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Abstract 

With advances in sequencing technology, research in the field of landscape genetics 

can now be conducted at unprecedented spatial and genomic scales. This has been 

especially evident when using sequence data to visualize patterns of genetic differ-

entiation across a landscape due to demographic history, including changes in migra-

tion. Two recent model-based visualization methods that can highlight unusual 

patterns of genetic differentiation across a landscape, SpaceMix and EEMS, are 

increasingly used. While SpaceMix’s model can infer long-distance migration, EEMS’ 

model is more sensitive to short-distance changes in genetic differentiation, and it is 

unclear how these differences may affect their results in various situations. Here, 

we compare SpaceMix and EEMS side by side using landscape genetics simulations 

representing different migration scenarios. While both methods excel when patterns 

of simulated migration closely match their underlying models, they can produce 

either un-intuitive or misleading results when the simulated migration patterns 

match their models less well, and this may be difficult to assess in empirical data 

sets. We also introduce unbundled principal components (un-PC), a fast, model-free 

method to visualize patterns of genetic differentiation by combining principal com-

ponents analysis (PCA), which is already used in many landscape genetics studies, 

with the locations of sampled individuals. Un-PC has characteristics of both 

SpaceMix and EEMS and works well with simulated and empirical data. Finally, we 

introduce msLandscape, a collection of tools that streamline the creation of 

customizable landscape-scale simulations using the popular coalescent simulator ms 

and conversion of the simulated data for use with un-PC, SpaceMix and EEMS. 
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1 | INTRODUCTION  

The combination of decreasing cost and increasing throughput of 

DNA sequencing has transformed many fields. This is especially 

true of landscape genetics, where improved access to sequencing 

has enabled increasingly ambitious studies that sample larger land-

scapes as well as more individuals across the landscape than was 

possible just a few years ago (e.g., Miller et al., 2016; Pagani 

et al., 2016; Roffler et al., 2016). For instance, for a growing 

number of species, it is now possible to observe landscape-scale 

patterns of genetic differentiation, which represent long-term 

records of evolutionary history. Analysing these patterns of 

genetic differentiation is important to help understand the demo-

graphic history of populations as they may relate to geographical 

features on the landscape (Richardson, Brady, Wang, & Spear, 

2016), and this spatial information can be leveraged to improve 

the genetic clustering of individuals into populations (Bradburd, 

Coop, & Ralph, 2017). 
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The vanguard attempt to visualize patterns of genetic variation 

across a landscape was made 40 years ago. Menozzi, Piazza, and 

Cavalli-Sforza (1978) used principal components analysis (PCA) to 

summarize the patterns in multiple allozyme markers sampled from 

humans across Europe and then interpolated each individual’s score 

from a single principal component (eigenvector) across the land-

scape. They used patterns found in these interpolated genetic maps 

to make inferences about past migration routes and timing. How-

ever, patterns arising from the interpolation of single principal com-

ponents were later shown to be artefacts that consistently occur 

during PCA calculation, especially due to the orthogonality con-

straints imposed by PCA (DeGiorgio & Rosenberg, 2013; Novembre 

& Stephens, 2008). Instead, if two principal components, typically PC 

1 and PC 2, are plotted against each other, which we refer to here 

as a “PCA biplot,” these artefacts are lessened (Novembre et al., 

2008). When the dispersal of organisms is spatially limited, the 

amount of genetic differentiation between populations increases 

with geographic distance, and PC 1 and PC 2 from the genetic data 

can become surrogates for latitude and longitude (or vice versa). 

Under these conditions, PCA biplots may provide a striking match 

with the geographic locations of sampled individuals (Figure 1; 

Novembre et al., 2008; Wang, Z€ollner, & Rosenberg, 2012). Due to 

its combination of utility and speed of calculation, PCA is now com-

monly used as a diagnostic tool to examine patterns of genetic varia-

tion before model-based (and more computationally intensive) 

analyses are undertaken. 

The advantage of model-based analyses is that they can locate 

areas on the landscape that have anomalous patterns of genetic dif-

ferentiation; although there are model-free methods such as MAPI 

(Piry et al., 2016) that also aim to highlight such areas, PCA biplots 

by themselves cannot serve this purpose. Two recently introduced 

model-based methods that can use both thousands of genetic mark-

ers (e.g., single nucleotide polymorphisms; SNPs) and thousands of 

sampled individuals are SpaceMix (Bradburd, Ralph, & Coop, 2016) 
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and EEMS (Petkova, Novembre, & Stephens, 2016). Other model-

based methods not tested here include LocalDiff (Duforet-Frebourg 

& Blum, 2014) and SPA (Yang, Novembre, Eskin, & Halperin, 2012). 

Both SpaceMix and EEMS fit an underlying model to the observed 

data in order to identify populations that either have anomalously 

weak or strong genetic differentiation that may indicate differences 

in demographic history, such as changes in effective population size 

or migration. Although these two methods differ in their details, they 

both fit their models using Markov chain Monte Carlo (MCMC) sam-

pling to explore the large parameter spaces required. SpaceMix is 

unique in inferring long-distance migration events that occurred 

between pairs of geographically separated populations on the land-

scape. This includes inferring the direction of migration and the pro-

portion of admixture in the recipient population that was caused by 

long-distance migration from the source population. EEMS, on the 

other hand, is built to visualize patterns of genetic differentiation 

over shorter distances by fitting a continuous surface of estimated 

gene flow across the landscape. Both EEMS and SpaceMix are being 

used increasingly frequently in empirical studies (Montinaro et al., 

2016; Richmond et al., 2017; Tsuda et al., 2016; Uren et al., 2016; 

Yoder et al., 2016), but there has been no comparison of the two 

methods to determine how they perform in situations where the 

underlying patterns of genetic differentiation poorly match their 

models, or how these situations appear in their visualizations. Here, 

we sought to determine how the two methods perform using simu-

lated genetic data that represent a range of both short- and long-dis-

tance migration scenarios with the goal of better understanding the 

strengths and limitations of each method. 

Because both EEMS and SpaceMix are model-based and use 

MCMC methods to explore their large parameter spaces, they are 

computationally intensive and slow. Therefore, before these methods 

are run, it would be useful to have a fast diagnostic method that can 

visualize major patterns of genetic differentiation across a landscape. 

To fill this gap, here we introduce unbundled principal components 
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F IGURE  1  PCA biplot and map of countries or populations used in the analysis of the POPRES genetic data set, coloured as in Novembre 
et al. (2008). (a) Biplot of PC 1 and PC 2 with each point representing a different individual; points are coloured according to the individual’s 
birth country or the birth country of their grandparents. (b) Map of Europe with countries coloured the same as in Panel (a), and with country 
abbreviations used in Novembre et al. (2008), including splitting Swiss individuals into French-speaking (CHf), Italian-speaking (CHi) and 
German-speaking (CHg) groups [Colour figure can be viewed at wileyonlinelibrary.com] 
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(un-PC), a model-free method implemented in R that extends PCA 

results by incorporating the geographic locations of the sampled 

individuals. Un-PC is quick to run and its visualizations can provide 

insight about genetic differentiation both across short distances, sim-

ilar to EEMS, as well as across longer distances, similar to SpaceMix. 

Un-PC is not a substitute for model-based methods like SpaceMix or 

EEMS, but it provides a value-added diagnostic tool that leverages 

the PCA results that are typically already calculated in landscape 

genetics studies. 

Differences in allele frequencies among populations sampled 

across a landscape, which form the basis for the visualizations of 

genetic differentiation produced by EEMS, SpaceMix and un-PC, are 

records of the sometimes complex evolutionary histories of popula-

tions. These differences in allele frequencies may be caused by 

migration, but may also be due to mutation, selection and drift. 

Although the relative effect of selection may be strong on specific 

loci, the effect of mutation is thought to be minimal overall (Whit-

lock & McCauley, 1999), and both factors are generally ignored in 

demographic inference (Wang & Whitlock, 2003). However, it is 

difficult if not impossible to separate the effects of drift from 

migration when studying patterns of genetic variation on a land-

scape. Because of this, the effective amount of gene flow between 

populations is often represented as the compound parameter Ne m, 

where Ne is the effective population size and m is the migration 

rate. Any indication of genetic differentiation between populations 

that is identified by the methods discussed here may therefore be 

caused by changes in the amount of drift between the populations 

(due to differences in Ne) rather than any differences in migration, 

and this would not be identifiable (Slatkin, 1987; Whitlock & 

McCauley, 1999). 

It must also be mentioned that none of the methods described 

here directly estimate Ne m. The closest such estimate comes from 

EEMS, which estimates the relative amount of gene flow across the 

landscape, but not the absolute value of Ne m between any popula-

tions. SpaceMix’s “geogenetic” visualizations should be proportional 

to Ne m, but they do not provide any numerical estimates. Results 

from un-PC, because they are not model-based, cannot be inter-

preted as values of Ne m. 

Here, we use simulated landscape genetics data to compare the 

three analysis methods, but these simulations also make a number of 

simplifying assumptions with regard to migration and drift. First, the 

simulated populations are at migration–drift equilibrium. In nature, 

this equilibrium may be slow to develop if individuals are moving 

into new environments (Whitlock & McCauley, 1999). In such cases, 

visualizations of differences in allele frequencies across a landscape, 

which represent long-term demographic histories averaged across 

many generations, may not match the most recent patterns of migra-

tion among populations (Slatkin, 1987). Second, the simulated data 

keep Ne constant, so we are confident that the extent of genetic dif-

ferentiation between populations identified by each method is due 

primarily to differences in migration and not due to differences in 

drift. Because of this constraint on the simulations used, however, 

we are unable to assess the robustness of the three tested methods 

to differences in Ne across populations, although EEMS appears rela-

tively unaffected by changes in Ne (Petkova et al., 2016). 

Using landscape-scale genetic simulations not only allows con-

trolled comparisons of different analysis methods but can also give a 

better understanding of the factors that may affect patterns of 

genetic variation in empirical studies. Although simulation programs 

such as SPLATCHE2 (Ray, Currat, Foll, & Excoffier, 2010) facilitate 

landscape-scale simulations, most empirical landscape genetics stud-

ies do not include such simulations, possibly because they can be 

tedious to produce. Both the original SpaceMix and EEMS papers use 

the popular coalescent simulator ms (Hudson, 2002) to test their 

methods. The program ms is ideal for large spatial simulations 

because it has no limit to the number of populations simulated, the 

simulation scenarios are highly customizable and its output format is 

easy to parse for downstream applications. These spatially explicit 

ms simulations mimic geographic landscapes by allowing different 

migration rates across them. Similar functionality is provided by 

SPLATCHE2 (Ray et al., 2010), although it can also simulate the 

effects of variation in migration rates through time, which we do not 

evaluate here. Using ms, these landscape-scale simulations are pro-

duced by specifying all possible pairwise migration connections 

between each population to be simulated. Enumerating these con-

nections by hand is laborious and error-prone, and is difficult to 

either graph or troubleshoot before simulation. To address these 

problems, here we also introduce msLandscape, a toolset to stream-

line the creation of landscape-scale genetic simulations with ms. 

msLandscape enables the easy simulation of essentially any landscape 

size, shape and sampling pattern using ms; simple graphing of the 

landscape configuration before simulation; and conversion of the ms 

output for subsequent use in PCA/un-PC, EEMS and SpaceMix analy-

ses. 

Our goal here is to better characterize the performance of exist-

ing methods to visualize patterns of genetic variation across the 

landscape using genetic data and to facilitate making these spatially 

explicit visualizations faster and easier. This paper addresses three 

major aims: (i) to compare the visualized patterns of genetic variation 

generated by EEMS and SpaceMix using a range of simulated migra-

tion scenarios, (ii) to introduce and evaluate un-PC, a model-free 

method meant as a diagnostic tool that uses PCA results together 

with sampling locations to quickly visualize overall patterns of 

genetic variation across the landscape and (iii) to facilitate the 

greater use of simulations in landscape genetics studies through 

msLandscape, a toolbox that streamlines the generation of landscape-

scale simulations using the coalescent simulator ms. 

2 | MATERIALS  AND  METHODS  

2.1 | ms simulations 

We generated landscape simulations using the coalescent simulator 

ms (Hudson, 2002), which was also used to test SpaceMix and EEMS 

when they were first introduced (Bradburd et al., 2016; Petkova 

et al., 2016). In empirical landscape genetics studies, the sampled 
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populations are usually interspersed among intervening, unsampled 

populations. To incorporate this in the simulations, we arranged 100 

sampled populations, each with 10 sampled individuals, in a 10-by-

10 grid with each sampled population surrounded by six unsampled 

populations, and two bordering rings of unsampled populations that 

enclosed the landscape (Figure 2a). For the simulations, populations 

were defined as all of the individuals simulated at each spatial loca-

tion; individuals were not assigned to populations based on genetic 

clustering. 

For the baseline scenario of constant migration, all populations 

(sampled or unsampled) exchange migrants with each of their adja-

cent populations (Figure 2a) using the migration parameter 

4 Ne m =  3.0. We also simulated a wide belt of reduced migration, 

where 4 Ne m through the middle of the landscape was reduced to 

0.3, or 10% of its value on both edges of the landscape, with narrow 

transition zones having 4 Ne m = 1.7 (Figure 2b). Although migration 

across the middle of the landscape was still possible, for brevity we 

refer to this scenario as a migration barrier. This scenario could be 

analogous to a mountain range or an area of anthropogenic distur-

bance that interrupts suitable habitat patches. Finally, we simulated 

multiple independent long-distance migration scenarios where either 

10%, 30%, 50%, 70% or 90% of the individuals from the sampled 

recipient population, located in the bottom right corner of the land-

scape, had arrived directly from the unsampled source population, 

located in the upper left corner of the landscape (Figure 2c), in the 

recent past (0.01 9 4 Ne generations ago). The migration rates 

among all other populations were unchanged compared to the con-

stant migration scenario. 

For all scenarios, we sampled 1000 individuals (10 individuals 

from each of the 100 sampled populations) and simulated 10,000 

independent SNPs in each individual. For the constant migration and 

migration barrier scenarios, we also simulated both random uneven 

(a) (b) 

sampling of individuals from each sampled population (min = 1, 

max = 18, mean = 10.2, SD = 4.9) and strongly patterned uneven 

sampling, where individuals were heavily sampled from the right side 

of the landscape but no individuals were sampled from the left side 

(min = 1, max = 48, mean = 21.2, SD = 14.9). In both cases, the 

total number of individuals sampled remained 1000 although the 

number of populations with sampled individuals was 98 for the ran-

dom uneven sampling and 47 for the strongly patterned uneven 

sampling (Figure S1). See Table S1 for summary information about 

the different simulation scenarios. 

We completed 100 independent simulation iterations for each 

scenario to incorporate the stochastic differences inherent in coales-

cent simulations; the simulated data for each iteration were then 

analysed independently using each analysis method. Here, we pre-

sent analysis results and visualizations that are means of the 100 

independent simulation iterations for each scenario. Variation 

between simulation iterations was generally moderate; see Figure S2 

for a representative iteration of each scenario and the msLandscape 

website for visualizations from all iterations for each scenario. 

2.2 | msLandscape 

To facilitate the creation and analysis of large custom landscape 

genetics simulations, we wrote a collection of user-friendly programs 

in PYTHON and R that together form the msLandscape toolbox and 

workflow (see Figure S3 and the msLandscape documentation for 

additional description and examples). The workflow starts by auto-

matically generating an ms parameter file that directs ms to simulate 

a rectangular landscape comprised of hexagonal tiles with fully cus-

tomizable landscape dimensions. Each of these tiles represents seven 

populations, with migration simulated between each population and 

its nearest neighbours. The parameter files that are necessary for ms 

(c) 

F IGURE  2  Simulated scenarios used to evaluate the different methods of visualizing genetic differentiation across the landscape. Equal 
numbers of individuals were selected from each sampled population on the landscape (indicated by large black dots), while surrounding 
unsampled populations are indicated by smaller black dots. Migration connections are indicated using grey lines connecting population pairs, 
where the width of the line is proportional to the migration rate. The scenarios were as follows: (a) constant migration across the landscape, 
(b) a vertical migration barrier with ten times lower migration through the middle of the landscape and (c) long-distance migration from an 
unsampled population in the upper left corner of the grid (source population) to a sampled population in the lower right corner of the grid 
(recipient population), as indicated by the location and direction of the arrow. All panels are direct output from the msLandscape_networkPlotter 
function in the msLandscape R package, except that the arrow denoting the long-distance migration in Panel (c) was manually added 
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to generate landscape-scale simulations are large and difficult to 

interpret directly (e.g., Appendices S1–S3 for the parameter files that 

generate the scenarios presented in Figure 2). To make these files 

easier to interpret and troubleshoot, msLandscape uses the IGRAPH 

package in R to visualize the landscape configuration of an ms 

parameter file as a network graph with populations as vertices and 

migration connections as edges. The size of each vertex is propor-

tional to the number of individuals sampled from that population, 

and the width of each edge is proportional to the specified migration 

rate between the pair of populations that it connects. The popula-

tions in this graph can be optionally labelled using the numbers 

assigned in the ms parameter file, and these numbers can be used to 

identify populations that should be removed from the rectangular 

landscape in order to “sculpt” it into virtually any desired shape. This 

“sculpting” is achieved by automatically removing populations speci-

fied by the user from the ms parameter file; at the same time, the 

user can also specify changes to the number of individuals sampled 

in any population. The network graph can also verify changes to 

migration rates after manual editing of the ms parameter file. Finally, 

it highlights any population pairs with only a single migration con-

nection between them, denoting unidirectional migration. Once the 

user is satisfied with the landscape characteristics represented in the 

ms parameter file, it is then ready for input to ms. Additional options 

are available in msLandscape to have ms produce multiple indepen-

dent simulations for the same ms parameter file and to convert the 

ms output into the appropriate format for multiple downstream anal-

ysis tools (Figure S3). 

2.3 | Un-PC 

Un-PC is an analysis method that uses the principal components 

from any PCA method applied to genetic data (smartpca from 

EIGENSOFT (Patterson, Price, & Reich, 2006) is used here) in combi-

nation with geographic coordinates of the samples to create visual-

izations of genetic differentiation across the landscape. Here, we 

calculated individual-level PCAs, but then averaged the resulting 

coordinates in PC 1 and PC 2 space for all individuals in each sam-

pled population to create population-level PCA coordinates that 

were used for un-PC. Un-PC first calculates the Euclidean distance 

between the PCA coordinates for each pair of populations to gener-

ate a PCA-based genetic distance. The pairwise geographic distance 

between populations is also calculated. For simulated data sets, the 

Euclidean distance between population coordinates was used as the 

geographic distance (though see below for an important modification 

to these coordinates that we used to help correct for distortion 

caused by PCA); for empirical data sets, the geographic distance was 

calculated using the Haversine formula to account for the Earth’s 

curvature. The ratio of the genetic distance to the geographic 

distance for each pair of populations is the un-PC value for that pair. 

Larger un-PC values (larger genetic distance relative to geographic 

distance) indicate increased genetic differentiation between the 

populations, while smaller un-PC values indicate less genetic 

differentiation. 

Once the un-PC values are calculated for each population pair, 

they collectively form a distribution where population pairs with un-

PC values in the two tails of the distribution are the ones that repre-

sent the most extreme genetic differentiation or similarity and there-

fore are likely to be the most useful in visualizing patterns across 

the landscape (Figure S4). Un-PC produces two visualizations in geo-

graphic space, one highlighting each tail of this distribution. It does 

this by first connecting each population pair with an ellipse that is 

coloured based on the un-PC value for that population pair. Ellipses 

with un-PC values near the mean of the distribution are coloured 

white, while ellipses with higher un-PC values (greater differentiation) 

are coloured progressively more pink, and ellipses with lower un-PC 

values (less differentiation) are coloured progressively more green 

(Figure S4). We used a consistent colour scale for all un-PC analyses 

that used simulated data so that the visualizations from different 

migration scenarios can be directly compared. One of the un-PC 

visualizations is then produced by stacking the ellipses in order from 

least to greatest un-PC values so that the most genetically differenti-

ated pairwise comparisons (the pinkest ellipses) are on top, and the 

other visualization is produced by reversing the stacking so that the 

ellipses with the smallest un-PC values, representing the least genetic 

differentiation (the greenest ellipses), are on top (Figure S4). 

PCA biplots of PC 1 and PC 2 produce a known distortion, espe-

cially towards their edges, where points are crowded closer together 

than points in the centre (Figure 3a). This distortion can be well 

modelled using a two-dimensional discrete cosine transform (DCT; 

Novembre & Stephens, 2008). By determining the expected location 

of each population in PCA space using the DCT and then using 

those transformed coordinates instead of the raw coordinates when 

calculating the pairwise geographic distance for un-PC, the signal 

from this distortion is strongly reduced (Figure S5). 

2.4 | SpaceMix 

To run SpaceMix (Bradburd et al., 2016), we converted the ms simu-

lation results for each individual into genotype count and sampling 

count files that were aggregated by population. We ran SpaceMix to 

estimate the location of each population in “geogenetic” space while 

also inferring the amount and direction of any long-distance migra-

tion between populations. The visualizations presented here use the 

“ellipses” option in SpaceMix to show the 95% credible interval for 

the location of each population in geogenetic space. They also use 

the “source” option to automatically plot arrows between popula-

tions with inferred long-distance migration, which we defined here 

to be populations where the inferred proportion of admixture due to 

long-distance migration was more than three standard deviations 

above the mean for all populations, and which had an absolute value 

>0.025. These modifications removed weak, erroneous signals of 

long-distance migration in the simulation results; no modifications 

were made for the empirical data set. We provided SpaceMix with 

the geographic coordinates of the populations to act as geographic 

priors we ran all SpaceMix analyses using 10 initial fast runs, each 

with 100,000 iterations followed by a long MCMC run of 2.2 million 
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(c) 

(d) 
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F IGURE  3  Visualizations of genetic differentiation for the 
constant migration scenario with even-sampling (Figure 2a). (a) 
Biplot of PC 1 and PC 2 with each row of 10 sampled populations 
marked using an arbitrarily chosen colour for clarity. (b) EEMS with 
areas of estimated decreased genetic differentiation in green, areas 
of estimated increased genetic differentiation in pink and areas with 
average estimated genetic differentiation in white; the darker the 
colour, the stronger the deviation from the estimated average. Black 
dots denote population locations. The graph below the landscape is 
the mean estimated relative gene flow on the landscape, averaged 
from top to bottom, with increases in estimated relative gene flow 
corresponding to decreases in estimated genetic differentiation and 
vice versa. (c) SpaceMix with each ellipse representing 95% credible 
intervals around the estimated location of each population in 
geogenetic space. Sampled populations are coloured using the same 
colours as the PCA biplot in Panel (a). (d) Un-PC with the most 
differentiated ellipses stacked on top; like EEMS, the darker pink 
colours represent population pairs with increased genetic 
differentiation (higher un-PC scores). (e) Un-PC with the least 
differentiated ellipses stacked on top; like EEMS, the darker green 
colours represent population pairs with decreased genetic 
differentiation (lower un-PC scores). Visualizations from EEMS and 
un-PC are expected to be uniformly white in this scenario, indicating 
no differences in genetic differentiation across the landscape. 
However, they both show artefacts at the edges of the landscapes, 
and therefore the visualizations from this scenario form a baseline to 
compare against the results from other simulated migration or 
sampling scenarios. All visualizations are the mean from 100 
simulation iterations [Colour figure can be viewed at 
wileyonlinelibrary.com] 

iterations that was sampled every 4,000 iterations. The first 200 

samples were discarded as burn-in, leaving 350 samples per analysis 

run. 

2.5 | EEMS 

In order to run EEMS (Petkova et al., 2016), we converted the simu-

lated genotype data into a matrix of individual-level pairwise genetic 

differences following the method used in Petkova et al. (2016) and 

implemented in R as part of the msLandscape toolbox. We specified 

the population membership of each individual, the population coor-

dinates as geographic priors, similar to SpaceMix, and a triangular 

grid connecting all sampled populations. To generate more detailed 

visualizations, we directly used the raster output of EEMS that esti-

mates the relative amount of genetic differentiation across the land-

scape (on a log scale) instead of the colour-based contour plots 

used in the original paper (Petkova et al., 2016). Raster cells having 

estimated values close to the mean across the landscape are 

coloured white; cells with higher estimated differentiation (lower rel-

ative gene flow) are coloured progressively darker pink, while cells 

with lower estimated differentiation (higher relative gene flow) are 

coloured progressively darker green. Below each landscape plot is a 

dot plot of the estimated relative gene flow averaged across each 

“column” of raster cells. EEMS can also generate visualizations that 

highlight areas of the landscape having significantly higher or lower 

https://wileyonlinelibrary.com
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genetic differentiation as evaluated by posterior probabilities (Pet-

kova et al., 2016). We used pilot runs with the constant migration, 

even-sampling simulations to tune the EEMS parameters such that 

the acceptance proportions were from 20% to 30%, as recom-

mended in Petkova et al. (2016). We then used those parameters 

for all subsequent analyses. Each EEMS run consisted of 3 million 

MCMC iterations, with the first 1.25 million discarded as burn-in, 

and sampled every 2000 iterations, leaving 875 samples per analysis 

run. For both EEMS and SpaceMix, we visually confirmed that the 

MCMC chain showed evidence of mixing well (a jagged trace of 

posterior probabilities) and appeared to converge in the majority of 

analysis runs, where one run was performed for each simulation 

iteration. 

2.6 | Testing all three methods using an empirical 
example 

To further evaluate the analysis methods, we used individuals with 

European ancestry from the POPRES data set of human genetic vari-

ation (Nelson et al., 2008). This data set has been shown to display 

striking similarity between the PC 1/PC 2 biplot of genetic differen-

tiation and geographic locations (Figure 1; Novembre et al., 2008). 

The sampled individuals self-identified the country of birth for either 

themselves or their grandparents and were genotyped using the 

Affymetrix 500K genotyping chip. We used the same SNPs 

(197,146) and individuals as in Novembre et al. (2008) with three 

exceptions: individuals 31645 and 32480, both with French ancestry, 

were not listed in the POPRES version 2, QC2 data set that we 

obtained, and individual 13011 reported Slovakian ancestry but was 

genetically a large outlier in the PCA biplot, as was noted in Novem-

bre et al. (2008). This left 1384 individuals to analyse. We aggre-

gated individuals by country (or region for individuals with Scottish, 

Swiss French, Swiss German, and Swiss Italian ancestry) for SpaceMix 

and EEMS, following the aggregation groups in Novembre et al. 

(2008). For un-PC, the PCA was run using individual-level data (Fig-

ure 1a) and PC scores were averaged for individuals from each coun-

try or region. For each analysis method, we used the same 

geographic location for each population as Novembre et al. (2008), 

which was generally the spatial centroid of each country except Nor-

way, Sweden and Russia where the location of the capitals was used 

instead; we also combined Serbia and Montenegro, as in Novembre 

et al. (2008). 

3 | RESULTS  

3.1 | Constant migration 

As a baseline condition, we simulated a scenario with constant 

migration between neighbouring populations across the landscape 

and even-sampling of individuals from each population (Figure 2a). 

The PCA biplot for the simulated data correctly located the central 

populations and showed the characteristic distortion of PCA for 

populations nearer the edge of the landscape (Figure 3a). To help 

correct for this distortion, the un-PC analysis used population posi-

tions derived from a two-dimensional DCT (Figure S5; see Methods). 

The DCT correction was generally effective at reducing distortion-

based artefacts in the un-PC visualizations, especially near the cen-

tral populations for the most differentiated ellipses and the corner 

populations for the least differentiated ellipses, as evidenced by 

most ellipses being close to the mean value (having light colours; 

Figure S5). However, after the DCT correction, there were a few 

more strongly differentiated ellipses, which occur because the cor-

rection does not exactly match the actual PCA distortion (Figure S5). 

SpaceMix’s assignment of population locations in geogenetic space 

(Figure 3c) was extremely similar to the raw PCA results (Figure 3a), 

except with less of the edge distortion present in the PCA. In this 

scenario, we expected the EEMS results to be white, indicating no 

systematic deviations from the average estimated genetic differenti-

ation. Instead, we consistently observed a pattern of decreased 

genetic differentiation (indicated by darker green colours) in the 

edge populations and increased differentiation (indicated by darker 

pink colours) among the central populations (Figure 3b), and this 

pattern was associated with areas of the landscape that had signifi-

cant posterior probabilities (Figure S6). This artefact resulted from 

including unsampled populations in the simulations; these strongly 

defined areas of apparent genetic differentiation disappeared, and 

the patterns of significant posterior probabilities were substantially 

weakened under unrealistic conditions with no intervening unsam-

pled populations among the sampled populations, and no unsampled 

populations surrounding the sampled landscape (Figure S7). The 

three visualization methods took distinctly different amounts of time 

to run regardless of the simulation scenario: PCA and un-PC were 

consistently more than two orders of magnitude faster than EEMS 

and more than three orders of magnitude faster than SpaceMix 

(Table 1). 

TABLE  1  Mean run times in hours for un-PC (with PCA), EEMS 
and SpaceMix over the 100 iterations of each of the three simulation 
scenarios represented in Figures 3–5. Un-PC was run to generate 
mean visualizations of genetic differentiation across all 100 PCA 
iterations; un-PC did this in <15 s for all simulated scenarios 

Simulation Analysis Mean time (frac- Standard deviation 

scenario method tional hours) (fractional hours) 

Constant PCA + 0.003 0.0002 

migration un-PC 

EEMS 0.86 0.005 

SpaceMix 5.05 0.019 

Migration PCA + 0.004 0.0003 

barrier un-PC 

EEMS 0.89 0.004 

SpaceMix 5.07 0.055 

Long-distance PCA + 0.003 0.0003 

migration un-PC 

EEMS 0.86 0.006 

SpaceMix 5.05 0.019 
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3.2 | Migration barrier 

The PCA biplot for this scenario showed populations within the 

migration barrier having increased genetic distances between them 

compared to populations on either side of the barrier, resulting in a 

central “bubble” of distortion (Figure 4a). Scenarios where there are 

short-distance changes in migration rates across the landscape are 

well suited for analysis with the model that underlies EEMS. Indeed, 

EEMS clearly visualized the correct position of the migration barrier 

on the landscape (Figure 4b) and associated it with significantly 

increased genetic differentiation based on posterior probabilities 

(Figure S6). However, for EEMS, the artefact of decreased genetic 

differentiation around the landscape edges in the constant migration 

scenario (Figure 3b) was still present and was of the same magnitude 

as the estimated increase in genetic differentiation that was caused 

by the migration barrier (Figure 4b, bottom). SpaceMix depicted the 

populations inside the migration barrier as more differentiated (and 

therefore further apart in geogenetic space) than populations outside 

of it, making the barrier appear as a region of distortion (Figure 4c), 

similar to the pattern in the PCA biplot (Figure 4a). SpaceMix also 

had increased uncertainty in estimating the position of populations 

within the migration barrier compared to populations outside it, as 

indicated by larger 95% credible interval ellipses. Additionally, Space-

Mix displayed a consistent artefact of placing the populations on 

either side of the migration barrier in a compact arch (Figure 4c). 

Both of the un-PC visualizations (stacking either the most or the 

least differentiated ellipses on top) showed complimentary informa-

tion (Figure 4d,e): a band of increased genetic differentiation coincid-

ing with the migration barrier and relatively less genetic 

differentiation among populations on either side of the barrier. 

3.3 | Long-distance migration 

Here as an example, we present results for the long-distance migra-

tion scenario where 70% of individuals in the recipient population 

had recently arrived directly from the source population; see Fig-

ure S8 for results from other amounts of long-distance migration. 

Long-distance migration was apparent in the PCA biplots, with the 

recipient population (the purple dot near the centre of the grid) 

being positioned closer to the source population than it actually is in 

geographic space (Figure 5a). SpaceMix is built to infer these kinds of 

long-distance migration events, and it consistently performed the 

best of the three methods in estimating the location of the source 

population, and uniquely in inferring long-distance migration and 

F IGURE  4  Visualizations of genetic differentiation for the 
migration barrier scenario with even-sampling (Figure 2b); all 
visualizations are coloured the same as in Figure 3. (a) Biplot of PC 
1 and PC 2. (b) EEMS. (c) SpaceMix. (d) Un-PC with the most 
differentiated ellipses on top. (e) Un-PC with the least differentiated 
ellipses on top. All visualizations are the mean from 100 simulation 
iterations [Colour figure can be viewed at wileyonlinelibrary.com] 

(a) 

(b) 

(c) 

(d) 

(e) 

https://wileyonlinelibrary.com
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(a) 

(b) 

(c) 

(d) 

(e) 

F IGURE  5  Visualizations of genetic differentiation for the long-
distance migration scenario with even-sampling, where 70% of the 
individuals in the recipient population were long-distance migrants 
from the source population in the recent past (Figure 2c). All 
visualizations are coloured the same as in Figure 3. (a) Biplot of PC 
1 and PC 2 with the dashed arrow added to indicate the geographic 
location of the recipient population on the landscape (the arrow tail) 
compared to its position in the biplot (the purple dot by the arrow 
head); the location of the unsampled source population is indicated 
by a black asterisk in the upper left corner. (b) EEMS fails to identify 
this long-distance migration event. (c) SpaceMix correctly identified 
the recipient population, plotting it as a purple ellipse near the 
location of the source population in geogenetic space, and 
automatically drawing an arrow that originates from the correctly 
inferred geographic location of the recipient population (lower right) 
and ends at its position in geogenetic space (upper left). (d) Un-PC 
with the most differentiated ellipses on top indicates an area of 
genetic differentiation around the recipient population because its 
individuals are genetically distinct from those in the neighbouring 
populations. (e) Un-PC with the least differentiated ellipses on top 
gives an indication of the direction of long-distance migration 
because the individuals in the recipient population are more 
genetically similar to populations in the area of the source 
population than they are to individuals elsewhere on the landscape. 
All visualizations are the mean from 100 simulation iterations 
[Colour figure can be viewed at wileyonlinelibrary.com] 

determining its direction (Figures 5c and S8). Un-PC highlighted the 

recipient population as having increased genetic differentiation com-

pared to its neighbouring populations, reflecting the fact that many 

of its individuals were not genetically similar to those of nearby pop-

ulations (Figure 5d). Un-PC also gave an indication of the direction 

of the long-distance migration event due to the recipient population 

having less genetic differentiation compared to several populations 

in the vicinity of the source population (Figure 5e). Similar to un-PC, 

EEMS depicted the recipient population of the long-distance migra-

tion event as having increased genetic differentiation compared to 

adjacent populations, though EEMS was markedly less sensitive than 

un-PC in showing this (Figure 5b), with it only appearing in the visu-

alizations when 90% of the individuals in the recipient population 

were long-distance migrants from the source population (Figure S8). 

The long-distance migration simulated in these scenarios all occurred 

in the recent past (Table S1); if the long-distance migration instead 

took place in the more distant past, then its resulting signal of 

admixture is expected to be reduced compared to what we demon-

strate here. 

3.4 | Effects of uneven sampling 

Random uneven sampling of individuals from each population across 

the landscape did not qualitatively affect the patterns of genetic dif-

ferentiation from any of the three analysis methods, in either the 

constant migration or the migration barrier scenarios (Figure S9). 

Uneven sampling only resulted in artefacts when it was strongly pat-

terned across the landscape, forming a gradient in the number of 

sampled individuals (Figure S10). Generally, SpaceMix was most 

https://wileyonlinelibrary.com
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(a) 

(b) 

(c) 

(d) 

(e) 

F IGURE  6  Analysis results using the empirical POPRES data set 
of human genetic differentiation in Europe following Novembre 
et al. (2008). (a) Biplot of PC 1 and PC 2 calculated for each 
individual (Figure 1a) after aggregation by country (or by language 
for Switzerland) using the same colours and labels as in Figure 1b. 
(b) EEMS visualization with darker pink representing areas of 
estimated increased genetic differentiation and darker green 
representing areas of estimated decreased genetic differentiation. (c) 
SpaceMix visualization locating individuals from each country or 
population in geogenetic space with colours following those in 
Figure 1 and Panel (a). (d) Un-PC with the most differentiated 
ellipses on top. (e) Un-PC with the least differentiated ellipses on 
top. For EEMS and Un-PC the size of each black dot is proportional 
to the number of individuals sampled from each country or region 
[Colour figure can be viewed at wileyonlinelibrary.com] 

robust to artefacts due to strongly uneven sampling, EEMS had mod-

erate artefacts and un-PC had the strongest artefacts when the 

uneven sampling was most extreme (Figure S10). 

3.5 | Empirical example 

We used a data set of landscape-scale genetic differentiation from 

humans in Europe to illustrate a comparison among the three meth-

ods. This data set was originally used by Novembre et al. (2008) to 

highlight the ability of individual-level PCA biplots to closely match 

geographic sampling locations (Figures 1 and 6a). SpaceMix’s place-

ment of the populations in geogenetic space closely matched their 

geographic positions (Figure 6c), although the distance between the 

Iberian Peninsula populations (Spain and Portugal) and other sampled 

populations was large. The continuous surface produced by EEMS 

assigned areas of decreased genetic differentiation between most 

populations in Central Europe and areas of increased differentiation 

across the Alps and Dinaric Alps mountain ranges, as well as across 

portions of Eastern Europe (Figure 6b). The visualizations from un-

PC also indicated increased genetic differentiation across the Alps 

and in the area of the Dinaric Alps (Figure 6d) and indicated 

decreased genetic differentiation primarily between Poland and Rus-

sia (Figure 6e). 

4 | DISCUSSION  

4.1 | Comparing visualizations from EEMS and 
SpaceMix 

EEMS and SpaceMix each gave the most accurate visualizations of 

genetic differentiation when the migration scenarios were well 

matched to their underlying models but produced either less sensi-

tive or less intuitive visualizations when the simulated migration con-

ditions did not fit their model well. SpaceMix’s visualization is similar 

to a PCA biplot and is not always intuitive, especially with the distor-

tion caused by the migration barrier scenario (Figure 4c). The distor-

tion of populations within the migration barrier occurs because 

these populations exchange fewer migrants compared to populations 

https://wileyonlinelibrary.com
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on either side of the barrier, making them more genetically differen-

tiated and therefore placed further apart in geogenetic space. With-

out recognizing this distinctive pattern using simulations, however, it 

could be difficult to interpret a similar pattern if it appeared during 

the analysis of an empirical data set. We note that this distortion 

does not appear in the migration barrier simulation in the original 

SpaceMix paper (Bradburd et al., 2016), likely because that barrier 

was narrower and did not have any sampled populations within it. 

The barrier simulated here is wider and spans sampled populations, 

similar to the migration barrier simulation in the original EEMS paper 

(Petkova et al., 2016). 

In contrast, EEMS performed especially well with the migration 

barrier scenario, as expected, but failed to detect long-distance 

migration in all but the most extreme cases where the number of 

individuals received from the source population was at least 90% 

of the recipient population (Figures 5b and S8). Because the model 

underlying EEMS is built to only visualize short-distance changes in 

gene flow, when there was an extreme amount of long-distance 

migration it was visualized as an area of increased genetic differen-

tiation between the recipient population and its neighbouring popu-

lations (Figure S8); this characteristic was described in the original 

EEMS paper (Petkova et al., 2016). This area of apparently 

increased genetic differentiation was due to the fact that most of 

the individuals in the recipient population had been transplanted 

from the source population, and therefore had reduced genetic sim-

ilarity with the neighbouring populations. However, as with Space-

Mix, using known migration scenarios to understand these 

potentially nonintuitive patterns in the EEMS visualizations is impor-

tant in helping to interpret patterns of genetic variation in empirical 

data sets. Furthermore, the presence of unsampled populations on 

the landscape can cause a characteristic artefact in EEMS visualiza-

tions (Figure S7), and this artefact may be analogous to anomalies 

in apparent migration caused by unsampled populations in pairwise 

migration matrices (Slatkin, 2005). While this artefact does not 

appear to be problematic when there is variation in simulated 

migration rates across the landscape (Figure 4), it is nevertheless 

important to document as it may affect EEMS visualizations from 

empirical studies. 

4.2 | Un-PC has characteristics of both EEMS and 
SpaceMix but is faster to run 

Un-PC performed well as a diagnostic method to visualize patterns 

of genetic differentiation that retained most of the important fea-

tures of EEMS and SpaceMix, but in a fraction of the time (Table 1). 

With un-PC being model-free, its visualizations are not as detailed as 

those from the two model-based methods. However, un-PC clearly 

and intuitively identified the region of increased genetic differentia-

tion that resulted from the simulated migration barrier, similar to 

EEMS (Figure 4), and perhaps better than SpaceMix. Conversely, 

because PCA provides a sensitive indication of long-distance migra-

tion (Ma & Amos, 2012), un-PC was able to visualize the general 

direction of long-distance migration similar to SpaceMix (Figure 5), 

and in a much clearer way than EEMS. Another model-free method 

to visualize patterns of genetic differentiation across the landscape, 

MAPI, has recently been introduced (Piry et al., 2016), and it appears 

to perform well in identifying areas of increased genetic differentia-

tion that can result from migration barriers, similar to EEMS and un-

PC. While MAPI can also detect signals of long-distance migration (S. 

Piry, personal communication), it is optimized for the visualization of 

short-distance changes in gene flow similar to EEMS, and its visual-

izations can be used directly in GIS applications (Piry et al., 2016). 

However, MAPI uses postgreSQL, which can require a relatively 

complicated database installation and configuration before it can be 

used. PCA is already typically run as a diagnostic step in landscape 

genetics studies to visualize genetic differences, and un-PC provides 

a lightweight extension on top of existing PCA results in order to 

quickly visualize general patterns of genetic differentiation on the 

landscape. These results should then be able to help guide the 

implementation of more computationally intensive model-based 

methods like EEMS or SpaceMix. 

4.3 | Performance of all methods with an empirical 
data set 

The PCA biplot of genetic differences from the POPRES data set 

provides a striking match to geography (Novembre et al., 2008), but 

there are relatively larger gaps between both Italy (brown) and the 

Balkans (light blues) compared to the rest of Central Europe (Fig-

ure 6a), and this increased genetic differentiation across the Alps 

and the Dinaric Alps is generally well represented by all three analy-

sis methods (Figure 6). Conversely, all three methods identify areas 

of decreased genetic differentiation between Poland and Russia (Fig-

ure 6). 

4.4 | Uneven sampling 

A frequently cited criticism of PCA (that affects un-PC due to its reli-

ance on PCA) is its sensitivity to uneven sampling of individuals from 

populations across the landscape (Bradburd et al., 2016; Petkova 

et al., 2016), and this sensitivity is mathematically unavoidable 

(McVean, 2009). However, the POPRES data set has strongly uneven 

sampling of individuals across populations (min = 1; max = 219; 

mean = 38), yet the PCA biplots representing the genetic differentia-

tion are still strikingly similar to the geographic sampling locations 

(Figure 1a). Similar close matches between PCA biplots and geo-

graphic locations are also obtained in human populations sampled 

across Africa and Asia, albeit with a smaller range of uneven sam-

pling (Wang et al., 2012). Like the example with the POPRES data 

set, when we randomly varied the number of individuals sampled 

from each population in our landscape simulations, the results from 

un-PC were relatively unaffected (Figure S9). However, we also note 

that this range of uneven sampling of individuals from each popula-

tion is moderate (Figure S9). When there is a greater range of sam-

ple sizes, or when the pattern of uneven sampling coincides with the 

pattern of migration across the landscape, severe distortions of PCA 
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biplots can occur (Figure S10), and these are expected (McVean, 

2009). Unfortunately, the amount of variance in sample sizes that 

will unduly distort the PCA results is not easily generalizable to other 

scenarios, and these distortions, when present, necessarily affect the 

accuracy of the un-PC results. If working with an existing data set 

where this distortion appears to be a problem, it can be mitigated by 

subsampling individuals from each population to roughly equal levels 

and rerunning the PCA. If genetic data has yet to be collected, then 

it is useful to be aware that fairly equal sample sizes are necessary 

for PCA and un-PC to work reliably. 

4.5 | General recommendations 

Given our results using simulated data sets that assume migration– 

drift equilibrium, SpaceMix appears to be an effective method to 

accurately infer long-distance migration in landscape genetics data 

sets (Figure 5), even when the proportion of long-distance migrants is 

small relative to the size of the recipient population (Figure S8). 

SpaceMix also performed well in the other simulated scenarios, but 

because its visualizations locate populations in geogenetic space 

rather than geographic space, its visualizations do not always have 

intuitive interpretations as demonstrated by the migration barrier sce-

nario (Figure 4). In contrast, EEMS gives a more detailed view of rela-

tive genetic differentiation that is interpolated across the landscape. 

EEMS was particularly good at highlighting differences in genetic dif-

ferentiation that occurred across large areas of the landscape, such as 

the migration barrier (Figure 4), but had little sensitivity in identifying 

long-distance migration events (Figure 5). For these reasons, Space-

Mix and EEMS have different strengths in visualizing patterns of 

genetic differentiation across the landscape. The visualizations from 

un-PC cannot replicate the resolution provided by the model-based 

methods of SpaceMix and EEMS. However, because un-PC has charac-

teristics of both the other methods: high sensitivity in detecting the 

genetic patterns produced by long-distance migration events similar 

to SpaceMix, and intuitive interpretation of its visualization for the 

migration barrier scenario similar to EEMS, it can help guide the effec-

tive use of the more computationally intensive analysis methods. 
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