rooted triplet, the probability that the two sister lineages (e.g., P1 

and P2 in Figure 1) coalesce in their most recent common ances-
tral population is given by the formula 1  es , where s is the 
length of this internal branch in units of 2N generations (some-
times referred to as “coalescent units”). Conversely, the probabil-
ity of ILS (i.e., that they do not coalesce) is es . If ILS occurs, all 
three lineages (P1, P2, and P3) enter their joint ancestral popula-
tion. Within this population the coalescent events happen at ran-
dom, such that lineages leading to each pair of species have a 1/3 
chance of coalescing first. This means that the two discordant 
gene tree topologies are expected to be equal in frequency 
(Figure 1, top right), with probabilities of 1=3es each. In addition, 
the concordant tree topology can be produced either by lineage 
sorting with probability 1  es or ILS with probability 1=3es 

(Figure 1, top left). This guarantees that the concordant tree to-
pology will always be at least as frequent as the two discordant 
trees (Figure 1, top row). These expectations under ILS form the 
null hypothesis for tests of introgression based on gene tree fre-
quencies. 

In addition to gene tree frequencies, ILS affects expected coa-
lescence times, and therefore sequence divergence, between 
pairs of species. In any population, the expected times to coales-
cence depends on how many lineages are present (Kingman 1982; 
Hudson 1983; Tajima 1983). If three lineages are present, the first 
coalescence is expected to occur 2=3N generations in the past. 
After this first coalescence—or if only two lineages were present 
to begin with—the next coalescence is expected a further 2N gen-
erations in the past. These expectations are equally applicable to 
current populations as to ancestral populations, but coalescence 
cannot occur until the lineages under consideration are in a com-
mon population. Therefore, expected coalescence times between 
species always have the time of speciation included as a con-
stant, no matter how far back lineage-splitting occurred 
(Gillespie and Langley 1979). 

For example, the expected time to coalesce between sequen-
ces sampled from species P1 and P2 in Figure 1 is the time to spe-
ciation plus an additional 2N generations in the past. If this 
coalescence happens in their most recent common ancestor, the 
next coalescent event will occur in the common ancestor of all 
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three species, between the P1/P2 ancestral lineage and the line-
age leading to P3 (Figure 1, bottom row). This event occurs at the 
time of speciation of P3 from the P1/P2 ancestor plus another 2N 

generations in the past. If ILS occurs, both coalescent events oc-
cur in the common ancestor of all three species, with the first 
event occurring at the time of speciation plus 2/3N generations, 
and the second event occurring at the time of the first event plus 
2N generations. Note that, if we condition on lineage sorting hav-
ing occurred, the expected time of the first coalescent event 
becomes slightly more complicated (see Mendes and Hahn 2018; 
Hibbins and Hahn 2019 for exact expectations). 

The two pairs of nonsister lineages in a rooted triplet (P1 and 
P3 or P2 and P3 in Figure 1) can coalesce at one of two times, 
depending on whether they are the first or second pair to coa-
lesce in a gene tree (there can only be a discordant topology if 
they are the first to coalesce). Owing to the symmetry of gene 
tree topology shapes and frequencies, these times are equivalent 
across loci, leading to the null expectation under ILS that 
genome-wide divergence between both pairs of nonsister taxa 
should be equal (Figure 1, bottom row). Finally, each of these co-
alescence times is expected to follow an exponential distribution 
around the expected value (Hudson 1983; Tajima 1983). 
Therefore, coalescence times will be variable, but should still 
follow the symmetries of the ILS-only model on average. 

The effects of introgression on gene trees 
Introgression between two lineages occurs when an initial hy-
bridization event is followed by back-crossing into one or both pa-
rental lineages. Hybridization itself—the creation of a hybrid 
individual—is generally not sufficient to be called introgression, 
though polyploid or homoploid hybrid species will be identified 
by many of the same tests described here (e.g., Meng and 
Kubatko 2009; Blischak et al. 2018; Folk et al. 2018). Similarly, hori-
zontal gene transfer can also generate discordant gene trees. 

There are many different introgression scenarios, each with a dif-
ferent effect on the underlying gene trees. While there are well-
developed mathematical tools that describe the effects of intro-
gression on gene tree topologies [e.g., the multispecies network 
coalescent (MSNC); reviewed in Degnan (2018), Elworth et al. 
(2019), and Jiao et al. (2021)], we generally do not need the predic-
tions from these models to test for the presence of introgression 
(with some exceptions discussed below). Instead, because our 
tests are often simply looking for a rejection of the ILS-only 
model (see previous section for a description of expected patterns 
under ILS alone), a general understanding of the key outcomes of 
introgression will be sufficient. In later sections, we will describe 
in more detail the specific signatures used to characterize the ex-
tent, timing, and/or direction of introgression events. Figure 2 
summarizes the scenarios involving introgression that are 
thought to be most frequent. 

As a first key distinction, introgression can occur either be-
tween sister lineages (events 1 and 2 in Figure 2A) or nonsister 
lineages (events 3 and 4 in Figure 2A). Generally, introgression 
between sister lineages should increase the proportion of concor-
dant gene trees relative to the case of ILS alone. To see why this 
is, consider introgression event 1 in Figure 2: gene flow after spe-
ciation between P1 and P2 effectively increases s, the length of 
the internal branch separating these two lineages from their 
common ancestor with P3. This is because P1 and P2 can now be 
more closely related at introgressed loci than in the species phy-
logeny. As discussed in the previous section, the rate of ILS is in-
versely proportional to the value of s. Loci with an introgressed 
history therefore have a reduced probability of ILS because of the 
increased time for P1 and P2 to coalesce. While there are some 
exceptions to this rule—all of which involve introgression be-
tween sister lineages on an internal branch of the species tree 
(i.e., event 2 in Figure 2; Solı́s-Lemus et al. 2016; Long and 
Kubatko 2018; Jiao and Yang 2021)—in no cases should gene flow 

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 

+ > = 

P1 P2 P3P1 P2 P3 P1 P2 P3 P1 P2 P3 

+ = + 

Figure 1 Expected gene tree topologies and coalescence times under ILS only. For a rooted triplet, four topologies are possible (top row): two concordant 
with the species tree, which can result either from lineage sorting or ILS (top left), and two that are discordant with the species tree and arise from ILS 
only (top right). The two concordant trees must be at least as frequent as the two discordant trees, which are equally frequent to each other. For 
nonsister pairs of taxa—either P2–P3 (bottom left) or P1–P3 (bottom right)—coalescence is expected to occur at one of two times, depending on whether 
they coalesce first or second in a gene tree (gray dotted lines). These expected times are symmetrical across gene trees, and so pairwise divergences 
between the nonsister lineages are expected to be equal when averaged across loci. 
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between sister lineages result in one discordant topology becom-
ing more common than others. Because an increase in concor-
dant topologies is also consistent with an ILS-only model with a 
longer internal branch in the species tree, gene tree frequencies 
alone cannot tell us whether introgression has occurred between 
sister lineages. 

When introgression occurs between nonsister lineages (events 
3 and 45 in Figure 2A), one discordant tree topology can become 
more common than the other. This asymmetry in discordant tree 
topologies is one of the clearest signals of introgression. In both 
events 3 and 4, we expect loci that have introgressed to be more 
likely to have the gene tree topology [(P2, P3),P1] (Figure 2C). 
While not all loci following an introgression history will have this 
discordant topology, the extended period of shared history be-
tween P2 and P3 makes it more likely for these lineages to coa-
lesce. In general, the strength of the asymmetry in discordant 
topologies will depend on the net extent, timing, and direction of 
introgression (Durand et al. 2011; Martin et al. 2015; Zheng and 
Janke 2018), as well as the absence of introgression between the 
other nonsister pair (in which case the other discordant topology 
would also go up in frequency). Although the same discordant to-
pology will be produced in excess by events 3 and 4 (Figure 2C), 
note that the resulting branch lengths will differ on average be-
tween the two. This difference makes it possible to determine the 
main direction of introgression between nonsister taxa (see be-
low). Note that while we have drawn gene flow as unidirectional 
to highlight the fact that this distinction can be made, bidirec-
tional gene flow between these lineages is also biologically plau-
sible. 

Detecting introgression using gene tree 
frequencies 
The D-statistic 
A widely used method for inferring introgression is the D-statis-
tic, or—perhaps because there are already so many Ds in use— 
what is commonly referred to as the ABBA–BABA test (Green et al. 
2010). The statistic quantifies biallelic site patterns produced by 
introgression between nonsister taxa as a proxy for gene tree fre-
quencies. By using site patterns, it avoids the need to infer gene 
trees from individual blocks of the genome; the test was origi-
nally formulated to test for evidence of gene flow between 
Neanderthals and archaic humans (Green et al. 2010; Durand 
et al. 2011), where estimating full gene trees would not have been 
feasible. Possibly because of this minimal requirement, it is still 
the most widely used test for introgression (Dagilis et al. 2021). 

The D-statistic counts the occurrence of two configurations of 
shared derived alleles across three species and an outgroup. 
Assuming the species tree [((P1, P2),P3)O], and denoting the an-
cestral allele as “A” and the derived allele as “B,” there are two 
parsimony-informative patterns of discordant sites. The pattern 
“ABBA” represents sites where P2 and P3 share a derived allele, 
while P1 and the outgroup have the ancestral allele. The pattern 
“BABA” represents sites where P1 and P3 share a derived allele, to 
the exclusion of P2 and the outgroup (Figure 3). For clarity, note 
that sites supporting the species topology would have the pattern 
BBAA; however, these are not used in this statistic. 

The D-statistic assumes an infinite-sites model, meaning that 
the two discordant site patterns can only arise via single muta-
tions on the internal branches of discordant gene trees (Figure 3, 

P1 P2 P3 

1 

3 

4 

2 

P1 P2 P3 P1 P2 P3 

P1 P2 P3P1 P2 P3 

1 2 

3 4 

A B 

C 

Species tree Most common gene tree at introgressed loci 

t 

t 

t + 2N 

t + 2N 

t + 2N 

t + 2N 

Figure 2 An overview of detectable introgression scenarios for a rooted triplet, and their effects on gene tree frequencies and branch lengths. (A) The 
species tree relating three lineages, with speciation times t1 and t2 labeled. Introgression can occur between extant (1) or ancestral (2) sister lineages, or 
between nonsister taxa, with P3 as either the recipient (3) or the donor (4). (B) Gene trees at introgressed loci for introgression between sister lineages. 
Gray dashes denote the expected coalescence times under ILS only. Introgression between sister taxa reduces divergence between the involved taxa but 
does not generate discordant gene trees (events 1 and 2). In both trees the expected time to coalescence for pairs of lineages in the absence of 
introgression is denoted with dashed horizontal lines. (C) Gene trees at introgressed loci for introgression between nonsister lineages. When P3 is the 
recipient of introgression (event 3), discordant gene trees are generated uniting P2 and P3. In addition, divergence is reduced between both P2 and P3 and 
between P1 and P3. When P3 is the donor of introgression (event 4) discordant gene trees are again generated uniting P2 and P3. In this case divergence is 
reduced only between P2 and P3, while divergence is increased between P1 and P2. In both trees, the expected time to coalescence for pairs of lineages in 
the absence of introgression is denoted with dashed horizontal lines. 
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blue dots/branches). Under this assumption, the frequencies of 
ABBA and BABA site patterns summed across many genomic loci 
are expected to reflect the frequencies of underlying gene trees. If 
the number of ABBA and BABA sites differs significantly, then an 
asymmetry in gene tree topologies is inferred, with introgression 
occurring between the species sharing the derived state more fre-
quently. Figure 3 depicts the scenario when the site pattern 
ABBA is more common, implying introgression between P2 and 
P3. 

To make it comparable across studies, the value of the D-sta-
tistic is typically reported after normalization using the sum of 
ABBA and BABA pattern counts, giving the following formula: 

D ¼ 
ABBA  BABA 
ABBA þ BABA 

; 

where ABBA and BABA represent the number of sites of each 
type. This statistic has an expected value of D ¼ 0 if there is no 
gene flow (see “High ILS” simulation condition; Supplementary 
Figures S2 and S3). When used as a whole-genome test of intro-
gression between nonsister taxa, the D-statistic is robust under 
many different scenarios (Zheng and Janke 2018; Kong and 
Kubatko 2021), but can be affected by certain forms of ancestral 
population structure (Slatkin and Pollack 2008; Durand et al. 
2011; Lohse and Frantz 2014) (see Distinguishing introgression from 

ancestral population structure for more discussion of this issue). 
Despite the widespread popularity and relative robustness of 

D, there are several important considerations and limitations to 
its use, some of which are often overlooked. The first of these 
concerns how to properly test the null hypothesis that D ¼ 0. The 
expected site pattern counts of the D-statistic can easily be calcu-
lated, so it may be tempting to use a parametric test for differen-
ces. However, such tests assume that individual observations 

represent independent samples: this assumption is violated be-
cause closely spaced sites often share the same underlying local 
genealogy, making them nonindependent. The pseudoreplication 
that results from treating all sites independently leads to inaccu-
rate P-values. The solution to this issue is to use a block-
bootstrap (or block-jackknife) approach to estimate the sample 
variance and then to calculate the P-value (Green et al. 2010). This 
approach correctly accounts for correlations within blocks of 
adjacent sites. 

Although formulated as a genome-wide test, there are cases 
where the D-statistic has been applied to look for introgression in 
smaller genomic windows (e.g., Kronforst et al. 2013; Zhang et al. 
2016; Wu et al. 2018b; Grau-Bove et al. 2020). However, the 
genome-wide expectation under ILS alone that D ¼ 0 does not 
hold true for smaller genomic windows. Since a single nonrecom-
bining locus contains a single genealogy by definition, it is only 
capable of generating one parsimony-informative biallelic site 
pattern (again assuming an infinite-sites mutation model). The 
consequence is that the value of D at a single locus can only be 
þ1, 0, or 1, depending on the local genealogy (i.e., only ABBA, 
BBAA, or BABA). Therefore, even in ILS-only scenarios, there will 
be regions of the genome with extreme values of D, either positive 
or negative. This situation is more likely to occur in regions of 
low recombination, as in these regions even large genomic win-
dows may only contain a small number of independent genealo-
gies. Highlighting this problem, Martin et al. (2015) found that the 
variance of D is inflated in regions of low recombination, result-
ing in an excess of false positives if tests were to be performed on 
a per-window basis. Similar caution is warranted when applying 
D to inversions, as the entire inversion can act as a single locus 
(cf., Fuller et al. 2018). For these reasons, while it may be informa-
tive to plot the value of the D-statistic along chromosomes, tests 
using D should be applied only to whole genomes, or at least to 

P1 P2 P3 O P1 P2 P3 O P1 P2 P3 O 

B B A A A B B A 

P1 P2 P3 O 

A B B A 

B A B A 

Figure 3 Biallelic site patterns are informative of underlying gene tree topologies. Except for low levels of homoplasy, such patterns can only arise from 
mutations (blue) on internal branches of the local genealogy. The occurrence of the incongruent site patterns “ABBA” (top middle) and “BABA” (top right) 
are therefore expected to reflect the frequency of discordant gene tree topologies. With introgression between a specific nonsister species pair, one 
incongruent pattern (bottom) can increase in frequency over the other due to the underlying asymmetry in gene tree frequencies. 
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genomic regions that are sufficiently large to guarantee sampling 
a large number of underlying genealogies. 

The D-statistic does not provide any information about intro-
gression other than its presence or absence. While its value does 
increase with the proportion of introgressed loci, it is not a good 
estimator of this quantity, tending to greatly overestimate the 
true value (Martin et al. 2015; Pfeifer and Kapan 2019; Hamlin 
et al. 2020). In addition, the sign of D is sometimes interpreted as 
providing information on the direction of introgression, though it 
can only identify which taxa are involved, and not the donor and 
recipient populations. For example, a significant D-statistic im-
plying introgression between P1 and P3 could involve the P3 ! P1 

direction, the P1 ! P3 direction, or some combination of the two. 
D has more power to detect introgression in the P3 ! P1 direction 
(see simulation conditions “P1 into P3” and “P3 into P1”; 
Supplementary Figures S2 and S3), but can detect it in either di-
rection. Lastly, the D-statistic is agnostic to the timing of intro-
gression (as long as it is postspeciation) and may yield a positive 
result under a variety of scenarios, including instantaneous 
“pulses” of introgression (i.e., the MSNC model), hybrid specia-
tion/admixed population formation, or gene flow over continu-
ous periods of time (i.e., the isolation-with-migration, or “IM” 
model; Wakeley and Hey 1998; Nielsen and Wakeley 2001). 

Overall, the D-statistic is a very reliable genome-wide test for 
introgression, but alternative methods are needed to characterize 
any detected introgression events in more detail. 

Inferring the extent and direction of introgression 
using derived allele counts 
Many researchers are interested not only in the presence or ab-
sence of introgression, but in quantifying its magnitude across 
the genome and in identifying the donor and recipient popula-
tions. Here, we use “extent” to refer to the proportion of the ge-
nome that originates from a history of introgression. This is also 
sometimes referred to as the “inheritance probability” or 
“admixture proportion.” Alternatively, in the IM framework, the 
movement of migrant individuals over continuous time is char-
acterized by a “rate” of introgression (Wakeley and Hey 1998; 
Nielsen and Wakeley 2001). 

Accurate estimates of the extent and direction can be obtained 
by considering additional biallelic site patterns to ABBA and 
BABA. Many such methods exist, and discussing them at length 
is unnecessary for the scope of our review; here we simply men-
tion a few of these approaches and direct readers to the relevant 
literature. As mentioned earlier, simply using the D-statistic does 
not provide an unbiased estimation of the extent of introgression 
(Martin et al. 2015; Pfeifer and Kapan 2019; Hamlin et al. 2020). A 
recently proposed extension of D called Dp (Hamlin et al. 2020) 
adds the counts of BBAA sites to the denominator to form: 

Dp ¼ 

 
 
 
 

ABBA  BABA 
BBAA þ ABBA þ BABA 

 
 
 

: 

Taking the degree of asymmetry as a fraction of the total number 
of parsimony-informative biallelic sites brings Dp conceptually 
closer to estimating a genome-wide introgression proportion (see 
the Df statistic of Pfeifer and Kapan 2019 for a similar approach). 

Another common approach is to compare the observed value 
of an introgression test statistic to the value that would be 
expected under a scenario where the entire genome was intro-
gressed. This expected value can be obtained by estimating the 
statistic using the same species, or even the same sample, in 
both the donor and recipient positions. The F4-ratio or a (Green 

et al. 2010; Patterson et al. 2012; Peter 2016) and fd (Martin et al. 
2015) statistics take this approach. The a statistic requires data 
from five samples and assumes an admixed population with two 
parent populations, while fd assumes complete homogenization 
of allele frequencies under total introgression, making it applica-
ble to a quartet. HyDe (Blischak et al. 2018; Kubatko and Chifman 
2019) estimates the extent in a similar way under a hybrid specia-
tion scenario using linear combinations of derived site patterns. 
The assumptions of F4 and HyDe are somewhat restrictive and 
are not likely to be reflective of the majority of introgression in 
nature (Schumer et al. 2014). However, HyDe gives highly accurate 
estimates of the extent of introgression when its assumptions 
about hybridization are met, and still provides reasonable esti-
mates for the extent when these assumptions are violated (Kong 
and Kubatko 2021). 

Unless additional assumptions are made, there is not enough 
information contained in the frequency of gene tree topologies 
(i.e., site pattern counts) alone to estimate the direction of intro-
gression in a quartet or rooted triplet. However, if a sample is 
obtained from a fifth species (Eaton and Ree 2013; Pease and 
Hahn 2015) or if multiple samples per species are available for 
the quartet (Martin and Amos 2021), then it is possible to infer 
the direction of introgression. The “partitioned D-statistics” of 
Eaton and Ree (2013) were the first attempt to infer the direction 
of introgression in a five-taxon phylogeny. Unfortunately, redun-
dant site pattern counts make the results of this directionality 
test uninterpretable. The DFOIL method of Pease and Hahn (2015) 
resolves this problem by setting up a system of four D-statistics, 
explicitly testing each of the 16 possible introgression events and 
directions. DFOIL assumes that the five-taxon phylogeny is sym-
metric, with two pairs of sister species. In this particular configu-
ration of species it becomes possible to polarize introgression 
events because the direction of introgression affects relationships 
between the donor and both the recipient species and its sister 
taxon. Unfortunately, DFOIL does not work if the species tree is an 
asymmetric, or “caterpillar,” tree. 

Inferring introgression events from estimated 
gene trees 
While methods based on site patterns can be powerful, there are 
also fundamental limitations to the kinds of data they can be ap-
plied to. First, as mentioned earlier, a key assumption of the D-
statistic is an infinite-sites model of mutation. When applied to 
closely related, extant species, this assumption is likely to hold. 
However, with increasing divergence times it becomes more 
likely that ABBA and BABA site patterns can accumulate due to 
convergent substitutions, and thus will no longer reflect underly-
ing gene tree topologies. This can potentially lead to false posi-
tives if there is variation in substitution rates among samples. 
For this reason, site patterns may not be a reliable way to test for 
introgression between more distantly related extant species, or 
along branches deeper in a species tree. Second, as the number of 
sampled species increases, the number of possible trees and 
quartets increases super-exponentially (Felsenstein 2004). This 
makes it impractical to apply quartet-based methods to trees 
with many taxa. 

A solution to these problems is to estimate gene tree topolo-
gies directly. While substitution rate variation can still lead to 
systematic errors in gene tree inference, this approach should be 
more robust than simply using site patterns because explicit tree 
inference methods such as maximum likelihood can better ac-
commodate convergence on long branches (Swofford et al. 2001). 
Once gene trees have been estimated from many loci, the counts 
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of discordant topologies can be used in much the same way as 
ABBA and BABA sites are in the D test. In fact, Huson et al. (2005) 
proposed such a test comparing alternate tree topologies in a 
triplet, using a statistic they called D. Significance in genome-
scale datasets can be evaluated by bootstrap-sampling the esti-
mated gene trees (Vanderpool et al. 2020) or by assuming a v2 dis-
tribution (Suvorov et al. 2021), with D ¼ 0 again representing the 
null hypothesis under ILS alone. While D still has the potential to 
be affected by sources of technical error such as systematic bias 
in gene tree inference—and may have limited power to detect 
very ancient introgression—it has the advantage of being more 
robust to the infinite-sites assumption and allows for testing of 
introgression along deep, internal branches of a phylogeny, while 
maintaining power comparable to D for more recent introgres-
sion scenarios (Supplementary Figure S3). Therefore, D represents 
a straightforward way to test for introgression using a small 
number of additional assumptions. 

Estimated gene trees can also be used as input to phylogenetic 
network methods. These methods construct a likelihood or pseu-
dolikelihood function that is explicitly derived from a phyloge-
netic network model, for which parameters can then be 
estimated using either maximum likelihood or Bayesian 
approaches. The program PhyloNet has methods that infer net-
works directly from gene tree topologies using either maximum 
likelihood (InferNetwork_ML; Yu et al. 2014) or maximum pseudoli-
kelihood (InferNetwork_MPL; Yu and Nakhleh 2015). Similarly, 
SNaQ (Solı́s-Lemus and Ané 2016) estimates a network with retic-
ulation edges via maximum pseudolikelihood using quartet con-
cordance factors (Baum 2007)—essentially just the counts of the 
three possible unrooted tree topologies. We will discuss phyloge-
netic network methods in more detail in Likelihood methods for 

detecting introgression. 

Detecting introgression using coalescence 
times 
While much can be learned about introgression from the fre-
quency of gene tree topologies alone, including additional infor-
mation about the distribution of coalescence times can lead to 
much richer inferences. Some advantages of including coales-
cence times include more flexibility in inferring introgression be-
tween nonsister species, detection of introgression between sister 
taxa, and distinguishing introgression from ancestral population 
structure. In the following sections, we expand on the expected 
effects of introgression on coalescence times and branch lengths, 
followed by a description of how this information is used in con-
cert with gene tree frequencies to make inferences about intro-
gression. 

Detecting introgression using signals of pairwise 
divergence 
Just as was the case for gene tree topologies, it is possible to make 
inferences about introgression by studying violations of expected 
patterns of pairwise coalescence times under an ILS-only model. 
As previously mentioned, one of these expected patterns is a 
symmetry in coalescence times between the two pairs of non-
sister taxa in a quartet (Figure 1, bottom). If one pair of nonsister 
taxa has more recent coalescence times on average than the 
other, postspeciation introgression between that pair is a likely 
explanation. Coalescence times can be approximated using sim-
ple measures of pairwise sequence divergence, assuming an infi-
nite-sites model (or at least that genetic distance is proportional 
to coalescence time). Therefore, one of the simplest ways to test 

for introgression is to test for an asymmetry in pairwise sequence 
divergence. This logic has been informally applied to test for in-
trogression (Brandvain et al. 2014) and has recently been formal-
ized in several test statistics including D3 (Hahn and Hibbins 
2019) and the branch-length test (Suvorov et al. 2021). D3 is 
straightforward and has the following definition (changed from 
the original to be consistent with the notation used here): 

D3 ¼ 
dP2P3 – dP1P3 

dP2P3 þ dP1P3 
; 

where d denotes the genetic distance between the specified popu-
lations. This statistic takes the same general form as the D-statis-
tic, where the relevant difference in the numerator is normalized 
by the sum of the two values in the denominator. Like the D-sta-
tistic, significance of D3 can be evaluated using a block-bootstrap. 
A major advantage of D3 over site-pattern-based tests is that it 
does not require data from an outgroup—it only needs one hap-
loid sequence from three ingroup species. As with D, D3 can only 
detect introgression between nonsister lineages and has compa-
rable power under this scenario (Supplementary Figure S3). 

Characterizing introgression using estimated 
gene trees with branch lengths 
Using pairwise divergences between only nonsister taxa ignores 
information about the full distribution of coalescence times 
within different gene tree topologies. More information is con-
tained within these branch lengths, allowing for estimation of 
the timing and direction of introgression in a quartet. As with 
pairwise measures, we assume that branch lengths from gene 
trees are a good proxy for coalescence times. However, branch 
lengths can be affected by other factors, such as substitution rate 
variation, selection, sequencing error, and/or gene tree estima-
tion error. Care must therefore be taken when applying all meth-
ods that use this information, including the likelihood methods 
described later. Despite these caveats, several signals appear to 
be robust to many perturbing factors. 

Because introgressing taxa can coalesce via either introgres-
sion (Figure 4a, blue) or speciation (Figure 4A, red) depending on 
the history at a locus, a bimodal distribution arises when coales-
cence times are measured across loci (Figure 4A). This distribu-
tion is not expected under ILS alone and can therefore be used to 
test for introgression. In addition, the more recent peak provides 
information about the timing of introgression, while the fre-
quency of gene trees under this peak compared with the older 
peak provides information on the extent of introgression. This 
approach to characterizing introgression is implemented in the 
software QuIBL (Quantifying Introgression via Branch Lengths; 
Edelman et al. 2019). 

The direction of introgression uniquely affects the coalescence 
times of the nonsister pair of species uninvolved in introgression 
(Figures 2C and 4B). For example, the direction of introgression 
between P2 and P3 has predictable effects on the coalescence 
time between P1 and P3. When introgression occurs from P3 into 
P2 (Figure 4B, left), P2 traces its ancestry through the P3 lineage 
at introgressed loci (note that while the direction of introgression 
is typically described forward in time, the coalescent process 
occurs backwards in time). Because of this, divergence between 
P1 and P3 is unchanged by introgression in this direction. In con-
trast, when introgression is from P2 into P3 (Figure 4B, right), P3 

traces its ancestry through the P2 lineage at introgressed loci. 
This allows P3 to coalesce with P1 earlier than it normally would, 
which decreases the divergence between P1 and P3. 
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These genealogical processes lead to general predictions that 
can be used to infer the primary direction of introgression be-
tween taxa. Gene trees that are concordant with the species tree 
can be used as a baseline for the expected amount of P1–P3 diver-
gence; although these trees can arise from ILS at introgressed 
loci, the effect of the direction will not be manifest since they are 
concordant. By comparing this baseline divergence to the amount 
of P1–P3 divergence in gene trees consistent with a history of in-
trogression, the direction of introgression can be inferred. Lower 
P1–P3 divergence in the latter class of trees provides evidence for 
P2 ! P3 introgression, but does not necessarily rule out the other 
direction (i.e., there could simply be less gene flow in the other di-
rection). Alternatively, if P1–P3 divergence is the same in both to-
pologies, then introgression is primarily P3 ! P2. This logic to 
polarizing introgression is used by the D2 statistic (Hibbins and 
Hahn 2019) and the DIP method (Forsythe et al. 2020). 

Finally, PhyloNet’s InferNetwork_ML method (Yu et al. 2014) is  
able to infer phylogenetic networks with reticulation edges (i.e., 
discrete introgression events) from gene trees with branch 
lengths using maximum likelihood. See Likelihood methods for 

detecting introgression for a more detailed discussion. 

Distinguishing introgression from ancestral 
population structure 
Asymmetric gene tree topology frequencies can arise from cer-
tain kinds of ancestral population structure (Slatkin and Pollack 
2008; Durand et al. 2011; Lohse and Frantz 2014). The scenario 

that generates asymmetries imagines that the population ances-
tral to all three species is split into at least two subpopulations, 
such that the ancestors of P3 are more closely related to either 
the ancestors of P1 or P2 (but not both) (Supplementary Figure 
S1A). Because the gene tree topologies in this ancestral species 
will be skewed toward relationships joining P3 and one of the sis-
ter lineages, this scenario can lead to a significant asymmetry in 
gene tree topologies even in the absence of postspeciation intro-
gression (Durand et al. 2011). This will also result in a slight asym-
metry of genome-wide pairwise divergence times, since the more 
common discordant tree will contribute more to the average 
value. All of this means that ancestral structure can result in 
false positives when testing for introgression using simple 
patterns of asymmetry. 

Fortunately, while these two scenarios are indistinguishable 
using only gene tree topologies alone, they are distinguishable 
when using the distribution of branch lengths. Under ancestral 
population structure, divergence between the sister taxa in 
whichever discordant gene tree becomes more frequent will be 
higher than it would be under introgression. Lohse and Frantz 
(2014) incorporated the expected branch length differences in 
these two models into a maximum likelihood framework, which 
was then used to confirm the signal of human–Neanderthal in-
trogression that was originally uncovered by the D-statistic. 
Additionally, ancestral population structure is not expected to re-
sult in a bimodal distribution of coalescence times. This means 
that methods capable of detecting two peaks of coalescence, 
such as QuIBL and PhyloNet-based methods that use trees with 
branch lengths or sequence data directly (and possibly other like-
lihood methods), should also be robust to the effects of popula-
tion structure. 

Detecting introgression between sister species 
Introgression between sister species is very difficult to detect us-
ing a single haploid sequence from each species. The classic 
asymmetry patterns described in previous sections do not apply 
in this scenario, either for gene tree topologies or coalescence 
times. While introgression between sister species should lead to 
an increased variance in coalescence times compared with an 
ILS-only model, this signal is easily confounded by other pro-
cesses such as nonequilibrium demography or linked selection 
(Cruickshank and Hahn 2014; Roux et al. 2016; Sethuraman et al. 
2019). These limitations have typically been addressed by com-
bining two alternative sources of information: (1) multiple 
sequences for each of the two introgressing species and (2) local 
reductions in between-species divergence relative to a genome-
wide baseline. 

Most available methods for inferring introgression between 
sister taxa are not phylogenomic in multiple senses: they typi-
cally require polymorphism data, they often identify locally 
introgressed regions rather than genome-wide signals, and they 
do not explicitly test against an ILS-only case. Genome scans us-
ing summary statistics such as FST (Wright 1931) and dxy (Nei and 
Li 1979) are common, though relative measures of divergence 
such as FST are confounded by natural selection when used for 
this task (Charlesworth 1998; Noor and Bennett 2009; Nachman 
and Payseur 2012; Cruickshank and Hahn 2014). There are multi-
ple statistics based on minimum pairwise distances between 
multiple haplotypes in two species that avoid problems caused 
by selection (Joly et al. 2009; Geneva et al. 2015; Rosenzweig et al. 
2016), and new machine learning methods combine multiple 
summary statistics into a single comparative framework that is 
powerful and robust (e.g., Schrider et al. 2018). However, these 
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Figure 4 Coalescence times provide information on the timing, direction, 
and presence of introgression. (A) Postspeciation introgression between 
P2 and P3 allows them to coalesce more quickly at introgressed loci 
(blue). This reduces their whole-genome divergence relative to P1 and P3, 
an asymmetry that can be used to test for introgression. Since 
coalescence can now occur at one of two times, after introgression (blue) 
or after speciation (red), it also results in a bimodal distribution of 
coalescence times across loci (right figure). The more recent peak of this 
distribution can be used to estimate the timing of introgression. (B) The 
direction of introgression between P2 and P3 affects the time to coalesce 
of P1 and P3 at introgressed loci. P2 ! P3 introgression allows P1 and P3 
to coalesce more quickly (right), reducing their divergence at 
introgressed loci. 
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methods also usually require coalescent simulation under known 
demographic history to evaluate patterns of introgression, and 
this information is not always available. 

None of the aforementioned limitations mean that genome-
wide tests with one sample per species are not possible. 
Introgression between sister taxa—at least when it occurs in rela-
tively discrete pulses—should result in the same multimodal dis-
tribution of coalescence times described above for nonsister taxa. 
This may be the most promising avenue for a genome-wide test 
of sister introgression when only one sample per species is avail-
able, since coalescence times for two species should follow an ex-
ponential distribution under ILS alone. Nevertheless, no methods 
have been developed to date that explicitly test for this pattern 
(QuIBL can only infer it for nonsister taxa). However, PhyloNet’s 
InferNetwork_ML method appears to be capable of reliably infer-
ring introgression (including estimating the timing and extent) 
between sister taxa using gene trees with branch lengths using 
this signal (Yu et al. 2014) (Supplementary Figures S3 and S5) at  
least when nested within a tree containing more taxa. 
Regardless, multiple sequences per locus for each species may be 
necessary to infer the direction of introgression between sister 
taxa. 

Likelihood methods for detecting introgression 
Perhaps the most powerful phylogenomic methods for inferring 
introgression are those that use model-based maximum likeli-
hood or Bayesian inference. These methods can be constructed 
from a variety of different introgression models, can estimate a 
variety of different parameters, and can be applied to different 
types of data. Some methods infer introgression directly from a 
multiple sequence alignment, while others use estimated gene 
trees; some are based on the MSNC framework for modeling in-
trogression, while others use the IM model; finally, some perform 
full likelihood calculations, while others estimate approximate 
likelihoods or pseudolikelihoods. Common to all these 
approaches is the ability to widely search the space of possible in-
trogression scenarios, making the best possible use (in principle) 
of available datasets to estimate a phylogenetic network. 

Likelihood methods for inferring introgression generally use 
one of two underlying models: either the MSNC model (Meng and 
Kubatko 2009) or the IM model (Wakeley and Hey 1998; Nielsen 
and Wakeley 2001). The models are quite similar, differing 
mainly as to whether introgression occurs in discrete pulses 
(MSNC) or over a continuous time interval (IM). The models pro-
vide expectations for the probability and coalescence times of 
gene tree topologies under ILS and introgression. These expecta-
tions—sometimes combined with models for sequence evolution 
along trees—allow maximum likelihood or Bayesian inference to 
be applied to either an inferred set of gene trees or to a set of se-
quence alignments. From these data, methods can infer the taxa 
involved in introgression, as well as the extent, timing, and direc-
tion of introgression. 

Methods that use more data can provide more information, 
though this comes at a computational cost. Two methods imple-
mented in PhyloNet, InferNetwork_ML (Yu et al. 2014) and 
MCMC_GT (Wen et al. 2016), can use gene trees without branch 
lengths, while InferNetwork_ML can also use trees with branch 
lengths. If branch lengths are not provided, only introgression be-
tween nonsister lineages can be identified (as with summary sta-
tistics such as D), with accurate estimates of the extent and 
potentially the direction of introgression. With branch lengths, 
the timing of introgression can also be accurately estimated, 

along with the identification of introgression between sister line-
ages. Using full sequences from each locus rather than gene trees 
can provide still more information, although maximum likeli-
hood inference is only possible in the simplest scenarios (e.g., 
Lohse and Frantz 2014; Dalquen et al. 2017). Instead, most meth-
ods that take sequence data as input use Bayesian approaches 
for inference. These methods include the MSNC-based 
MCMC_SEQ (Wen and Nakhleh 2018) and MCMC_BiMarkers (Zhu 
et al. 2018) methods in PhyloNet, the SpeciesNetwork (Zhang et al. 
2018) method in BEAST2, and the MSci method in BPP (Flouri et al. 
2020). Examples of IM-based Bayesian methods include IMa3 

(Hey et al. 2018) and G-PhoCS (Gronau et al. 2011). While all of 
these methods can in principle use multiple samples per species, 
this provides limited additional statistical power; as we discuss 
next, using multiple samples also comes at a significant compu-
tational cost. 

A major disadvantage of maximum likelihood and Bayesian 
methods for full inference of phylogenetic networks is their com-
putational performance on larger datasets. For example, the 
InferNetwork_ML method can only be practically applied to data-
sets of up to 10 species (Hejase and Liu 2016). Bayesian 
approaches to inferring networks scale especially poorly and are 
limited to datasets of dozens to hundreds of loci (Wen and 
Nakhleh 2018; Zhang et al. 2018; Flouri et al. 2020). Some methods 
have addressed this problem by estimating approximate likeli-
hoods or pseudolikelihoods. The InferNetwork_MPL (Yu and 
Nakhleh 2015) method in PhyloNet and SNaQ (Solı́s-Lemus and 
Ané 2016) both maximize the pseudolikelihood of a set of gene 
tree topologies. By using pseudolikelihoods, these methods can 
be applied to larger datasets with more than ten species and 
thousands of loci (Hejase and Liu 2016; Solı́s-Lemus and Ané 
2016). However, in some regions of parameter space the phyloge-
netic network is unidentifiable with these methods; that is, many 
different combinations of network parameters could be equally 
consistent with the observed data. These pseudolikelihood meth-
ods are also not ideal for use with information criteria, which 
makes it challenging to evaluate the fit of different inferred net-
works (see Inferring the number of introgression events). Finally, 
some performance can be gained in Bayesian approaches by fix-
ing parameters of the phylogenetic network to reduce the space 
of possible solutions (e.g., fixing the network topology; Flouri et al. 
2020). 

The richness of parameters estimated by likelihood methods 
can also be a double-edged sword, as these inferences are only 
possible with relatively strong assumptions. In addition to as-
suming no recombination within loci and free recombination be-
tween loci, all methods assume that sequences are evolving 
neutrally. While many methods make assumptions about neu-
trality, those that detect introgression using only gene tree topol-
ogies are quite robust to this assumption (Przeworski et al. 1999; 
Williamson and Orive 2002; Vanderpool et al. 2020). In contrast, 
the effect of various forms of selection is to cause changes in the 
distribution of gene tree branch lengths (Adams et al. 2018), a 
change that can be interpreted as introgression by full likelihood 
methods. This is especially true for inferences of introgression 
between sister lineages, where information on gene tree topolo-
gies is often not useful in distinguishing between these two sce-
narios (Ewing and Jensen 2016; Roux et al. 2016). Since 
interpreting likelihood methods can be difficult under such cir-
cumstances, we recommend complementing these analyses with 
other approaches that are formulated to be more robust to 
common model violations. Despite these limitations, likelihood 
methods for inferring introgression can have many advantages in 
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terms of the power and richness of inference when compared 
with simpler approaches. 

Challenges for inferring introgression 
Dealing with phylogenetic uncertainty in 
introgression analyses 
Most methods for inferring introgression require that the species 
phylogeny is known or can be inferred accurately. More precisely, 
they require a model of the possible histories of coalescence of 
samples in the absence of introgression, against which introgres-
sion hypotheses can be tested. However, for both technical and 
biological reasons, a single phylogeny often cannot be inferred 
accurately and/or with a high confidence. If the wrong species 
tree is chosen, then introgression may be erroneously inferred. In 
the case where certain regions of the phylogeny are poorly re-
solved, one approach is to permute only the poorly resolved 
regions in different introgression analyses, leaving the more con-
fidently resolved “backbone” constant (Beckman et al. 2018; Pease 
2018). Alternatively, it may be that the wrong species phylogeny 
is inferred with high confidence; in this case, careful examination 
of local genealogical patterns and coalescence times can uncover 
which histories correspond to speciation vs introgression 
(Fontaine et al. 2015; Forsythe et al. 2020). Finally, likelihood meth-
ods should be less vulnerable to uncertainty since the phylogeny 
and introgression events are typically coestimated. However, 
computational and visual representations of these results can of-
ten be uninformative or misleading with regard to the true spe-
cies branching order (see Distinguishing among models of 
introgression). 

Evaluating introgression from unsampled ghost 
lineages 
In studies of introgression, there is always the possibility that the 
species being studied may have exchanged genes with 
unsampled “ghost” lineages. These lineages may be unsampled 
because appropriate specimens were not available for sequenc-
ing, because they are currently extinct, or simply because they 
are unknown taxa. Regardless of their origin, introgression from 
a distant ghost lineage into a sampled lineage can generate gene 
tree asymmetry in a rooted triplet. In the scenario considered 
here (Figure 5A), the ghost lineage is the donor of introgressed 
alleles into species P1a. As a result, at some introgressed loci P2 

and P3 will appear to be sister lineages (Figure 5B), possibly 
resulting in an inference of introgression. 

Our simulation study (Supplementary Figures S2 and S3), in 
addition to recent work from Tricou et al. (2021), demonstrates 
that introgression between a ghost lineage and a sampled taxon 
can result in significant tests for introgression, using both sum-
mary statistic and likelihood approaches. While introgression has 
indeed occurred, the problem is that the timing, direction, and 
identity of lineages involved in introgression may all be inferred 
incorrectly. As with results from sampled taxa, significant results 
are most likely to occur when the ghost taxon is not sister to the 
species it is exchanging genes with and when the ghost taxon is 
the donor of introgressed alleles rather than the recipient 
(Supplementary Figure S3). 

There are several approaches researchers can take to detect 
the presence of ghost introgression. If multiple ingroup lineages 
are available for testing—but only one of them has been the re-
cipient of introgression—switching the species used in the quar-
tet being tested can reveal ghost introgression. Imagine we have 
two lineages available to serve as species P1: P1a and P1b 

(Figure 5A). These lineages should ideally be different species, or 
at least divergent populations of the same species, that have the 
same placement in the quartet. P1a is the recipient of introgres-
sion from an unsampled lineage, X, which is more distant than 
P3. If species P1a is sampled, we may incorrectly infer introgres-
sion between P2 and P3 (Figure 5B). In contrast, P1b is uninvolved 
in ghost introgression; if the quartet [((P1b, P2),P3),O] is tested for 
introgression, the result should no longer be significant 
(Figure 5B). Such a result would be consistent with ghost intro-
gression into P1a. If both quartets are significant, this would rule 
out ghost introgression into P1a alone, but could still be explained 
by ghost introgression into the ancestor of P1a and P1b. 

Given an excess of gene trees with P2 and P3 sister to one an-
other, another sign of ghost introgression is that the genetic dis-
tance between P2 and P3 at discordant loci will not be reduced 
relative to concordant loci, as would occur if they were truly ex-
changing alleles (Figure 5C). Although the D3 statistic is still sig-
nificant under ghost introgression (Supplementary Figure S3), 
this is because P3 is also being compared with P1. A simple com-
parison of the distance between P2 and P3 at concordant and dis-
cordant loci should reveal if there is any signal of ghost 
introgression. Conversely, the presence of exceptionally divergent 
haplotypes in P1 that are unlikely to have originated from known 
extant species are also consistent with ghost introgression 
(Figure 5C). In fact, most known cases of putative ghost intro-
gression have been identified this way (i.e., Ai et al. 2015; 
Kuhlwilm et al. 2019; Zhang et al. 2019). Finally, as noted by 
Ottenburghs (2020), recent advances in model-based demo-
graphic inference may make it possible to explicitly evaluate 
ghost introgression scenarios against scenarios involving gene 
flow between sampled taxa. The vast array of possible ghost in-
trogression scenarios may make model selection difficult, but 
plausible scenarios can potentially be identified using the 
approaches described above. 

Distinguishing among models of introgression 
Introgression events are often depicted using a phylogenetic net-
work. In these representations, a reticulation edge connects two 
lineages in the tree that have exchanged genes. However, the 
placement and orientation of these reticulations can imply spe-
cific information about the timing, direction, and species in-
volved in introgression. While methods for inferring introgression 
are developed under a specific introgression model, many of 
them are agnostic to the true underlying model when applied to 
empirical data. More importantly, many methods that infer phy-
logenetic networks will produce the same network from data 
generated under very different underlying models (Huson and 
Bryant 2006). In this section, we highlight the challenges associ-
ated with interpreting the results of introgression tests in the 
context of the underlying model of introgression. 

Two important models to consider are introgression that 
occurs between already-existing lineages and introgression that 
results in the formation of a new lineage. Figure 6A depicts the 
former scenario, which corresponds to the introgression scenar-
ios considered in the paper thus far. In such cases, a single hori-
zontal reticulation edge is typically used to connect the two taxa 
involved. This does not naturally convey any information about 
the direction of introgression, unless the donor and recipient line-
ages are explicitly identified (e.g., with an arrowhead). In contrast, 
methods that assume the formation of an admixed population 
(e.g., Bertorelle and Excoffier 1998; Wang 2003) or hybrid species 
(e.g., Meng and Kubatko 2009) often use the visualization shown 
in Figure 6B, where reticulations connect each parent lineage to 
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the newly formed lineage. This could be used to represent, for ex-
ample, the formation of a new hybrid species (e.g., Rieseberg et al. 
1995). This representation implies a directionality of introgres-
sion without any additional labeling: from the two parent line-
ages into the newly formed lineage. In both cases, a horizontal 
reticulation edge can be used to denote the instantaneous ex-
change of alleles between the involved lineages. 

Alternatively, Figure 6C shows an example using nonhorizon-
tal branches, which may imply a period of branching off and in-
dependent evolution from the parent species before the hybrid 
lineage is formed [e.g., Patterson et al. (2012), Yu et al. (2014), 

Zhang et al. (2018); see Kearns et al. (2018) for an empirical exam-
ple in North American ravens]. An alternative interpretation of 
this representation is that it shows “standard” introgression in-
volving a now extinct species, in which case the extinct lineage 
was the donor in the introgression scenario. In this case, there re-
ally was a period of independent evolution, but it occurred along 
a lineage that was not sampled. In all three cases, the placement 
of the reticulation edge conveys information about the timing of 
introgression and/or lineage formation. 

It important to consider how the methods for detecting intro-
gression discussed here relate to the underlying introgression 

P2 P3 P1a O 

P2 P3 OP1b 

Introgression inferred between 
P2 and P3 

No introgression inferred 
P1a P1b P2 P3 X O 

A   Species tree with ghost introgression B   Gene tree topologies at introgressed loci 

When P1a is sampled: 

When P1b is sampled: 

P2 P3 P1aP2 P3P1a O 

C   Patterns in gene tree branch lengths 

Concordant trees: 

O 

Discordant trees: 

Figure 5 Understanding and detecting ghost introgression. (A) A scenario of ghost introgression from an unsampled outgroup lineage, X, into P1a. (B) 
When ghost introgression has occurred and a quartet including P1a is sampled, introgression may be erroneously inferred between P2 and P3. This 
occurs because at some introgressed loci P1a will be more distantly related to both P2 and P3, leading to an excess of discordant trees with P2 and P3 
sister to one another (top). If instead a quartet including P1b is sampled, there should no longer be an excess of discordant trees (bottom). (C) Ghost 
introgression should also be detectable via a change (or a lack of change) in branch lengths. True introgression between P2 and P3 should cause them to 
be more similar; i.e., shorter branch lengths separating them in discordant trees. In contrast, ghost introgression will not make them more closely 
related in discordant trees than in concordant trees on average. Similarly, the distance between P1a and all ingroup lineages will be higher when it is the 
recipient of ghost introgression from an outgroup. 
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scenarios, and how this may affect our interpretation of results. 
Many tests for introgression are agnostic to the particulars of the 
underlying introgression scenario and will therefore be significant 
under different models. For example, the D-statistic can detect in-
trogression between nonsister taxa regardless of the direction of 
gene flow (Martin et al. 2015; Supplementary Figure S3), or whether 
introgression results in the formation of a new lineage (Kong and 
Kubatko 2021). Other methods enforce a particular model of intro-
gression, even though it may not reflect the underlying data. For ex-
ample, HyDe (Blischak et al. 2018) is less accurate when estimating 
the admixture proportion if its hybrid speciation assumption is vio-
lated (Kong and Kubatko 2021), while other tests explicitly require 
the labeling of a putative admixed population under a lineage-
formation scenario (Peter 2016). Some statistical methods can ex-
plicitly distinguish among these scenarios. The D1 statistic (Hibbins 
and Hahn 2019) tests whether gene tree branch lengths are more 
consistent with hybrid speciation (Figure 6B) or postspeciation in-
trogression (Figure 6A). The MSNC implementation in BPP (Flouri 
et al. 2020) may also be able to differentiate among a variety of pos-
sible introgression scenarios. 

One additional obstacle to distinguishing among models of in-
trogression is a consequence of the information required by 
machine-readable formats for representing phylogenetic net-
works. In general, methods return inferred phylogenetic net-
works in the Extended Newick format (Cardona et al. 2008), which 
requires the specification of a bifurcating “parent” node that 
occurs closer to the root than the “hybrid” node, which has two 
incoming lineages. While it is possible for the hybrid node in this 
format to represent a lateral gene transfer event that does not 
have a parent closer to the root (Cardona et al. 2008), this format 
is often not used to represent introgression (though it could be). 

Visualizing these results often complicates their interpretation 
even further. To highlight this, we inferred networks using 
PhyloNet’s InferNetwork_ML method (Yu et al. 2014) for simulated 
P3 ! P1 and P1 ! P3 introgression after speciation (see 
Supplementary Figure S2) and plotted the results using three 
popular tools (Figure 7): Dendroscope (Huson and Scornavacca 
2012), IcyTree (Vaughan 2017), and PhyloPlots, which is part of the 
Julia package PhyloNetworks (Solı́s-Lemus et al. 2017). All three 
methods handle the placement of parent and daughter nodes dif-
ferently. Dendroscope visualizes the two incoming lineages to 
the hybrid node with blue reticulations, which can erroneously 
imply a lineage-formation or hybrid speciation scenario with P2 

involved in hybridization when introgression is P3 ! P1 

(Figure 7A). Because of the parent/hybrid node structure, all 
three methods use nonhorizontal reticulations (Figure 7, A–F), 
which may imply periods of independent evolution in the donor 
population prior to introgression, even under an instantaneous 

“pulse” scenario. The general use of reticulations to connect par-
ent and daughter nodes also heavily implies a discrete-time event 
or series of discrete-time events, rather than a continuous win-
dow of gene flow as conceptualized in the IM model. While none 
of the output networks contained branch lengths, the arbitrary 
location of placement of the reticulations could imply an inferred 
time of introgression. We should stress that PhyloNet’s 
InferNetwork_ML method was accurate in its inferences about the 
presence and direction of introgression (Supplementary Figure 
S3)—it is only the visualization that is misleading. 

The visualization of introgression results is especially difficult 
when information on the timing and direction of gene flow can-
not be inferred. The software admixturegraph (Leppala et al. 2017) 
plots a network representation solely from the results of a series 
of D tests. We applied this visualization to simulated P3 ! P1 and 
P1 ! P3 introgression (Supplementary Figure S2). The resulting 
plots shown in Figure 7, G and H imply that P1 formed from hy-
bridization after periods of independent evolution in P2 and P3. 
However, none of these processes are knowable from a D-statistic 
result (because the direction of introgression cannot be inferred), 
and this is not the scenario that produced the data. In general, 
special care should be taken when visualizing the results of D-
statistics and related test statistics on a phylogeny, since they 
only provide information on the presence/absence of introgres-
sion, and not the direction of introgression. 

Clearly differentiating among different possible models of in-
trogression remains challenging. Care should be taken not to 
overinterpret the results of methods that are model-agnostic, 
or that rely on a particular model of introgression rather than in-
ferring it from data. This is especially true when interpreting 
results from common machine-readable visualizations. If possi-
ble, hand-drawn “tube tree” representations (e.g., Figure 4) may 
be more effective in accurately conveying the information avail-
able. If automated plotting software is being used, it appears that 
the visualizations produced by PhyloPlots (Figure 7, E and F) are 
most faithful to the true model of introgression. 

Inferring the number of introgression events 
A major challenge that remains in the inference of introgression 
is how to assess the fit of different numbers of introgression 
events inferred on the same tree. The mostly widely used meth-
ods are formulated to test for the presence of introgression vs no 
introgression but provide no rigorous way to evaluate the number 
of distinct introgression events. One approach is to perform 
many quartet-based tests, and then to infer the most parsimoni-
ous set of introgression events by collapsing sets of positive tests 
that share the same ancestral populations (Pease et al. 2016; 
Suvorov et al. 2021). However, this approach is highly conserva-
tive, as it can collapse cases where there truly are multiple 
instances of postspeciation introgression within a clade. 
Additionally, it requires large datasets and the piecing together of 
many quartets, which makes it impractical in many cases. 
Nonetheless, such approaches can be used to generate a conser-
vative estimate for the minimum number of introgression 
events. 

Even with likelihood methods, estimating the number of intro-
gression events is not a solved problem. One issue is that adding ad-
ditional parameters to the likelihood model always improves the 
likelihood score. This makes it necessary to penalize model com-
plexity when comparing estimated likelihoods. Unfortunately, the 
information measures that are classically used to perform model 
selection, such as AIC and BIC, do not adequately scale with the in-
creased complexity of adding a new reticulation to a phylogenetic 

P1 P2 P3 P1 P2 P3 P1 P2 P3 

A B C 

Figure 6 Conceptualizing different models of introgression. (A) 
Introgression between extant lineages. (B, C) Introgression that results in 
the formation of a new lineage, differing only with respect to whether 
there appears to be a period of independent evolution before lineage 
formation. 
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network. This is because adding a new reticulation does not just 
add a single new model parameter—it adds a whole new space of 
possible networks (Blair and Ané, 2020). AIC and BIC penalize the 

increased complexity of model parameters, but not the increased 
complexity of models within a set of parameters. The problem is 
greater for methods based on pseudolikelihood such as SNaQ, 

P1 

P2 

P3 

O P3 

P1 

P2 

O 

P1 

P2 

P3 

O 

P1 

P2 

P3 

O 

P3 

P2 

P1 

O 

P1 

P2 

P3 

O 

P2 P1 P3 P2 P1 P3 

A B 

C D 

E F 

G H 

P3 → P1 P1 → P3 

Figure 7 Different visualizations of the same underlying phylogenetic networks. The left column comes from a network representing P3 ! P1 
introgression, while the right column comes from a network representing P1 ! P3 introgression. The rows, from top to bottom, show visualizations from 
(A, B) Dendroscope; (C, D) IcyTree; (E, F) PhyloPlots; and (G, H) admixturegraph. 
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because these information measures are not intended for pseudoli-

kelihood estimates. Bayesian approaches such  as those  imple-

mented in PhyloNet (Wen and  Nakhleh 2018) and  SpeciesNetwork can 

incorporate appropriate penalties for model complexity, but unfor-

tunately scale poorly to larger datasets and larger numbers of retic-

ulations (Elworth et al. 2019). 
While no methods currently exist that can both explicitly pe-

nalize model complexity and scale to large datasets, there are 

several alternate approaches available for assessing the fit of 

phylogenetic networks. One simple, empirical approach is to use 

a slope heuristic where networks are inferred across different 

numbers of reticulations, and the best network is taken as the 

least complex one after which the likelihood score appears to 

stop improving. This is the method recommended for use with 

SNaQ (Solı́s-Lemus and Ané 2016). PhyloNet has methods that can 

evaluate the fit of a network using k-fold crossvalidation or para-

metric bootstrapping (Yu et al. 2014), which can both address this 

problem. Finally, a promising approach from Cai and Ané (2021) 

involves using the MSNC to calculate the quartet concordance 

factors expected from an estimated network. A goodness-of-fit 

function is then used to evaluate the fit of these expected concor-

dance factors to those observed in the data. This is similar to the 

method implemented in admixturegraph (Leppala et al. 2017) for 

use with D-statistics. 

Conclusions 
In conclusion, several methodological and technical challenges 

remain in the inference of introgression, including: more accu-

rate estimation of the extent, timing, and direction of introgres-

sion; detection of introgression between sister taxa; spurious 

results generated by unsampled lineages; inference of the num-

ber of introgression events in a clade; and accurate automated vi-

sualization of phylogenetic networks. Despite these challenges, 

currently available approaches have remarkable power to detect 

and characterize introgression under a wide variety of conditions, 

especially when used in a complementary fashion. Overall, these 

methods will continue to reveal the nature and influence of intro-

gression throughout the natural world. 

Data availability 
Parameters used to generate our simulated data are summarized 

in Supplementary Figure S2 and Table S1. Scripts and processed 

data related to the simulation study are available at https:// 

github.com/mhibbins/introgression_review (last accessed 

October 18, 2021). 
Supplementary material is available at GENETICS online. 
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