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Phylogenetic comparative methods have long been a mainstay of evolutionary biology, 
allowing for the study of trait evolution across species while accounting for their com-
mon ancestry. These analyses typically assume a single, bifurcating phylogenetic tree 
describing the shared history among species. However, modern phylogenomic analyses 
have shown that genomes are often composed of mosaic histories that can disagree both 
with the species tree and with each other—so-called discordant gene trees. These gene 
trees describe shared histories that are not captured by the species tree, and therefore 
that are unaccounted for in classic comparative approaches. The application of stand-
ard comparative methods to species histories containing discordance leads to incorrect 
inferences about the timing, direction, and rate of evolution. Here, we develop two 
approaches for incorporating gene tree histories into comparative methods: one that 
constructs an updated phylogenetic variance–covariance matrix from gene trees, and 
another that applies Felsenstein's pruning algorithm over a set of gene trees to calculate 
trait histories and likelihoods. Using simulation, we demonstrate that our approaches 
generate much more accurate estimates of tree-wide rates of trait evolution than standard 
methods. We apply our methods to two clades of the wild tomato genus Solanum with 
varying rates of discordance, demonstrating the contribution of gene tree discordance 
to variation in a set of floral traits. Our approaches have the potential to be applied to 
a broad range of classic inference problems in phylogenetics, including ancestral state 
reconstruction and the inference of lineage-specific rate shifts. 

phylogenetic comparative methods | trait evolution | phylogenetic discordance 

A major goal of evolutionary biology is to understand how and why traits vary among 
species. One of the major sources of this variation is common ancestry. If left unaccounted 
for, this shared history can lead to pseudoreplication and spurious trait correlations (1). 
Phylogenetic comparative methods have been developed to account for shared history, 
enabling more accurate inferences about the tempo and mode of trait evolution (2). With 
the statistical toolkit offered by phylogenetic comparative methods, researchers can ask 
questions about the rate at which traits evolve, whether these rates have changed over time 
or in different lineages, what traits may have looked like in ancestral or extinct lineages, 
and whether trait shifts are correlated with historical or environmental factors (3–6). 

In classic comparative methods, common ancestry among species is accounted for by 
using a single species phylogeny. However, genome-scale analyses of phylogenetic history 
have revealed that individual loci can have their own independent histories (7–15). The 
result is gene tree discordance—the disagreement of trees at individual loci both with each 
other and with the species phylogeny. Gene tree discordance has important implications for 
phylogenetic comparative methods because discordant gene trees contain branches that are 
not present in the species phylogeny. Evolution along such discordant branches can result 
in trait similarity among species with no shared history in the species tree (Fig. 1). Such 
patterns of trait variation can mislead standard phylogenetic comparative methods, particu-
larly by resulting in overestimates of the number of trait transitions or the rate of trait 
evolution (16–20). This effect has been termed “hemiplasy”, as single transitions on discord-
ant gene trees can falsely resemble homoplasy when analyzed on the species tree (21). 

Discordance is a concern for evolutionary inference because it has biological causes that 
cannot be overcome by addressing technical errors or by increasing species sampling (23). 
Two primary causes of discordance, incomplete lineage sorting (ILS) and introgression, 
have different effects on gene tree frequencies and branch lengths and are therefore expected 
to bias comparative methods in different ways. ILS, a stochastic process that depends on 
species tree internal branch lengths and population sizes, generates symmetry in the fre-
quencies of possible discordant gene trees (24, 25). Therefore, higher amounts of ILS lead 
to broad increases in the occurrence of hemiplasy across multiple possible incongruent 
trait patterns (18, 26). Introgression is a process of historical hybridization and back-crossing 
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that, while widespread in modern phylogenomic datasets (27–29), 
is often more limited to specific pairs of taxa. In particular, post-
speciation introgression between nonsister lineages leads to an 
excess of gene trees grouping those lineages as sister (30–33). This 
pattern should result in an excess of trait-sharing for the species 
involved in introgression compared to the species not exchanging 
genes (19, 20, 22). 

While some progress has been made in accounting for discord-
ance in the evolution of discrete traits, especially in nucleotide 
models (34–38), many classic phylogenetic comparative methods 
remain unable to account for gene tree discordance when analyz-
ing quantitative traits. The approaches required to improve these 
methods will depend on the question being asked. Some tasks, 
such as maximum-likelihood estimation of the rate of trait evo-
lution under Brownian motion (σ2) (e.g., refs. 39 and 40) or phy-
logenetic regression (41), depend on the specification of a matrix 
that describes the trait variances and covariances expected from 
the species phylogeny (often denoted C). Other comparative 
approaches, such as ancestral state reconstruction (42) and infer-
ence of lineage-specific rate shifts (43), can require more sophis-
ticated approaches that calculate state probabilities on different 
parts of a phylogeny; one such approach is to use Felsenstein's 
pruning algorithm applied to a species tree with specified branch 
lengths (44). Mendes et al. (18) showed that failing to account 
for discordance can bias estimates of σ2 upward and can lead to 
falsely inflated numbers of trait-mean transitions. In general, the 
development of a comparative framework incorporating gene tree 

discordance would lead to more accurate evolutionary inferences 
in a wide variety of systems with ILS and/or introgression, across 
a wide variety of approaches for making inferences about quanti-
tative traits. 

Here, we demonstrate the utility of an updated phylogenomic 
comparative framework, using two distinct approaches to incor-
porate the summed history of concordant and discordant gene 
trees into evolutionary inference. In the first approach, we show 
how to construct an updated phylogenetic variance/covariance 
matrix (which we denote C*) to include the covariances intro-
duced by discordant gene trees. We provide an R package, seastaR, 
that can construct this updated matrix for any number of species, 
either by summing the internal branches of an input set of gene 
trees or by calculating expected gene tree internal branches from 
an input species tree using the multispecies coalescent model. We 
show how estimates of the evolutionary rate are made more accu-
rate by using C*, and suggest how this updated matrix can be 
passed to other available software packages to make multiple evo-
lutionary inferences more robust to discordance. In the second 
approach, we develop a method for applying the pruning algo-
rithm over a set of gene trees to return the likelihood of an 
observed trait across species. Using a pilot implementation of this 
approach for a rooted three-species tree, we show how it can be 
used to accurately estimate the rate of quantitative trait evolution. 
Although currently limited to a smaller number of species, this 
latter approach has the potential to perform more complicated 
comparative inferences in the presence of discordance. Finally, we 
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Fig. 1. Conceptualizing quantitative trait evolution with discordant gene trees. (A) Given a species tree (far left), we model gene trees as arising under the 
multispecies coalescent process. One topology is concordant with the species tree (blue), while the other two possible topologies are discordant (red and yellow). 
Under ILS these two discordant trees have the same topology and frequency. (B) Over the course of evolution, mutations occur at loci that affect quantitative 
traits, each of which has a topology drawn from the multispecies coalescent process. Mutations on the internal branches of discordant gene trees can introduce 
shared trait history that is not captured by the species tree. Here, we summarize mutations occurring at different loci on a single tree if the loci had the same 
topology, with each mutation at each locus contributing positively or negatively to the trait value in each species. In the example here, species pairs B–C and 
A–C might covary in quantitative trait values due to mutations on shared branches in gene trees, despite sharing no common ancestor in the species tree. For 
example, a mutation on the internal branch of the magenta tree causes species B and C to have more similar trait values. (C) Given a large number of mutations 
and loci, trait evolution over time can be modeled by Brownian motion on each gene tree topology. This stochastic process models the trait value as a random 
walk over time, with species trait values calculated as the weighted average of the values on each gene tree (18, 22). 
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apply our approaches to empirical morphological data from wild 
tomatoes (45), finding a greater discrepancy between species tree 
and gene tree rate estimates in a clade with a higher rate of gene 
tree discordance. Overall, our approaches pave the way toward 
more accurate evolutionary inferences in the presence of gene tree 
discordance. 

Methods 

Building a Phylogenetic Variance/Covariance Matrix From Data with 
Discordance. As previously discussed, one of the most common ways that 
phylogeny is incorporated into comparative analyses is by constructing a 
phylogenetic variance/covariance matrix, C. This square matrix has rows and 
columns corresponding to the number of taxa in the phylogeny, with the diag-
onal elements containing the expected trait variances for each species and the 
off-diagonal elements containing the expected trait covariances between each 
species pair. Considering three species with the relationship [(A, B), C] (Fig. 2A), 
the standard covariance matrix has the following form: 

[1] 

Trait covariances arise from shared internal branches in the phylogeny. As only 
species A and B share an internal branch in the species tree, the other two species 
pairs have no expected covariance. 

In contrast, if we consider the gene trees that are generated by the species tree 
in Fig. 2A, the two discordant gene trees contain internal branches shared by pairs 
B–C and A–C. Discordance due to ILS generates all three possible topologies for 
this species tree, so all off-diagonal entries in the covariance matrix should have 
nonzero values (18). We are interested in estimating this updated covariance 
matrix, which we denote C*: 

[2] 

To construct C*, we provide the R package seastaR. seastaR uses two approaches 
for estimating C*, both following the same principle: Each gene tree topology 
contributes an internal branch which, after being weighted by that tree’s expected 
frequency, fills an off-diagonal entry in the covariance matrix (Fig. 2A). Each gene 
tree also contributes its total height, weighted by frequency, to the expected trait 
variances for each species. Both approaches assume that each individual gene 
tree contributes equally to trait variation among species (i.e., the effect size of 
mutations that affect trait variation does not differ on average among loci). We 
also assume that loci contributing to trait variation follow the same distribution 
of tree topologies as the genome at large, so the specified loci do not have to be 
explicitly related to the trait in question. 

The first approach for estimating C*, trees_to_vcv, constructs this matrix from 
a list of provided gene trees (with branch lengths) and their observed frequencies. 
The method works by obtaining all the internal branch lengths present in each 
gene tree, as well as the height of each gene tree, and averaging them to get 
C*. A major advantage of this approach is that it can easily account for both ILS 
and introgression as sources of gene tree discordance, as the effects of both are 
captured in the distribution of observed gene tree topologies and branch lengths. 
On the other hand, individual gene trees may be inferred with error, making their 
branch lengths and frequencies less reliable. If accurately estimated gene trees 
are unavailable, our second approach, get_full_matrix, constructs C* solely from 
an input species tree in coalescent units. This method breaks the input phylogeny 
down into each possible triplet, and for each triplet uses expectations from the 
multispecies coalescent model to calculate the expected internal branches and 
frequencies for each possible gene tree (see ref. 18). For an exemplar five-taxon 
tree specified in coalescent units, we compared the standard C matrix to a C* 
matrix computed using get_full_matrix (Fig. 2B). The test tree has three internal 
branches, each of length of 0.3 coalescent units. Given these branch lengths, we 
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⎡ ⎢ ⎢ ⎢ ⎢⎣ 
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Fig. 2. Inferring the gene tree variance/covariance matrix, C*. (A) Gene trees are generated from a species tree under the multispecies coalescent process (note 
that introgression can readily be incorporated, but is not shown here for clarity). Each gene tree contributes its internal branch length (for covariance terms) 
and its total height (for variance terms) to C*. The contribution of each tree to C* is weighted by its expected or observed frequency, depending on the approach 
taken. Frequencies are denoted as f(XY), where X and Y are the taxa sister in the gene tree of interest. (B) A comparison of C and C* for a five-taxon species tree 
with branch lengths labeled in coalescent units (not precisely to scale). Each internal branch has a length of 0.3, corresponding to a level of discordance of 
approximately 50%. This level of discordance means that each clade descended from these internal branches (5/4/3/2, 5/4, and 3/2) will be present in ~50% of 
gene trees. The standard phylogenetic covariance matrix, C, contains no covariance between species 1 and the other taxa, because they do not share an internal 
branch in the species tree. In contrast, species 1 covaries with all other species in the tree using C*, because multiple discordant gene trees have species 2 to 5 
sharing an internal branch with species 1. D
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expect 50% of trees to be discordant for each of these three branches, meaning 
that only 50% of gene trees will have (for instance) the clade containing species 
5 and 4 sister to the clade containing species 3 and 2. As expected, C* contains 
covariance entries for species pairs that do not share an internal branch in the 
species tree, but that share internal branches in at least one discordant gene 
tree (Fig. 2B). In addition, the sister lineages in the species tree have smaller 
covariances in C* than in C, because they do not share an internal branch in 
many discordant trees. 

Our package, seastaR, contains several other utilities, including a parser for 
an input set of estimated gene trees, a simulator that can simulate trait evolution 
using C*, and a function to obtain the maximum-likelihood estimate of σ2 using 
C* (Results). Also note that, although not currently implemented, seastaR could 
be extended to construct C* from an input species network specified in coalescent 
units, using expectations from the multispecies network coalescent model (22). 

Calculating Trait Likelihoods over a Set of Gene Trees Using Felsenstein’s 
Pruning Algorithm. Updating the phylogenetic variance/covariance matrix pro-
vides a straightforward solution to account for gene tree discordance that works 
for several important inference tasks in comparative methods. However, many 
questions require more sophisticated models that do not have straightforward 
solutions making use of this matrix. For these questions, the field would benefit 
from a general approach to calculating likelihoods given a set of gene trees and 
a model of trait evolution. Our solution makes use of Felsenstein’s pruning algo-
rithm (44), a dynamic programming algorithm that calculates probabilities for a 
set of character states across all nodes in a phylogeny. A tree-wide likelihood can 
be calculated from the probabilities at the root, which can be used in conjunction 
with numerical optimization methods to estimate model parameters. 

We developed an approach to apply the pruning algorithm to a specified 
set of gene trees, rather than to a single tree. This approach is implemented in 
C++ and draws heavily on the infrastructure of CAFE (46, 47), a program that 
uses the pruning algorithm to calculate likelihoods for a birth–death model of 
gene family evolution. We make several modifications based on the methods 
presented in ref. 48 and implemented in CAGEE (https://github.com/hahnlab/ 
CAGEE) that allow CAFE’s implementation of the pruning algorithm to be applied 
to continuous traits rather than integer counts of gene families (see also ref. 49). 
First, the pruning algorithm requires a vector of possible discrete character states 
over which probabilities can be calculated. To obtain this vector from an observed 
continuous trait, we take the range ( − 2(max(˜X˜), 2(max(˜X˜)) where X is 
the vector of observed characters for each species. The vector of character states 
is then filled with 100 equidistant steps from the lower bound to the higher 
bound. Second, we need to assign probabilities to all the character states at the 
tips of the phylogeny, so that the pruning algorithm has a place to start. This 
is straightforward for integer count data, as the observed value can simply be 
assigned a probability of 1 at the tip. However, for continuous traits it will often 
be the case that none of the values in our discretized trait vector exactly match 
the observed values at the tips. Therefore, we implement an approach that dis-
tributes the probability at the tip over the two states in the discretized vector 
closest to each of the observed values, proportional to how distant they are from 
the observed value (Equation 18 in the appendix of ref. 48). Third, to calculate the 
transition probability between each pair of discretized trait values over a branch 
in the phylogeny, we use the Brownian motion model. The probability density 
for Brownian motion is 

[3] 

where x0 is the initial trait value, x is the trait value after time t, and σ2 is the 
evolutionary rate per unit time. With these methods in place, we can apply the 
standard pruning algorithm to an individual tree with observed character states 
and a specified σ2 value. 

To estimate a single likelihood over a set of gene trees, we initially apply 
the standard pruning algorithm to each gene tree individually. Like the covari-
ance matrix approach, we assume that individual loci contribute equally to trait 
variation among species, and that trait loci follow the same distribution of tree 
topologies as the genome at large. These gene trees with branch lengths are 
given to the method directly, and must be ultrametric. Any set of trees can be 
specified, but the manner in which they are specified will depend on the size of 
the species tree (i.e., number of tips). For a large species tree, individual gene 
trees can be inferred or predicted by theory, similarly to the two approaches used 
by seastaR. Because it may not be possible to sample every possible topology, we 
recommend sampling a reasonable number of individual gene trees (Discussion). 
For a small species tree, the most efficient approach will be to specify one tree for 
each possible topology, along with its frequency. Again, the branch lengths and 
frequencies of each tree topology can be averaged from a set of inferred trees or 
predicted from theory. The total likelihood is then calculated as 

[4] 

where τ is the set of gene trees, f ̃
 
˜ i 
°
 is the frequency of gene tree i, and p˜ i is 

the vector of character state probabilities at the root for gene tree i. In words: 
we obtain a partial negative log-likelihood for each individual gene tree, these 
partial likelihoods are then weighted by each gene tree’s observed frequency, 
and finally the weighted partial likelihoods are summed together to produce the 
total likelihood (Fig. 3). 

A major advantage of the pruning algorithm method is that maximum- 
likelihood inference can be used to estimate parameters for a wide variety of 
models. In addition, like the trees_to_vcv method of seastaR, this approach can 
easily handle introgression events if the signals of introgression are contained in 
the specified gene trees, or if expected gene trees under the multispecies network 
coalescent could be specified by the user. Currently, our implementation uses the 
Nelder–Mead algorithm (50) to find the optimal Brownian motion evolutionary 
rate parameter, σ2 . In the future, we would like the software to also perform more 
sophisticated inferences, such as ancestral state reconstruction or lineage-specific 
rate shifts. Our approach could also be extended to any evolutionary model, not 
just Brownian motion. 

Simulating Complex Traits with Discordance. To demonstrate the utility of 
our phylogenomic comparative approaches, we used simulations to evaluate 
their performance on a simple inference task: estimating the evolutionary rate 
parameter, σ2 . We simulated traits from a phylogenetic history with increasing 
rates of gene tree discordance by making random draws from a multivariate 
normal distribution (where C* specifies the covariance structure). This simulation 
approach assumes an infinitesimal contribution to the trait from all genomic loci, 
an approximation that holds reasonably well for many complex quantitative traits. 

p 
( 
x, x 0, t 

) 
= 

1 √ 
2˜t° 

e 
− 
(x−x 0)

2 

2°2 t , 

L = 
˜ 

˜ 

f 
°
˜ i 
˛° 

− log 
°
max 

°
p
˜i 

˛˛˛ 
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A B C CBA CAB 

*f(AB)    + 

= L 

*f(BC)    + *f(AC) 

Fig. 3. Applying the pruning algorithm to sets of gene trees. In our proposed approach, the pruning algorithm (shown as upward arrows) is applied to each 
individual gene tree to obtain character state probabilities at each node (curved lines) up to the root for a quantitative trait. These root probabilities are then 
used to obtain a partial likelihood from each gene tree, which are then summed together weighted by the gene tree frequency to obtain the final likelihood. D
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For each simulated dataset, we applied both standard inference of σ2 using the 
species tree and our updated inferences that account for gene tree discordance. 
See SI Appendix, Methods for the exact conditions and parameters used in our 
simulations. 

We simulated our traits under the model parameterization of ref. 18. Levels of 
discordance in this model are altered by changing the effective population size, 
N, allowing us to increase the level of discordance by increasing N. The equations 
for trait variances and covariances are also scaled by N, such that branch lengths 
in units of absolute time are divided by 2N. The evolutionary rate is a compound 
parameter, 2N˜°2

M
, where ̃  is the mutation rate and ̃ 2

M 
 is the variance in muta-

tional effect sizes. A consequence of this formulation of the evolutionary rate is 
that the true rate used to simulate the data increases as we increase the rate of 
discordance by increasing N. This model is akin to the one shown in Fig. 1B, in 
which mutations occur on gene tree branches with normally distributed effect 
sizes. Given enough mutations and enough time, these cumulative effects resem-
ble Brownian motion of trait means along each lineage (Fig. 1C; 18). 

Results 

Phylogenomic Comparative Approaches Yield More Accurate 
Evolutionary Rate Estimates in the Presence of Discordance. We 
applied both of our phylogenomic comparative approaches to data 
simulated with discordance in order to evaluate their accuracy in 
estimating the evolutionary rate parameter, σ2. For the approach 
that uses the updated the variance/covariance matrix, C*, we use 
the maximum-likelihood estimator of σ2: 

[5] 

(40), where X  is the vector of observed trait values at the tips, C 
is the phylogenetic variance-covariance matrix, and n is the num-
ber of tips. E (X ) is the vector containing the expected trait value 
at the root, calculated as follows: 

[6] 

where 1 is a column vector of ones of size n × 1. To account for gene 
tree discordance with this estimator, we simply use C* in place of 
C in Eqs. 5 and 6. We have implemented this method in seastaR to 
allow users to estimate σ2. For this approach, we simulated 1,000 
trait datasets for each condition of increasing gene tree discordance, 
estimating σ2 using both C and C* for each dataset. 

For the approach using the pruning algorithm, we implemented 
the Nelder–Mead optimization algorithm. Given a set of input 
gene trees and tree frequencies, our optimization approach pro-
poses a new value of σ2 in each iteration, returning a single like-
lihood value over the set of gene trees each time; the optimal value 
of σ2 is the one that maximizes this total likelihood. Owing to 
longer computation times, we simulated 100 trait datasets for each 
set of parameters with this method, using either a single tree spec-
ified (the species tree) or multiple trees specified (the gene trees). 

As expected, we found that increasing the level of discordance 
results in an increasingly upward bias in estimates of the evolution-
ary rate from the species tree (Fig. 4, green lines). As there are no 
internal branches in the species tree that can explain the increased 
trait covariances between nonsister taxa, such methods must propose 
a higher evolutionary rate to explain the data. In contrast, we found 
that both the covariance matrix approach (i.e., C*; Fig. 4A) and 
pruning algorithm approach (Fig. 4B) yielded more accurate evo-
lutionary rate estimates, ones that closely tracked the true 
population-scaled evolutionary rate as the level of discordance 
increased. Both phylogenomic comparative approaches can model 
the increased covariances generated by the increasing frequencies of 
discordant gene trees. As can be observed, both approaches tend to 
slightly underestimate the true evolutionary rate, but they are much 

closer to the true value than standard species tree estimates, espe-
cially at higher rates of discordance. 

Phylogenomic Comparative Approaches Are Robust to the 
Effects of Gene Tree Estimation Error. In empirical datasets, it is 
reasonable to expect gene trees to be estimated with some degree 
of error, especially in the limits of short sequence length (such as 
ultraconserved elements), long periods of evolutionary divergence, 
or high rates of sequencing error. In general, these sources of 
technical error should not be biased toward specific lineages, so 
their effect should be to cause general overestimation of gene tree 
discordance. This may in turn result in lower evolutionary rate 
estimates when using our approaches, as they might “overcorrect” 
the problem. More generally, we were concerned that increasing 
the rate of discordance might always lead to a lower evolutionary 
rate estimate, regardless of the true history that generated the 
data. Such behavior would present a potential problem for the 
application of our approaches to empirical datasets. 

To address these concerns, we simulated traits from gene trees 
under a single, fixed rate of gene tree discordance (of approximately 
15%) using the methods described in the previous section. We then 
applied our approaches to estimating σ2 to this dataset, varying the 
specified rate of gene tree discordance from 0 (in which case we 
used the standard species tree inference) to approximately 60%. In 
contrast to our initial concerns, we found that in both the covariance 
matrix (Fig. 5A) and pruning algorithm (Fig. 5B) approaches: 1) 
the effect of mis-specifying the rate of gene tree discordance is rel-
atively small compared to the effect of using the species tree in place 
of gene trees; 2) increasing the specified rate of gene tree discordance 
leads to a small increase, rather than decrease, in the estimated 
evolutionary rate, but still closely tracked the true value. This latter 
effect may occur because increasing the specified rate of gene tree 
discordance requires branch lengths to be scaled down in accordance 
with N, resulting in less proposed time over which evolutionary 
changes can occur. Overall, these results suggest that gene tree esti-
mation error should not be a major concern for our approaches, as 
long as the correct set of tree topologies is specified. 

Rate Estimates for Floral Traits in the Wild Tomato Clade Solanum 
Are Consistent with Evolution on Discordant Gene Trees. Our 
simulations show that when traits evolve on discordant gene trees, 
standard species tree approaches tend to greatly overestimate the 
true value, while our gene tree approaches slightly underestimate 
the true value but are much more accurate. The degree of 
discrepancy between species tree and gene tree approaches grows 
larger as the rate of discordance increases. To further test these 
expectations and to highlight the application of our methods 
to empirical data, we estimated the evolutionary rates of several 
floral traits (anther length, corolla diameter, and stigma length) 
measured in wild tomatoes (Solanum) (45). We obtained the time- 
scaled phylogeny of this clade from ref. 10 and converted from 
time in years to coalescent units assuming N = 100,000 and one 
generation every 2 y (51). We then pruned the phylogenetic tree 
into high and low ILS triplets, each consisting of three taxa. The 
high ILS group consisted of the following accessions (IDs from 
the Tomato Genetics Resource Center): S. galapagense LA0436, 
S. cheesmaniae LA3124, and S. pimpinellifolium LA1269; the low 
ILS group consisted of S. pennellii LA3778, S. pennellii LA0716, 
and S. pimpinellifolium LA1589. Based on the internal branch 
lengths in coalescent units, the high ILS and low ILS triplets had 
expected rates of discordance of approximately 47% and 0.9%, 
respectively. These rates correspond to the rates of discordance 
seen in empirically estimated gene trees in ref. 10. Based on our 
simulation results, if discordant gene trees contribute to tomato 
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floral trait variation, we should see a greater discrepancy between 
species tree methods and our gene tree methods in the high ILS 
triplet. 

In both of our approaches, we used the multispecies coalescent 
model to calculate the expected gene tree frequencies and branch 
lengths in each triplet. For the covariance matrix method, we used 
these expectations to construct the covariance matrix C* for each 
triplet using the get_full_matrix() method. For the pruning algo-
rithm method, we specified a representative gene tree of each of 
the possible topologies with expected branch lengths, and weighted 
each tree by its expected frequency. For both methods, we used 
the standard approach of specifying a single species tree and our 
gene tree approaches to estimate the evolutionary rate using the 
mean trait values within each accession if multiple individuals 
were measured. 

In line with our expectations, rate estimates obtained from stand-
ard species tree approaches are much higher than those obtained 
from both of our gene tree methods in the high ILS triplet, for all 
three traits (Fig. 6). The discrepancy is much smaller in the low ILS 
triplets (Fig. 6). The bias due to discordance was very large for the 

estimates obtained from the covariance matrix method in seastaR 
(Fig. 6A), where the species tree rate estimates were several orders 
of magnitude higher than the gene tree estimates in the high ILS 
triplet. This is consistent with our simulation finding that the esti-
mated evolutionary rate is more biased under discordance when 
using covariance methods (Fig. 4A). Even when accounting for gene 
tree discordance, the rate estimates obtained from the covariance 
matrix method were substantially higher than those obtained from 
the pruning algorithm method (compare Fig. 6 A and B). This 
discrepancy can be explained by flat/undefined likelihood surfaces 
for the proposed values of σ2 (SI Appendix, Fig. S1): The pruning 
algorithm method, which employs a likelihood search, reaches a 
likelihood plateau and does not propose further improvements, 
whereas the covariance matrix method uses the analytical likelihood 
estimator to obtain the maximum value, regardless of the shape of 
the likelihood surface. This problem may arise when a small number 
of taxa are studied, as less information is available to discern the rate 
of trait evolution. To help users evaluate this problem in their data-
sets, we have implemented a function for calculating trait likelihoods 
over a range of proposed σ2 values in seastaR. In this case, we believe 
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Fig. 4. Phylogenomic comparative meth-
ods produce more accurate evolutionary 
rate estimates. (A) Rate estimates obtained 
using a maximum-likelihood estimator 
applied to the covariance matrix (Eq. 5). (B) 
Rate estimates obtained using numerical 
optimization of the likelihood with the 
pruning algorithm. In both panels, the green 
line shows inferences from methods using 
only the species tree, the red line shows the 
inferences from methods accounting for 
gene tree discordance, and the blue dashed 
line shows the true simulated value of the 
evolutionary rate. The level of gene tree 
discordance expected from each simulated 
species tree (SI Appendix, Methods) is shown 
on the X axis. Note that panels A and B have 
different Y axis scales. 
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the pruning algorithm estimates represent more biologically realistic 
rates of evolution. 

Discussion 

There has been much phylogenetic research focused on the accu-
rate estimation of species trees in the face of gene tree discordance 
(18, 23, 52–55). Despite this focus on inferring trees in the face 
of discordance, standard phylogenetic comparative methods still 
rely on a single “resolved” tree to describe the shared history of 
species. Recent work has made it clear that, if only a single tree is 
used, gene tree discordance can shape trait variation and mislead 
comparative methods (e.g., refs. 18 and 19). However, few solu-
tions have been proposed to solve these problems, especially for 
quantitative traits evolving on clades containing discordance. 
Here, we have developed two approaches, which we refer to as 
phylogenomic comparative methods, that can incorporate gene tree 

discordance into comparative inference. One approach uses a more 
complete phylogenetic variance–covariance matrix that includes 
the covariance present in discordant gene trees. We have developed 
an R package, seastaR, for building this matrix using the frequen-
cies and branch lengths of relevant gene trees. The second approach 
applies the pruning algorithm over a set of gene trees—concordant 
and discordant—to estimate likelihoods. Using simulation, we 
demonstrate that these methods generate more accurate evolu-
tionary rate estimates for traits evolving in the presence of dis-
cordance, and are generally robust to the effects of gene tree 
estimation error. Finally, we demonstrate that empirical floral traits 
in the wild tomato clade Solanum are consistent with evolution 
on discordant gene trees, with the clade with a higher rate of gene 
tree discordance exhibiting a greater discrepancy in rate estimates 
between traditional approaches and our methods. 

Many phylogenetic comparative methods take the variance– 
covariance matrix, C, as input (e.g., refs. 40, 42, 56, and 57). 
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Fig. 5. Phylogenomic comparative meth-
ods are robust to gene tree estimation 
error. In both panels, the solid vertical 
line denotes the true rate of discordance 
used to simulate the trait data, and the 
horizontal blue line denotes the true 
evolutionary rate. The X axis shows the rate 
of discordance supplied to each approach 
when estimating the evolutionary rate 
from the simulated data. For a rate of 
discordance equal to 0, we used the 
standard species tree inference rather than 
gene tree inference. Specifying too much 
discordance can also cause overestimation 
of the evolutionary rate. Note that panels A 
and B have different Y axis scales. 
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Because of the wide use of C, we anticipate that a more complete 
variance–covariance matrix, C*, will be easy to incorporate into 
many comparative analyses. The seastaR package provides an easy 
way for users to generate C*, either from a set of specified gene 
trees or from a specified species tree (assuming a multispecies 
coalescent process). Here, we have demonstrated how C* can be 
used to obtain a maximum-likelihood estimate of the rate of quan-
titative trait evolution under Brownian motion, a method that is 
also implemented in seastaR. One obvious extension of the use of 
C* is in phylogenetic generalized linear mixed models, where the 
covariance matrix is often specified directly in packages such as 
MCMCglmm (58). However, many popular packages for imple-
menting comparative methods—such as phytools (59), ape (60), 
and Geiger (61)—do not take a matrix directly, instead turning 
an input species tree into a matrix. Furthermore, they require a 
strictly bifurcating tree as input to construct a phylo class object. 
Integrating the ability to accept C* (or equivalent sets of gene 
trees) into these methods would enable a much larger array of 
inference tasks to take discordance into account. 

The pruning algorithm is widely used in likelihood-based infer-
ence of phylogenetic trees (62) and for some applications in quan-
titative trait evolution (e.g., refs. 46 and 63–68). Our method 
using the pruning algorithm across a set of gene trees makes many 
of the same assumptions as previous implementations, but models 
each trait as the combined result of a large number of loci; these 
loci were represented in our calculations by a smaller number of 
exemplar gene tree topologies, each with the mean set of branch 
lengths for a given topology. Although it is not as straightforward 
to incorporate our method into other approaches as with C*, 
because the pruning algorithm is a general method for calculating 
likelihoods, it has enormous potential to be applied to a wide 
variety of inference problems. As trees get larger, the computa-
tional cost of the matrix operations in Eqs. 5 and 6 grows expo-
nentially with the number of taxa. In contrast, the number of 
calculations in the pruning algorithm only grows linearly, and 
therefore trees with thousands of tips can be analyzed (69). 

Furthermore, even though several methods for dealing with sparse 
matrices make it possible to analyze larger numbers of taxa (e.g., 
ref. 70), C* has more covariance entries and is therefore less sparse 
than C; this again limits matrix-based approaches in phylogenomic 
comparative methods. 

Both of our approaches can be extended in multiple ways. 
While we have only considered Brownian motion models here, 
there are multiple other trait models that could be used. The 
Ornstein–Uhlenbeck process is a popular model for trait evolu-
tion, with estimators available using both matrix (71–74) and 
pruning algorithm approaches (63, 65, 66, 68). Additional models 
for continuous traits include “early burst” (75) and Lévy (“jump”) 
processes (76). All of these models should be able to be accom-
modated by phylogenomic comparative methods. In addition, 
although we have described the covariances in our models with a 
particular set of gene trees in mind, both methods can be used 
with any weighted mixture of trees. This means that users do not 
have to assume a particular model of species tree evolution (e.g., 
the multispecies coalescent model) and can even ignore ILS alto-
gether in favor of phylogenetic network models (77). This should 
also allow our approaches to accommodate unequal contributions 
to trait variation across individual loci, for example, if some loci 
are known to be functionally related to the trait of interest and 
therefore expected to have mutations of larger effect on average. 

There are also multiple caveats that come with our proposed 
approaches, and some important technical limitations to consider. 
First, errors in gene tree or species tree specification might bias 
inferences. This is especially true if gene trees are being used as 
inputs, as we require both accurate and ultrametric trees. Our 
methods assume that loci controlling trait variation and the 
genome at large follow the same distribution of trees; however, if 
trait loci experience stronger than average selection, these loci could 
have proportionally fewer discordant gene trees than the genomic 
background (78). Gene trees may also be misspecified due to tech-
nical errors in their estimation. We found that error in gene tree 
frequencies and branch lengths is relatively inconsequential for our 
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Fig. 6. Evolutionary rate estimates for three floral traits in Solanum using our approaches (red bars), in comparison to standard species tree methods (blue 
bars). (A) rate estimates (σ2) obtained using the analytical maximum-likelihood estimator as implemented in our R package seastaR. In the high ILS triplet, the 
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approaches, under the conditions considered here. Specifying a set 
of incorrect gene tree topologies may have more of an effect, but 
since ILS is expected to generate all possible topologies with respect 
to a single branch, we do not expect this to be a significant issue. 
Obtaining ultrametric gene trees remains challenging due to var-
iation in rates of evolution among loci and small amounts of data 
per locus. Even when species trees are used to generate gene tree 
frequencies (i.e., get_full_matrix), many coalescent-based methods 
for inferring species trees do not estimate tip branch lengths (e.g., 
refs. 54 and 79), further limiting accurate inferences (but see 
refs. 19 and 77). If there is uncertainty in the species tree topology 
or branch lengths, a straightforward solution would be to embed 
the approaches used here within a Bayesian framework (e.g., 
refs. 80 and 81). It is important to note, however, that gene tree 
discordance is not equivalent to species tree uncertainty: averaging 
over each gene tree topology on its own in a Bayesian framework 
would simply mean averaging over many incorrect trees. Instead, 
a proper Bayesian approach to accommodating discordance would 
have to sum over a new set of gene trees (or covariances) for each 
species tree topology proposed, as was done here with a single 
topology. 

A second caveat is that large numbers of taxa make it harder to 
accurately estimate both the matrix used in seastaR and the gene 
trees used within the pruning algorithm. If gene trees are predicted 
from theory, seastaR calculates C* from the species tree by breaking 
the tree into triplets. While this will return approximately correct 
covariances for all pairs of species, it necessarily ignores any covar-
iance structures that might only be possible in trees with four or 
more taxa. The problem for the pruning algorithm approach could 
be even worse, as separate gene tree topologies must be specified: 
specifying representative gene trees for all possible topologies 
becomes prohibitive with more taxa because the number of gene 
trees grows super-exponentially. Even if gene trees are estimated 
from the data, with only a few dozen taxa there are more possible 
gene tree topologies than independent loci in a genome. Two 
solutions suggest ways around these issues. First, the problems can 
be somewhat ameliorated by recognizing that it is not the number 
of taxa that is the issue, but instead the number of lineages within 
“knots” (cf. ref. 82) on the larger phylogeny that are prone to gene 
tree discordance. For instance, even in a tree with 100 species, if 
only three are undergoing ILS, then only three topologies must 
be considered. Judicious choices as to the number of different 
topologies that must be considered in any particular analysis could 
save a lot of computational effort. Second, as mentioned in the 
Methods, one approach that can be applied to the pruning algo-
rithm method is to sample a limited number of individual gene 
trees, either directly from the inferred trees or from the multispe-
cies coalescent model applied to the species tree. Even if we have 
to sample 100 trees, the likelihood calculations on each are rela-
tively fast and can be parallelized. Such a sampling scheme will 
also naturally recapitulate the degree of discordance associated 
with every branch in the species tree. 

Throughout our analyses, we found that rate estimates using a 
single species tree differed from those accounting for gene trees, 
even when the level of discordance was very low or zero (Fig. 4A). 
This result occurs because the two modes of inference are funda-
mentally different: even with no discordance, “gene tree” analyses 
are based on gene tree branch lengths, not species tree branch 
lengths. Gene tree branch lengths are always longer than species 
tree branch lengths because each pair of lineages is expected to 
coalesce 2N generations before their time of speciation (83, 84). 
These longer gene tree branch lengths result in higher trait vari-
ances in the traits, such that a higher evolutionary rate must be 

proposed to explain the same data when using the species tree for 
analysis. This distinction highlights an additional challenge for a 
potential application of our pruning algorithm approach—ances-
tral state reconstruction. Because the internal nodes of gene 
trees—including concordant gene trees—do not exist at the same 
moment of time as the internal nodes of species trees, reconstruct-
ing ancestral states at the time of speciation requires knowledge 
of the contribution of each gene tree branch to trait evolution at 
that particular time point. This could be accomplished by the 
insertion of single-descendant nodes on gene tree lineages that are 
concurrent with ancestral nodes on the species tree. Inferring 
lineage-specific rate shifts will likewise require that each gene tree 
branch, or segment of a gene tree branch, be assigned to specific 
species tree lineages (cf. ref. 37). In general, these considerations 
highlight the fact that using gene trees in place of a species tree is 
a fundamentally different mode of inference, and that standard 
comparative methods using the species tree may yield incorrect 
inferences even if there is no discordance. 

We consistently found that evolutionary rate estimates for 
tomato floral traits were much greater using species tree approaches 
than our gene tree approaches (Fig. 6). For the high ILS triplet, 
there was even more bias than in the low ILS knot. These results 
are consistent with a contribution of gene trees, rather than a single 
species phylogeny, to variation in these traits. Our analysis of gene 
tree error suggests that this result is not simply an artifact of 
increasing the specified rate of gene tree discordance, but is the 
result of biological variation in the floral traits. Furthermore, our 
findings have implications for the study of evolutionary rate var-
iation among clades. For example, imagine that researchers wished 
to investigate whether the evolutionary rate of corolla diameter 
differed between our high ILS and low ILS triplets. Applying 
standard species tree methods, they would find that the corolla 
diameter of the high ILS species evolves at a much faster rate than 
in their low ILS counterparts. However, from our results in Fig. 6, 
after correcting for the contribution of discordant gene trees, this 
difference disappears and the trait appears to evolve at approxi-
mately the same rate in both clades. This result highlights how 
variation in the rate of gene tree discordance among clades is a 
confounding factor when studying the evolution of lineage-specific 
rate shifts. 

An increasingly common finding in phylogenomics is that of 
rapid and/or highly parallel trait evolution associated with rapid 
species radiations (85–89). The application of classic comparative 
approaches in these systems has suggested that many radiations 
violate constant-rate Brownian motion models, with more com-
plex models being proposed instead (90–92). However, adaptive 
radiations often have very little time between speciation events, 
resulting in high rates of gene tree discordance and therefore high 
potential for hemiplasy (10). Here, we have found that apparently 
higher rates of trait evolution in rapid radiations may be perfectly 
consistent with a standard Brownian motion model with a con-
stant evolutionary rate. In this circumstance, higher apparent rates 
of evolution are simply the result of a stronger contribution of 
discordant gene trees to covariance among species. Our proposed 
phylogenomic comparative methods help to address these issues, 
providing more accurate evolutionary inferences in systems with 
high rates of discordance. 

Data, Materials, and Software Availability. Source code and analysis 
scripts related to seastaR and the covariance matrix method can be found in 
https://github.com/larabreithaupt/seastaR (93). Code and scripts related to 
the pruning algorithm method can be found in https://github.com/mhibbins/ 
genetreepruningalg (94). 
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