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Abstract
As phylogenomic datasets have grown in size, researchers have developed new ways to measure biological variation 
and to assess statistical support for specific branches. Larger datasets have more sites and loci and therefore less sam
pling variance. While we can more accurately measure the mean signal in these datasets, lower sampling variance 
is often reflected in uniformly high measures of branch support—such as the bootstrap and posterior probability— 
limiting their utility. Larger datasets have also revealed substantial biological variation in the topologies found across 
individual loci, such that the single species tree inferred by most phylogenetic methods represents a limited summary of 
the data for many purposes. In contrast to measures of statistical support, the degree of underlying topological vari
ation among loci should be approximately constant regardless of the size of the dataset. “Concordance factors” (CFs) 
and similar statistics have therefore become increasingly important tools in phylogenetics. In this review, we explain 
why CFs should be thought of as descriptors of topological variation rather than as measures of statistical support, and 
argue that they provide important information about the predictive power of the species tree not contained in mea
sures of support. We review a growing suite of statistics for measuring concordance, compare them in a common frame
work that reveals their interrelationships, and demonstrate how to calculate them using an example from birds. We 
also discuss how measures of topological variation might change in the future as we move beyond estimating a single 
“tree of life” toward estimating the myriad evolutionary histories underlying genomic variation.
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Introduction
As recently as a decade ago, the molecular datasets com
monly used in phylogenetics were quite small, consisting 
of perhaps a handful of loci. The limited available data 
meant that there was little point in trying to examine vari
ation in phylogenetic signal among the loci that consti
tuted a dataset. Instead, most concerns revolved around 
quantifying the statistical support for each branch in the 
species tree (Simon 2022). The most commonly used 
methods to evaluate statistical support are the bootstrap 
(Felsenstein 1985) and posterior probability (Rannala 
and Yang 1996); both are measures of sampling variance, 
intended to evaluate the reliability of trees inferred from 
small numbers of informative substitutions and a small 
number of loci. The support levels output by these meth
ods can provide estimates of statistical confidence on each 
branch of a specific tree, given an alignment and a model 
of sequence evolution.

More data hopefully mean more accurate inferences, at 
least when the correct models are used—changing the 
model of sequence evolution can sometimes drastically 
change support levels (Stefanović et al 2004; Kumar et al. 
2012; Shen et al. 2017). Regardless of their dependence 
on a particular model of sequence evolution, bootstrap 
and posterior probability support values are almost univer
sally reported as measures of confidence in branches of 
phylogenetic trees. However, genome-scale data have 
greatly reduced the sampling variance in typical phylogen
etic datasets. While some support methods have been ex
tended to be faster for datasets with huge numbers of sites 
or to measure slightly different quantities for datasets with 
huge numbers of taxa (Stamatakis et al. 2008; Minh et al. 
2013; Hoang et al. 2017; Lemoine et al. 2018; Lutterop 
et al. 2020), in general the consequence of larger datasets 
has been to lower sampling variance. This lower variance 
means that branch support measures are almost always 
uniformly high, even when the inferred branches are 
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wrong (Gadagkar et al. 2005). This limits the utility of 
branch support measures (Thomson and Brown 2022).

Although sampling variance has been reduced in so- 
called “phylogenomic” datasets, there has been increased 
recognition of biological variation and technical error in 
such data, which has led to calls to quantify and report 
this variation alongside support measures (Maddison 
1997; Gadagkar et al. 2005). Biological variation arises be
cause individual loci do not have to share the same top
ology with either the species tree or with each other. 
The biological processes that drive this variation include 
incomplete lineage sorting (ILS), introgression, and hori
zontal gene transfer (Degnan and Rosenberg 2009). 
Duplication and loss can also generate gene trees that dif
fer from species trees, though the resulting discordance 
may be due to a combination of both biological processes 
and technical error (i.e. the misidentification of ortholo
gous sequences). Regardless of the cause, biological vari
ation contains information about evolutionary processes 
and therefore represents a rich source of data (Bravo 
et al. 2019). Technical error (such as model misspecifica
tion or misalignment), or simply a limited amount of infor
mation, can result in both systematic and stochastic gene 
tree inference error. Combined with biological variation, 
these errors mean that many—sometimes most—gene 
trees in a large phylogenomic dataset will not match the 
species tree. We refer to these gene trees as discordant 
and to those that match the species tree as concordant. 
(Note that a “gene tree” can refer to the topology at any 
locus, not just in protein-coding genes.)

It is particularly important to consider concordance and 
discordance when interpreting the evolutionary history of 
genes and traits. This is because, thanks to discordance, nei
ther changes in genes nor changes in phenotypic traits will 
necessarily follow the species tree (Hahn and Nakhleh 2016). 
Therefore, when gene trees do not match species trees, 
standard phylogenetic methods that rely on the species 
tree to infer the number of times a trait has evolved, the dir
ection of evolution, the rate of evolution, and the timing of 
trait transitions can be misled (Guerrero and Hahn 2018; 
Mendes et al. 2018; Hibbins et al. 2020, 2023; Adams et al. 
2024; Schraiber et al. 2024). There are a growing number 
of biological examples of traits controlled by variation at dis
cordant loci, such that forcing these traits to be analyzed on 
the species tree will generate false patterns of homoplasy 
(e.g. Fontaine et al. 2015; Lamichhaney et al. 2016; Li et al. 
2016; Pease et al. 2016; Han et al. 2017; Palesch et al. 2018; 
Wu et al. 2018; Hibbins et al. 2020; Urban et al. 2021; Feng 
et al. 2022). Similar problems due to discordance can arise 
when estimating branch lengths or testing for positive selec
tion in DNA sequences (Good et al. 2013; Mendes and Hahn 
2016; Carruthers et al. 2022; Yan et al. 2023), when estimat
ing the number of gene duplications and losses (Hahn 2007; 
Neafsey et al. 2015; Mishra et al. 2023), or when studying 
patterns of amino acid convergence through time 
(Mendes et al. 2016; Mendes et al. 2019; Corbett-Detig 
et al. 2020). Discordance between gene trees and the true 
underlying species tree can also result in incorrect 

estimation of the species tree itself when using concaten
ation methods (Kubatko and Degnan 2007; Liu and 
Edwards 2009; Mendes and Hahn 2018). All of these incor
rect inferences arise because of the assumption that gene 
trees match each other and the species tree.

In this sense, concordance describes the extent to which 
the species tree is predictive of the history of any given 
gene or trait for a clade, and therefore the extent to which 
analyses based on the species tree will be correct (noting, 
of course, that accurately estimating concordance can be 
difficult; see below). Even when the inferred species tree 
is the correct description of population splitting through 
time, there are now many phylogenomic examples in 
which the majority of gene trees do not match the species 
tree across multiple branches (e.g. Jarvis et al. 2014; 
Fontaine et al. 2015; Pease et al. 2016; Copetti et al. 2017; 
Wu et al. 2018; Edelman et al. 2019; Thomas et al. 2023; 
Larson et al. 2024). In these cases, it might actually be sur
prising to see a gene or a trait whose evolutionary history is 
best explained by the species tree. Concordance factors 
(CFs) thus add important context to any estimate of a spe
cies tree, because they allow us to identify which branches 
of the species tree are most relevant to predicting the his
tory of the genome at any given locus and which are not.

At least partly because of their important role in evolu
tionary inference, recent years have seen a rapid prolifer
ation in ways to estimate and interpret concordance and 
discordance in phylogenomic datasets. In this review, we 
introduce these methods and their interpretation, high
lighting how several of them are related via a shared set 
of simpler measures and explaining how each can be inter
preted. While the maximization of concordance can be an 
optimality criterion for choosing a species tree topology 
within a particular dataset, we stress that concordance is 
not a measure of statistical support. We also stress that 
biological concordance and discordance should not 
change with varying amounts of data from the same set 
of taxa, as they represent measures of statistical variation, 
not statistical confidence.

Concordance and Discordance
To introduce concordance and discordance, it can help to 
start with a simple example. Imagine a dataset of three 
gene trees sampled from four clades (A, B, C, and D), one 
of which, D, is the outgroup; let us also assume that we 
have inferred the topology of the species tree relating 
these clades (Fig. 1a). In this example, the three gene trees 
have three different topologies—one that is concordant 
with the species tree (gene tree 1, Fig. 1b) and two that 
are discordant (gene trees 2 and 3, Fig. 1b). Although 
gene trees can vary in their branch lengths, we do not con
sider this source of variation in our labeling of concordant 
and discordant trees: only the hierarchical sets of relation
ships (sometimes referred to as “bipartitions” or “splits”) 
are considered. Indeed, gene tree branch lengths are ex
pected to differ from species tree branch lengths even 
when the trees are concordant (Edwards and Beerli 
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2000), making branch lengths a less useful measure of 
concordance.

For a rooted three-taxon tree, or an unrooted four- 
taxon tree, there are only three possible topologies, all of 
which are shown in Fig. 1b. As a result, the trees in Fig. 1
can only differ in a very limited number of ways, as long 
as clades A, B, C, and D are always monophyletic. Trees 
with more taxa have many more possible topologies. For 
a rooted four-taxon tree, there are 15 possible topologies, 
with the number of topologies growing double-factorially 
with the number of taxa (see Table 3.1 in Felsenstein 2004). 
One implication of this huge number of possible topolo
gies is that, given enough taxa, any given gene tree is likely 
to be discordant with the species tree on at least one 
branch. Indeed, in several large datasets (in terms of 
number of gene trees and number of taxa), there are no 
gene trees that are completely concordant with the spe
cies tree (e.g. Jarvis et al. 2014; Pease et al. 2016; Sun 
et al. 2021; Larson et al. 2024). Partly because of this, re
searchers rarely focus on the overall concordance of 
gene trees with the entire species tree. Instead, it is 
much more informative to focus on a specific internal 
branch of the species tree and to ask what proportions 

of gene trees are concordant with that branch. In other 
words, most researchers seek to estimate a CF for every 
branch in the species tree.

The biological (and technical) factors that drive con
cordance and discordance can vary through time and 
across the phylogeny, such that the unique combination 
of processes that underlie the evolutionary history of any 
clade will produce a particular distribution of gene trees. 
In order to study these processes, we would therefore 
like a measure of genealogical heterogeneity that tells us 
about concordance and discordance on specific branches 
of the species tree. CFs have become a widely used metric 
to describe this heterogeneity (Baum 2007). (These are also 
sometimes called gene support frequencies; Gadagkar et al. 
2005.) The CF was originally defined as “the proportion of 
the genome for which a given clade is true” (Baum 2007). 
Here, the genome is imagined to be made up of many in
dependent loci, each of which has a gene tree topology af
fected by ILS, introgression, and horizontal gene transfer. 
This definition makes clear why CFs describe the predictive 
power of the species tree: they directly tell us what fraction 
of the genome follows the species tree and therefore is pre
dicted by it. The definition also assumes that the species 

(a) (b)

(c)

Fig. 1. Concordance and discordance. a) A species tree of four clades of organisms, A, B, C, and D. Clade D is the outgroup. b) Three possible gene 
trees were derived from the species tree in a). Gene tree 1 is concordant with the species tree, while gene trees 2 and 3 are discordant. c) The gCV, 
ψ, describes the number of gene trees, or sometimes the proportion of gene trees, that fall into each of four categories. ψ1 is the number of gene 
trees that are concordant with the species tree (commonly called the “CF”). ψ2 and ψ3 are the number of gene trees that match discordant trees 
2 and 3 in b), ordered with the largest count first. ψ4 is the number of gene trees that are discordant with the species tree but match neither gene 
tree 2 nor gene tree 3 (for example, any gene tree in which clades A, B, or C are not monophyletic).
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tree is an accurate reflection of species relationships and 
that gene trees that match it are “true”; later we relax 
this assumption, but for now we will accept this phrasing. 
The CF of a branch or clade in the species tree is therefore a 
biological parameter that we should be able to estimate by 
inferring gene trees at many loci. In contrast, discordance 
factors (DFs) describe the fraction of the genome for which 
the given clade is not true. Because there are multiple ways 
for a gene tree topology to not match a branch in the 
species tree, discordant gene trees can be subdivided 
into several different biologically relevant groups, each re
presented by its own DF (note that some papers refer to all 
concordance and discordance measures collectively as CFs; 
e.g. Allman et al. 2022). Together, CFs and DFs provide use
ful information for understanding evolutionary histories 
and for testing evolutionary hypotheses; here, we summar
ize them in a single vector called the concordance vector 
(Fig. 1c), which we introduce below.

In the rest of the paper, we review the meaning of CFs, 
how they can be estimated, and how these different esti
mates can be interpreted; we highlight these varied inter
pretations using an example from birds. We start by 
distinguishing CFs from measures of statistical support. 
We then introduce the concordance vector—a set of 
four concordance and discordance factors for a given 
branch of the species tree that usefully summarizes topo
logical heterogeneity. Following this, we introduce and 
compare different methods that have been developed 
for estimating CFs and DFs from empirical data. We de
scribe how several popular ways to quantify topological 
heterogeneity are related via this shared set of simple mea
sures and explain how each can be interpreted. Using data 
from 363 bird genomes (Stiller et al. 2024), we show how to 
calculate and compare these different measures of con
cordance and discordance. We conclude with suggestions 
for future directions.

The Concordance Factor Is Not a Measure of 
Statistical Support
A seemingly common misconception is to treat CFs as 
measures of statistical support. This is not correct: CFs 
are (estimates of) biological parameters, i.e. the proportion 
of the genome for which a given clade is true, not measures 
of statistical support for a clade (Baum 2007). Measures of 
support such as bootstrap proportions and posterior prob
abilities are estimates of our confidence that a branch ex
ists, given some assumptions about the data and the 
models being used (Ané et al. 2007). For consistent statis
tical methods, these types of support measures will always 
increase toward their maximum possible value as we add 
more data to the analysis (cf. Kumar et al. 2012). The 
same is not true for CFs. As we add more data to an ana
lysis, estimates of CFs will become more precise but will 
not approach any limiting value. This is demonstrated 
for two empirical datasets in Fig. 2—as we add more 
data to the analyses, measures of statistical support 

(here, the UltraFast Bootstrap [Hoang et al. 2017] and 
the ASTRAL local posterior probability [Sayyari and 
Mirarab 2016], both shown in gray scale with square 
points) tend to increase toward their maximum value, 
while measures of concordance (shown in color with circu
lar points) have higher variance at lower sample sizes but 
quickly stabilize to consistent values as sample size in
creases. This distinction highlights the fact that we should 
not think of any particular value of concordance as “good” 
or “bad”. CFs are estimates of biological parameters, so it 
makes as little sense to attach judgment to a particular va
lue of a CF as it would attach judgement to a particular va
lue of a variance or a standard deviation.

To see what determines CFs (and DFs), consider the 
simplest species tree that can have discordance (Fig. 1a, 
imagining a single representative is sampled from clades 
A to D). Under a model of ILS, the length of the single in
ternal branch of the species tree, T, determines the degree 
of concordance and discordance. (Branch lengths here are 
measured in “coalescent” units, such that T = t/2N, where 
t is the number of generations and N is the effective popu
lation size.) If ILS is the only process acting, then the prob
ability of sampling a locus with a concordant gene tree is 
(Hudson 1983):

P(concordance) = 1 −
2
3

e−T. (1) 

Conversely, the probability of sampling a locus with either 
one of the two possible discordant gene tree topologies is:

P(discordance) =
1
3

e−T. (2) 

Both of the two possible discordant topologies have the 
same probability and so are always expected to have the 
same frequency under ILS alone for this species tree. Here, 
equation (1) is equivalent to the expected CF—the “propor
tion of the genome for which a given clade is true”—if we 
imagine that we have randomly sampled unlinked loci 
from across the genome. Given these definitions, expected 
concordance will be highest (approaching 1) with long 
branch lengths (large T ), and will be lowest (approaching 
1/3) with very short branch lengths (very small T ). As an ex
ample, after one coalescent unit (T = 1), ∼75% of trees will 
be concordant and 25% will be discordant. Note that while 
CFs can never be >1, for trees with more than three taxa 
they can be <1/3 because more than two discordant top
ologies are possible (more on this below).

Most importantly, we can see from this formulation 
that the expected degree of concordance does not change 
with the amount of data we use to estimate it. If T = 0.01, 
then the CF will always be ≈0.34 for the simple tree in this 
example—barely any excess concordant gene trees relative 
to either of the other two discordant gene trees (each 
0.33). This expectation is generated by the evolutionary 
process, not by the sampling of data. As a result, the nu
merical value of a CF provides little information about 
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the probability that a branch is true, because true branches 
in a species tree can have almost any value of a CF.

However, it is clearly the case that our confidence in 
this species tree (as measured by statistical support) will 
increase with increasing amounts of data (see examples 
in Fig. 2). If we sampled only 10 loci, we might not 
even get the concordant tree as the most common top
ology. With increasing amounts of data (and appropriate 
models), both the bootstrap proportion and posterior 
probability of this branch will increase toward 100% 
(Fig. 2). From a statistical perspective, the larger sample 
size increases our confidence that the concordant tree is 
the most common. While this is the behavior we want 
in a measure of statistical support, it is precisely this obser
vation that has led some authors to question the utility of 
measures of statistical support in modern phylogenomics: 
our datasets are now so large that almost all such measures 
reach their maximum value on every branch (Kumar et al. 
2012; Thomson and Brown 2022). Despite this, CFs do 
provide some information on the amount of data that 
will be needed to have high statistical support: a branch 
with a low CF will require commensurately more data be
fore the measures of statistical support approach 100%. 

Another useful way to think about the same idea is to con
sider that measures of support are often equivalent to ask
ing how sure you can be that the split in the species tree 
has a CF that is higher than any split that conflicts with 
it (given a particular sample of genes and/or sites).

What is the biological importance of the distinction be
tween CFs and either bootstrap support or posterior prob
abilities? One useful analogy (suggested to us by Cecile 
Ané) is with the statistical concepts of standard deviation 
and standard error. The CF is similar to the standard devi
ation: it tells you about the spread of values in your data, 
regardless of how many datapoints you have. In contrast, 
measures of support are similar to standard errors: they 
tell you how confident you can be in your estimate of 
the mean of the data. Extending this analogy to a phylo
genetic dataset, just because we are very sure of the top
ology of a species tree does not mean that all loci must 
follow this topology, as the example from birds described 
below will show. This is also what we mean by the predict
ive power of the species tree: for some questions, we might 
need to know the species tree with high confidence, while 
for others, it will be most important to understand the 
underlying variability in the gene trees, particularly when 

Fig. 2. Phylogenetic statistical support compared with measures of phylogenetic statistical variation as dataset size increases. In two example 
datasets (Cannon et al. 2016; Ran et al. 2018), we calculated the mean values of two measures of statistical support: UltraFast Bootstraps 
(Hoang et al. 2017) and ASTRAL local posterior probabilities (Sayyari and Mirarab 2016), as well as four measures of CFs: gCF (Minh et al. 
2020), qCF (Mirarab et al. 2014), and the sCF calculated with parsimony (Minh et al. 2020) and likelihood (Mo et al. 2023), assuming that 
the tree calculated from the 200-locus dataset was correct. The figure shows that as more loci are used to calculate the statistics, the average 
of the measures of statistical support (grayscale lines, square points) tends to increase toward 100%, but the average of the measures of con
cordance (colored lines, circular points) tends to stabilize after being estimated inaccurately with small numbers of loci. Even with just 200 loci, 
most bootstrap and posterior probability values become very high (86.7% of bootstrap values and 69.3% of posterior probability values were 
>95% for the metazoa dataset; 94.3% of bootstrap values and 91.4% of posterior probability values were >95% for the plants dataset, 
respectively).
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the species tree is relatively uninformative about the ma
jority of genes and traits (Hahn and Nakhleh 2016; Bravo 
et al. 2019).

There are also important practical implications of 
distinguishing between measures of concordance and 
measures of support. One relevant scenario arises when 
choosing an appropriate outgroup for phylogenetic ana
lyses. Outgroups can be used for multiple purposes, includ
ing rooting ingroup relationships and polarizing the 
direction of evolutionary changes. Importantly, the main 
criterion for choosing outgroup lineages is that the taxa 
chosen will always be sister to all ingroup lineages (i.e. 
“outside” the ingroup), as their relationships with all other 
species are not being assessed. Unfortunately, support 
measures are not always good measures of this property: 
we may be very sure that a lineage is sister to our ingroup 
in the species tree, even while an appreciable fraction of 
gene trees from this lineage lies within the ingroup clade. 
An effective outgroup should be an outgroup on every 
gene tree, i.e. the CF for an outgroup should be 100%. 
Choosing outgroups without this property can mislead 
phylogenetic inferences (e.g. among the platyrrhine mon
keys; Schrago and Seuánez 2019; Vanderpool et al. 2020). 
Outgroups should therefore be chosen considering levels 
of concordance, rather than levels of support.

The Concordance Vector: A Simple Way to 
Summarize Concordance and Discordance
Before we discuss how CF and DF are estimated, we first 
provide a simple framework to facilitate synthesis across 
authors, papers, and methodologies with many different 
terminologies: the concordance vector. The concordance 
vector is a simple summary that describes fundamental as
pects of concordance and discordance for a branch 
(Fig. 1c), with each internal branch of a species tree having 
its own concordance vector. Similar ideas to the concord
ance vector have been presented in numerous previous 
studies (Mirarab et al. 2014; Salichos et al. 2014; Minh 
et al. 2020) but never been formalized. By formalizing it 
here, we hope to facilitate future research by providing a 
common vocabulary.

The challenge that the concordance vector seeks to ad
dress is to provide a compact and meaningful summary of 
both the CF and DF associated with a single branch. This 
can be difficult because although the CF is a single propor
tion, DFs can be much more complex. There can be a vast 
number of ways that gene trees can be discordant with a 
species tree, and in principle, we could calculate a DF for 
each of them. However, this would involve enumerating 
all possible tree topologies discordant with the clade of 
interest and calculating the expected proportion of the 
genome matching that topology for each. This approach 
is neither practical nor particularly helpful: the number 
of discordant topologies will differ for different branches 
on the species tree and will be astronomical for many of 
them, and under most evolutionary scenarios, the 

expected DF for many or most topologies will be effectively 
zero.

The concordance vector, ψ, addresses this problem by 
summarizing the CF and DFs of a clade into four propor
tions that sum to 1. The first entry in the concordance vec
tor, ψ1, is simply the CF; the remaining three entries (ψ2, 
ψ3, and ψ4) summarize the DFs. The second and third en
tries in the concordance vector, ψ2 and ψ3, correspond to 
the two alternative topologies obtained by swapping 
around the relationships of the groups A, B, C, and D in 
Fig. 1 (equivalent to nearest-neighbor interchanges in phy
logenetics). These alternative topologies are biologically 
important because in many scenarios, such as ILS, we ex
pect them to be the topologies associated with the two 
highest DFs. Since there is no clear objective way to distin
guish between the two topologies that represent ψ2 and 
ψ3, we simply denote ψ2 to be the larger and ψ3 be the 
smaller of the two, as this simplifies the description and 
comparison of some interpretations and derivations of 
CFs (see below). The third DF, ψ4, is the sum of all other 
DFs, i.e. those associated with all discordant topologies 
that are not represented by ψ2 and ψ3. Since the sum of 
the concordance vector must be equal to 1, ψ4 can be cal
culated by simply subtracting the rest of the concordance 
vector from 1.

The concordance vector helps to reveal the relation
ships between different methods of estimating and inter
preting CFs and DFs. For example, certain approaches to 
estimating CFs—like the site concordance factor (sCF) 
and quartet concordance factor (qCF)— assume that ψ4 

is zero, while others can be prone to overestimating or 
underestimating ψ4 depending on the properties of the 
data. Some approaches to testing hypotheses about evolu
tion compare values in the concordance vector; for ex
ample, one can test for deviations from a model of ILS 
by testing the expectation that ψ2 and ψ3 should be equal. 
And some measures of node support, like internode cer
tainty (Salichos and Rokas 2013), can be thought of as ask
ing whether ψ1 is larger than ψ2 (see below). We next 
discuss how to estimate various CFs.

Estimating Concordance Factors
Any given set of biological processes associated with a 
group of evolving lineages is associated with an expected 
concordance vector for each internal branch of the species 
tree. In this section, we discuss different approaches to es
timating concordance vectors from empirical data. 
Thinking of empirical CFs as estimates of the true values 
helps to clarify how and why they differ from each other, 
while also retaining the original definition of a CF as a bio
logical parameter describing the “proportion of a genome 
for which [a given clade] is true” (Baum 2007). Despite this, 
we note that it is common for researchers to discuss CFs as 
summary statistics similar to various earlier notions of con
sensus and congruence (e.g. Adams 1972; Hillis 1987; 
Carpenter 1988). We discuss cases where this can be par
ticularly useful below.
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We cover three approaches to estimating concordance 
vectors: using genes, using quartets, and using sites. We fol
low recent convention by prefixing estimated CFs to indi
cate the input data for each, as this helps to distinguish 
them from each other and from their expected values 
(i.e. the true but unknown concordance vectors). We de
note CFs estimated from genes as gene CFs (gCFs), from 
quartets as qCFs, and from sites as sCFs. We name each as
sociated concordance vector in the same way, for example 
gene concordance vector (gCV).

gCFs
gCFs, first defined in 2007 (Ané et al. 2007; Baum 2007), 
seek to estimate the true concordance vector from a large 
collection of gene trees, themselves estimated from align
ments of independent genes (here defined as unlinked loci 
without internal recombination). The simplest and most 
naïve way to calculate the gCV of a branch of interest is 
to first obtain a single topology for each gene tree (for ex
ample, using maximum likelihood) and then to count the 
proportion of these trees associated with the topologies 
assigned to ψ1 to ψ4 (e.g. the estimate of ψ1 would simply 
be the proportion of gene trees that contain the branch of 
interest). This approach, while popular, remains funda
mentally limited by the issue of gene tree estimation error. 
This was recognized and addressed by a Bayesian method 
called BUCKy (Ané et al. 2007; Larget et al. 2010), which 
allows the topology of each gene tree to be informed by 
the topologies of the other gene trees, and for gCFs and 
their confidence intervals to be calculated. However, this 
rather elegant solution has fallen out of favor, as 
Bayesian methods do not scale well to today’s phyloge
nomic datasets. Another problem arises when some gene 
trees have missing taxa, but this can be solved by consider
ing only those gene trees that could have contained the 
branch of interest, known as decisive gene trees (Minh 
et al. 2020). The resulting proportions can be considered 
estimates of the true entries in the concordance vector, 
whose accuracy and precision will depend on the total 
number of decisive gene trees for each branch and on 
the accuracy and precision with which each of the under
lying gene trees is estimated, which are discussed further 
below.

qCFs
qCFs can refer to any approach in which each alignment of 
an independent locus is summarized not by a single tree 
(as in the gCF) but by a collection of subtrees of four 
taxa (quartets). qCFs became popular alongside the pro
gram ASTRAL (Mirarab et al. 2014), as they are a standard 
output of this tool (though they are referred to as quartet 
“scores,” “support,” or “frequencies” there). They have 
since been more widely adopted to quantify and explore 
conflicting signal in multilocus datasets (e.g. Sayyari and 
Mirarab 2016; Solís-Lemus and Ané 2016; Zhou et al. 
2020; Rhodes et al. 2021; Allman et al. 2022). Calculating 
qCFs usually involves two steps. The first step is to estimate 

a set of quartets for each locus. This can be done by sub
sampling the alignment of that locus into all (or a large 
number of) possible groups of four taxa and then estimat
ing the unrooted quartet trees directly from the sequence 
data. However, it is more common to first estimate a single 
gene tree of all taxa for each locus (as for gCFs above) and 
then to extract unrooted quartets from that gene tree (i.e. 
the quartets relevant to the branch of interest); this ap
proach likely provides more accurate quartets. The second 
step in estimating qCFs is to count the proportion of rele
vant quartets associated with the topologies assigned to 
ψ1 to ψ3 for the branch of interest. Because unrooted quar
tets only have three possible topologies, they can only dis
play internal branches that match ψ1 to ψ3 (i.e. ψ4 is always 
zero for this measure). In other words, it is impossible for a 
quartet around a branch of interest to display a branch 
that is not either the branch of interest or that represents 
one of the two splits that could be induced by ILS occur
ring on that branch.

sCFs
sCFs were first introduced using a parsimony-based ap
proach (Minh et al. 2020) and later updated to use max
imum likelihood (Mo et al. 2023). They estimate CFs by 
counting proportions of individual site patterns. Most sites 
(for example, constant sites) contain no information about 
any branch in the tree. For that reason, the sCF focuses on 
decisive sites—those that contain information about the 
branch of interest, and simply count the proportion of de
cisive site patterns that agree with the trees represented by 
ψ1, ψ2, or ψ3 for the branch of interest. Similar to qCFs, 
sCFs use a quartet of states at a single site to determine 
the implied topology. The site concordance vector is esti
mated by first sampling quartets (which is done slightly 
different in the two sCF methods) and then by counting 
the proportion of decisive sites in the sample that match 
ψ1, ψ2, or ψ3. As with the qCF, ψ4 is always zero for sCFs 
because it is impossible for a single decisive site for a 
branch to display any internal branch other than those as
sociated with ψ1, ψ2, or ψ3.

Understanding Concordance Factors
All of the measures of concordance and discordance de
scribed above seek to estimate entries of the concordance 
vector, but each comes with its own set of advantages and 
disadvantages. They also often estimate slightly different 
things and are used differently by downstream methods, 
so it is important to know how they differ. Below we dis
cuss the key issues associated with each quantity, followed 
by an example highlighting many of these issues using data 
from a recent study of birds.

gCFs
gCFs offer not only the fullest view of genealogical vari
ation but also come with the most caveats. In terms of in
formation provided, not only are gCFs the only approach 
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that can estimate ψ4, but they also allow us to expand the 
gCV beyond four entries. Recall that ψ4 is associated with 
all topologies not accounted for by ψ1, ψ2, and ψ3 (Fig. 1). 
While the smaller vector used here allows us to have a 
common vocabulary for all the different approaches to 
quantifying concordance and discordance, there can be 
quite a lot of information hidden within ψ4, information 
that is only available when estimating full topologies 
from genes.

As an example of the sort of information found in ψ4, 
Salichos and Rokas (2013; see also Salichos et al. 2014) in
troduced a measure called “internode certainty” based on 
a version of the gCV, which is calculated using splits rather 
than decisive gene trees. While we are not so sure that this 
statistic measures certainty of any kind, it does measure 
the magnitude of conflict among gene trees. In the simpler 
version of this statistic (denoted “IC”), for a single branch 
we calculate the degree of conflict between the two most 
common splits—often, but not always, ψ1 and ψ2—using 
an entropy-based measure. In the fuller version of this stat
istic (called internode certainty all, or “ICA”), we calculate 
the degree of conflict for a branch among the n most com
mon splits using an entropy-based measure. If n > 3, then 
we must expand our concordance vector to be of length n 
(since ψ4 typically refers to many more than a single split). 
In essence, both measures of internode certainty tell us 
how likely it is that the CF of the branch of interest is high
er than the next most common split we have considered. 
We may be able to glean quite a lot of useful information 
from the frequency of gene trees beyond the most com
mon three, but unfortunately ICA is one of the only meth
ods we know that uses this information. One reason for 
this may be that there are few programs that output these 
frequencies in a usable format, making the data inaccess
ible to most researchers.

The biggest limitation of gCFs is gene tree estimation er
ror. Estimation error is unavoidable with the limited phylo
genetic information available in single-locus alignments. 
The requirement that loci be nonrecombining often 
means that alignments will be even shorter than a whole- 
gene or that single-gene alignments will mistakenly con
tain recombination events, misleading tree inference in 
complex ways. Gene tree estimation error will cause trees 
to be assigned to the wrong entry in the concordance vec
tor. Consider an extreme case of no biological discordance: 
small amounts of estimation error will decrease ψ1 and in
crease ψ2 and ψ3, leading to an overestimate of the 
amount of discordance. Even in cases with biological dis
cordance, small amounts of error will cause ψ1, ψ2, and 
ψ3 to become more similar to one another. However, as 
the degree of error (as measured per tree) increases, 
more and more estimated gene trees will not match any 
of these tree topologies, and ψ4 will increase. With large 
amounts of gene tree estimation error, almost all of the 
gene trees will fall into ψ4, regardless of the true level of 
biological discordance. When this occurs—such as in cases 
with high sequence divergence and short alignments—al
ternative approaches may be needed to estimate the 

entries in the gCV (e.g. Rosenzweig et al. 2022). Such topo
logical errors may be responsible for some studies in which 
no single gene tree matches the species tree (e.g. Jarvis 
et al. 2014) and for some of the very low gCF values shown 
below in the bird tree.

Broadly speaking, there are three methods in common 
usage for calculating gCFs from sets of gene trees, and 
these differ substantially in the extent to which they are 
affected by and/or address gene tree estimation error. 
BUCKy takes as input a posterior distribution of trees for 
each gene and then uses a form of statistical shrinkage 
to update the distribution of each gene tree using informa
tion from the other gene trees (Ané et al. 2007; Larget et al. 
2010). This is highly effective in reducing the effects of gene 
tree estimation error, and the Bayesian framework also 
provides confidence intervals on all estimated CFs. 
However, the method does not scale well to large datasets 
and requires the user to determine the strength of statis
tical shrinkage a priori. Other widely used methods treat 
gene trees as entirely independent, without attempting 
to correct for gene tree estimation error. For example, in 
order for a gene tree to contribute to ψ1, ψ2, or ψ3, the 
gene concordance method implemented in IQ-TREE2 
(Minh et al. 2020) requires all four clades around the 
branch of interest to be monophyletic (i.e. clades A, B, C, 
and D must all be monophyletic in Fig. 1). This is a restrict
ive requirement that causes any gene tree in which A, B, C 
or D is not monophyletic to fall into ψ4. In the presence of 
gene tree estimation error, this can lead to substantial un
derestimates of ψ1 to ψ3, likely explaining the large discrep
ancy between gCFs and qCFs in many of the clades in the 
bird example below. A less restrictive approach is to use bi
partitions, such that a tree displaying the bipartition sep
arating the taxa in A and B from those in C and D 
contributes to ψ1 regardless of whether A, B, C, and D 
are all monophyletic. This approach is less impacted by 
gene tree estimation error and is used to calculate the 
internode certainty measure described above (Salichos 
et al. 2014), as well as discordance in a recent paper exam
ining relationships among angiosperms (Zuntini et al. 
2024). However, using splits rather than decisive gene trees 
also means that we no longer have straightforward theor
etical expectations for ψ1, ψ2, and ψ3.

While gene tree estimation error tends to bias the gCF 
downwards, it is also possible for the gCF (i.e. ψ1) to be 
overestimated. This is most likely to occur when individual 
gene tree alignments span recombination breakpoints (an 
issue sometimes called “concatalescence”; Gatesy and 
Springer 2014). In this case, although multiple different 
topologies may be represented among the constituent 
loci, the resulting inferred gene tree from the combined 
alignment will reflect the majority of signal in the data. 
Because ψ1 is typically associated with the majority of sig
nal in the data, the result will often be an overestimate of 
ψ1 and a concomitant underestimate of ψ2, ψ3, and ψ4 (e.g. 
Mendes et al. 2019). In the extreme, we could estimate a 
“gene tree” from an entire chromosome or genome, and 
the resulting topology would most likely reflect the most 
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common gene tree (but not always—see Kubatko and 
Degnan 2007; Mendes and Hahn 2018). The effect of the 
two biases discussed here on gCFs will depend on the 
properties of each dataset, the approach used to define 
the boundaries of nonrecombining loci, and the methods 
used to estimate the gene trees. Regardless, gCVs should be 
interpreted with both underestimation and overesti
mation issues in mind.

qCFs
For both computational expediency and biological inter
pretability, full gene trees are often downsampled into 
quartets of taxa. Sampling a quartet usually means choos
ing four independent tips from a larger tree—for instance, 
we could sample hypothetical species a, b, c, and d from 
clades A, B, C, and D in Fig. 1a. As mentioned before, for 
an unrooted quartet around a single branch of interest, 
there are only three possible topologies, so we only have 
nonzero entries for ψ1, ψ2, and ψ3 in the quartet concord
ance vector (qCV).

The more limited resolution of quartets (i.e. the as
sumption that ψ4 is always zero) can be seen as both a 
strength and a weakness. The strength of this method is 
that each quartet contributes to an informative entry in 
a concordance vector, even if the full gene tree that it is 
a part of does not. For instance, if gene tree error caused 
even one of the clades in Fig. 1 (A, B, C, or D) to be nonmo
nophyletic, then the method used to calculate gCFs in 
IQ-TREE2 would place the full gene tree in ψ4 (Minh 
et al. 2020); this would be true even if a single lineage 
was placed in the wrong clade (in this sense, so-called 
“rogue taxa” may have a large influence on gCFs and 
gCVs). In contrast, there would still be many informative 
quartets that we could sample from such a gene tree, 
even quartets that contain the single misplaced lineage. 
Thus, small amounts of gene tree error are much more eas
ily dealt with by counting quartet frequencies. This same 
feature could also be a weakness of using quartets: by as
suming that ψ4 is zero, ψ1, ψ2, and ψ3 will be biased upward 
when the true ψ4 > 0. In the extreme case of high levels of 
per-gene error—when gene concordance measures might 
have little or no evidence for trees matching ψ1 to ψ3— 
quartet calculations will be forced to populate these en
tries in the vector (see the bird example below). In add
ition, it is worth noting that since qCFs are ultimately 
based on estimated gene trees, many issues affecting 
gCFs (such as the misleading effects of concatalescence) 
will also affect qCFs.

By far the biggest advantage of quartets is that many 
types of operations can be done on them easily and quick
ly. Quartet-based methods have become the dominant ap
proach for inferring species trees, especially using the 
program ASTRAL (Mirarab et al. 2014; Mirarab and 
Warnow 2015; Zhang et al. 2018a). There is a rich history 
of methods for constructing species trees from constituent 
quartet trees, which are often called “puzzling,” “amalgam
ation,” or “assembly” methods (e.g. Strimmer and von 

Haeseler 1996; Bryant and Steel 2001; Snir and Rao 
2010). The conceptual leap between these older methods 
and newer methods was largely driven by two advances. 
First, the growing size of datasets meant that instead of 
a handful of quartets from loci with nonoverlapping sets 
of taxa, genome-scale data provided many quartets esti
mated from each of thousands of loci containing mostly 
the same taxa. Second, it was recognized that using un
rooted quartets provided accurate estimates of the species 
tree even in cases where there was discordance due to 
ILS—i.e. these methods are statistically consistent under 
the multispecies coalescent model. Any method for count
ing and combining quartets accurately should have this 
property, because the unrooted quartet topology (or 
rooted triplet topology) matching the species tree is al
ways the most frequent under ILS alone (Hudson 1983; 
Allman et al. 2011). (Rooted triplets work just as well as un
rooted quartets in inferring species trees, but methods em
ploying them are used less frequently [e.g. DeGiorgio and 
Degnan 2010; Liu et al. 2010].) For similar reasons, quartets 
sampled from reconstructed gene trees have become the 
currency of multiple methods that aim to infer introgres
sion between species as violations of the ILS-only model 
(e.g. Huson et al. 2005; Solís-Lemus and Ané 2016).

In ASTRAL, quartet trees are sampled many times for 
each gene tree, with quartets across gene trees all counted 
together. Because tips are largely chosen at random, many 
quartets are not providing information about a single in
ternal branch of the species tree, but rather a span of 
branches. For this and similar reasons, many quartets 
from the same gene tree will not be independent of one 
another; any method that counts quartet frequencies 
must therefore take this nonindependence into account. 
As with any method for inferring species trees, quartet 
methods can provide support measures—the confidence 
one should have in the inferred branch of the tree. 
ASTRAL uses local posterior probabilities based on the 
qCV (Sayyari and Mirarab 2016). In this case (and similar 
ones), the support metric is assessing our confidence 
that ψ1 is the most frequent topology, which is obviously 
related to its magnitude relative to ψ2 and ψ3, as well as to 
the number of independent quartets we have sampled. 
Confidence measures for internal branches can also be cal
culated using the bootstrap with gene tree–based and 
quartet-based methods: one simply has to construct 
many bootstrapped samples of the set of individual gene 
trees, reconstructing the species tree from each sampled 
set of trees to assess confidence. Bootstrap methods are 
therefore not limited to concatenated nucleotide or ami
no acid alignments.

sCFs
Breaking gene trees down into quartet trees obviates some 
of the problems due to gene tree estimation error, but not 
all (Molloy and Warnow 2018). One must still infer a gene 
tree from a short alignment, which is always prone to error. 
Therefore, as an alternative approach, one can calculate 
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sCFs (Minh et al. 2020; Mo et al. 2023). sCFs were explicitly 
developed to estimate concordance and discordance with
out the need to divide alignments into short, nonrecom
bining loci. As described earlier, they can be easily 
calculated from a long, concatenated alignment.

sCFs can differ from gCFs and qCFs for both practical 
and theoretical reasons. There are a number of practical 
factors that affect sCFs, with complex interactions among 
these factors making it hard to predict whether they will 
be consistently higher or lower than the other measures 
on any particular branch of a tree or in any particular da
taset (e.g. Fig. 2). sCFs are most similar to qCFs, in that they 
assume ψ4 is zero. As a consequence, sCFs may be higher 
than gCFs because ψ1, ψ2, and ψ3 will all be upwardly 
biased. However, both gCFs and qCFs may be higher 
than sCFs if they are calculated from loci that contain mul
tiple tree topologies, leading to an overestimate of ψ1 due 
to concatenation (see above). Most importantly, multiple 
substitutions at a single site and variation in nucleotide 
substitution rates across a tree can cause sCFs to overesti
mate the amount of discordance (Kück et al. 2022; Mo 
et al. 2023). The likelihood version of sCFs (Mo et al. 
2023) attempts to minimize this problem, though care 
must still be taken when using a single site to reveal an 
underlying tree topology, as some amount of homoplasy 
is unavoidable.

Aside from practical considerations, there is an import
ant conceptual reason why sCFs may differ from other 
measures—they are measuring a slightly different 
quantity. Both gCFs and qCFs are directly estimating the 
quantity expressed in equation (1): the proportion of the 
genome having a particular tree topology. In contrast, 
sCFs are measuring the proportion of sites supporting a 
particular tree topology, which is a function of both 
gene tree frequency (the quantity measured by gCFs and 
qCFs) and the length of the relevant branch in each 
gene tree. This measure will be very close to, but slightly 
different from, the parameter estimated by gCFs and 
qCFs. If the expected value of those measures is given by 
equation (1), the expected value of sCFs (assuming that 
sites are unlinked) is:

P(concordant site) = 1 −
2

3 + 3Te−T . (3) 

Another way to think about this is that the length of the 
branch of interest in the species tree impacts the sCF 
twice—once by determining the frequency of the gene 
tree topologies and then again by determining the branch 
lengths of those topologies. Because of this, and as can be 
seen in Fig. 3, sCFs are expected to go up slightly faster than 
either gCFs or qCFs as a function of the length of the in
ternal branch of the species tree. This implies that sCFs 
are expected to be slightly higher than the other two 
methods in the absence of estimation error. However, 
the expected values are close enough that we predict 
that practical considerations in estimation (such as gene 
tree estimation error) will be the deciding factor in which 

is higher or lower, and this seems to be borne out by the 
examples in Fig. 2.

Although sCFs were introduced as a way to measure 
concordance and discordance on a species tree, the vari
ous numbers underlying these calculations have been 
used in multiple preceding applications. These applica
tions ask about the underlying species tree topology, as 
well as deviations from this history due to introgression. 
The most widely used method employing site-based 
quartets to infer a species tree is SVDquartets (Chifman 
and Kubatko 2014; Swofford and Kubatko 2023). 
SVDquartets considers all quartet site patterns—i.e. not 
just decisive sites, and separate patterns for each combin
ation of nucleotides—placing them in one of three matri
ces for each branch. The three matrices represent the three 
possible splits corresponding to ψ1, ψ2, and ψ3. If singular 
value decomposition (SVD) is carried out on each matrix, 
it can be shown that the one with the lowest SVD score 
will match the species tree. If such calculations are carried 
out for many sampled quartets of tip species, the resulting 
set of highest-scoring quartet trees can be an input into an 
assembly method (as described above for other quartet 
methods), giving a full species tree as an output (see a simi
lar site pattern method in the study by Zhang et al. 2023).

Possibly the most widely known use of the site concord
ance vector is the ABBA-BABA (“D”) test for introgression 
(Green et al. 2010; Patterson et al. 2012). This test employs 
only the counts of sites in entries ψ2 and ψ3: given the spe
cies tree in Fig. 1a, if we denote ancestral states with “A” 
and derived states with “B” (and always assign the out
group to be “A”), then the decisive site pattern in ψ2 can 
be written as “BABA” (because species A and C will share 
the derived state) and the one in ψ3 can be written as 
“ABBA” (Fig. 1b). As mentioned above, in the absence of 
introgression (and ancestral population structure; Slatkin 
and Pollack 2008; Durand et al. 2011), we expect ψ2 and 
ψ3 to be equal. The ABBA-BABA test asks whether this is 
true across a genome, taking the nonindependence of 
nearby sites into account via block bootstrapping of gen
omic windows. Similarly, the Δ statistic in the study by 
Huson et al. (2005) tests for the equality of ψ2 and ψ3 using 
quartet trees, with a similar interpretation of introgression 
if they are not equal (see Vanderpool et al. 2020 and 
Suvorov et al. 2022 for applications to whole genomes).

An Example from Birds
To highlight both the calculation and interpretation of CFs 
and concordance vectors, we use a recent example from the 
genomes of 363 bird species (Stiller et al. 2024). The original 
paper does a very good job of inferring a species tree using 
multiple methods and multiple types of markers; we there
fore do not reexamine species relationships here. Instead, we 
focus on the branches supporting six major clades of birds, 
particularly how measures of support differ from measures 
of concordance and how different measures of concordance 
can differ from each other. Here in the main text we present 
results based on gene trees inferred in the study by Stiller 
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et al. (2024); in an online tutorial (http://www.iqtree.org/ 
doc/recipes/concordance-vector), we show how to go 
from alignments to concordance vectors for the same 
data.

Figure 4a shows the relationships among six major 
clades of birds, as well as the branch lengths and posterior 
probabilities for the branches subtending each of them. All 
six of these clades have the maximum possible statistical 
support (a posterior probability of 1.0), but branch lengths 
vary from 0.01 coalescent units to 8.71. Given the species 
tree and the unambiguous support for each of these 
clades, one might erroneously conclude that all six clades 
are highly predictive of the evolutionary history of the 
genes and traits in this group. However, CFs reveal dramat
ic differences in the predictive power of each clade. For ex
ample, the branch leading to the Palaeognathae has very 
high CFs (e.g. gCF and qCF of 100% and sCF of 75.7%), 
while the branch leading to the Elementaves (a novel clade 
defined in Stiller et al. 2024) has strikingly low CFs (gCF =  
0.1%, qCF = 33.9%, and sCF = 35.0%). Thus, despite both 
branches receiving the maximum possible value of statis
tical support, the estimated proportion of the genome 
that matches each clade differs dramatically. Indeed, the 
Elementaves clade was recovered in just 43 of the 63,000 
gene trees estimated in the original study.

The difference observed here between support and con
cordance is important, because it informs debates about 
the extent to which each clade matters in terms of under
standing the history of genes and traits in birds. For example, 
CFs tell us that we should expect to see many phenotypic 
traits common to the Palaeognathae, but that this is likely 
to be far less common for the Elementaves. In fact, there 
may not even be a single morphological character uniquely 
common to all members of the Elementaves. Note that none 
of this means that Elementaves is not a “true” clade—it is 
simply that the bird radiation occurred so rapidly that few 
genes support even the true history. The topology support
ing the Elementaves still has more support than the alterna
tives (Fig. 4b; recall that ψ4 in the gCV is likely made up of a 
huge number of topologies that do not contain the 
Elementaves clade).

The example clades used here also serve to emphasize 
how different methods for calculating CFs can provide differ
ent results. One obvious difference is between the gCF and 
the other two measures, especially when concordance is 
low. Because qCFs and sCFs define ψ4 to be 0, the lowest pos
sible value of ψ1 should be 33.3 for these measures (under 
most circumstances). In contrast, gCFs can be arbitrarily 
low. As can be seen in Fig. 4b, in three clades (Telluraves, 
Elementaves, and Columbaves) ψ4 has by far the largest value 

Fig. 3. The difference between expected sCFs and gCFs as the branch length of the species tree changes. Here, we plot the expected values of gCFs 
(equation 1; blue) and sCFs (equation 3; yellow-green) as a function of the internal branch length, T, for a species tree resembling the one shown 
in Fig. 1. The figure shows that sCFs go up faster than gCFs, as they are affected by both the number of concordant gene trees and the length of 
the internal branch of such trees.
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in the gCV—this means that most genes do not have a top
ology matching ψ1, ψ2, or ψ3. Given that neighboring 
branches are also very short, the most likely source of the 
additional topologies is the nonmonophyly of the subclades 
that define each of the three branches in the species tree. 
This nonmonophyly is also the probable cause of another in
teresting pattern observed in the Columbaves: ψ2 is greater 
than either ψ1 or ψ3. The explanation for this pattern was 
suggested to us by Megan Smith, who demonstrated that 
unequal rates of nonmonophyly in clades A and B (assuming 
a species tree similar to the one in Fig. 1) will lead to unequal 
numbers of nondecisive trees in the two, which will in turn 
lead to biased values of ψ2 or ψ3. In other words, the loss of 
decisive trees, rather than any biological process, can lead to 
unequal counts of minor topologies in the gCV. In this case, 
methods that are unaffected by nonmonophyly—namely 
qCF or sCF—will be much more accurate. Indeed, the lack 
of bias toward ψ2 in the site and quartet concordance vec
tors in Fig. 4 strongly suggest that the high ψ2 seen in the 
gCV results from bias, not from biology.

Another obvious pattern among the clades examined 
here is the consistently lower values of sCFs when concord
ance is high. In the Mirandornithes, Galloanseres, and 
Palaeognathae, ψ1 is the highest value in the concordance 

vector by far, but it is appreciably lower using sCFs than 
the other two methods. The likely reason for this pattern 
is homoplasy at individual sites, especially given that the 
branches we are interested in span periods ∼65 Ma 
(Stiller et al. 2024). Overall, it seems that quartet concord
ance vectors may offer the clearest, least-biased view of 
concordance and discordance in this dataset, although it 
should be kept in mind that the calculation of the quartet 
concordance vector assumes that ψ4 is zero. In addition, 
qCFs are the basis for inferred branch lengths in ASTRAL 
used here, so these values will be most highly correlated 
with branch lengths inferred in coalescent units.

The Future of Concordance Factors
Concordance factors and concordance vectors are already 
very useful summaries of biological variation, but there are 
many ways they could be improved and many new areas in 
which they could be applied to better understand complex 
evolutionary histories.

The simplest, and perhaps most useful, modification to 
current practice would be to routinely provide confidence 
intervals for all entries of the concordance vector. 
Currently, CFs and other entries of the concordance vector 

(a) (b)

Fig. 4. Concordance vectors for six major clades of birds show dramatic differences in concordance despite maximal statistical support. a) The 
phylogeny shows six major clades of birds identified in a recent phylogenomic study (Stiller et al. 2024). Each clade is named and shown in a color 
that matches those used in the study by Stiller et al. 2024. The stem branch length of each clade (measured in coalescent units) and the posterior 
probability of each branch are shown. The right-most extent of each clade corresponds to the maximum root-to-tip distance of the tips in a clade 
(using coalescent branch lengths from ASTRAL). The inset shows a cladogram that clarifies the topology of the inferred species tree. b) Concordance 
vectors for each clade reveal dramatic differences in the CF and DF of each clade. Opposite each clade name is a matrix of the gene, site, and quartet 
concordance vectors. The numbers in each cell are percentages, with higher percentages colored in darker shades of red.
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are presented as point estimates on every branch of the tree, 
largely because this is the output given by popular software 
for calculating CFs like ASTRAL and IQ-TREE (Mirarab et al. 
2014; Minh et al. 2020). However, point estimates can some
times be misleading, as their interpretation can vary dramat
ically depending on the confidence intervals around them. 
This problem is compounded by the fact that the sample 
size for CFs can vary from branch to branch in a tree: it 
can depend on taxon sampling for gCFs and qCFs, and on 
the number of informative sites per branch for sCFs. To 
give an extreme example: a gCF of 50% may indicate substan
tial underlying variation in gene trees when the sample size is 
large (e.g. with 1,000 gene trees, the 95% confidence intervals 
on the gCF would be 47% and 53%) but may contain relative
ly little useful information if the sample size is small (e.g. with 
4 gene trees the 95% CIs are 0% and 100%). Calculating con
fidence intervals on all entries of the concordance vector is 
very simple and could be done via the bootstrap or by using 
a Dirichlet multinomial distribution (Gelman et al. 2013). In 
the online tutorial that accompanies this paper, we have im
plemented an approach to calculate 95% confidence inter
vals on all entries in the concordance vector by 
bootstrapping the number of genes, sites, or quartets asso
ciated with each vector (http://www.iqtree.org/doc/ 
recipes/concordance-vector). We hope that displaying con
fidence intervals alongside CFs (and other entries of the con
cordance vector) will help biologists to better interpret the 
underlying biological variation, particularly when consider
ing biological hypotheses about the causes of such variation.

One of the biggest challenges to estimating CFs is gene 
tree estimation error. Gene tree estimation error affects 
both gCF and qCF, though to differing degrees (see above). 
As a result, it affects any methods that rely on these esti
mates. For example, because gene tree estimation error 
leads to overestimates of discordance, it will lead to under
estimates of branch lengths based on the concordance 
vector (e.g. those calculated in ASTRAL). Many approaches 
have been developed to mitigate gene tree estimation er
ror and its effects on CFs (Larget et al. 2010; Boussau et al. 
2013; Zhang and Mirarab 2022). One additional option 
may be to move beyond a binary view of concordance— 
i.e. that a gene tree is either concordant or discordant 
with a branch of interest—and instead to incorporate 
the degree of discordance demonstrated by a gene tree. 
Such a measure could be achieved in many ways, for ex
ample by measuring the difference in likelihoods when a 
gene tree is constrained to contain a branch of interest 
or by calculating how much a gene tree would have to 
be altered to recover the branch of interest (e.g. using 
the transfer bootstrap expectation; Lemoine et al. 2018). 
Regardless, accounting for and/or mitigating gene tree es
timation error when calculating CFs in large datasets re
mains a largely open problem (for small datasets, BuCKy 
is an excellent solution; Larget et al. 2010).

CFs could also be extended in multiple ways. For in
stance, the current discussion has assumed a bifurcating 
species tree and single-copy gene trees, though more 
and more datasets may extend beyond both of these 

constraints. In terms of the species tree, it is now possible 
to infer species networks from many datasets (Wen et al. 
2018; Zhang et al. 2018b). A question then arises: how 
best to represent and measure concordance with a net
work? One simple approach might be to consider all of 
the relationships shown in the network as concordant en
tries in the concordance vector; e.g. both ψ1 and ψ2 could 
be CFs if both appear in a network. However, we suspect 
that there will also be other ways to summarize concord
ance between gene trees and species networks. Similarly, 
species tree topologies can now be accurately recon
structed using gene trees containing paralogs (Smith and 
Hahn 2021). Using gene trees with multiple tips from 
the same species requires new ways to quantify concord
ance: gCFs and sCFs cannot yet be calculated for such 
trees, although qCFs can (e.g. Smith et al. 2022). New ap
proaches for calculating CFs from all of these nonstandard 
data types will be necessary in the near future.

Finally, visualizing concordance and discordance re
mains challenging. The simplest and most commonly 
used approach is to represent the data using a single 
best estimate of a binary tree (usually the species tree) 
and then to label each branch with entries of the concord
ance vector (most often by displaying only the first entry, 
the CF). While this representation can give some indica
tion of the scale of discordance, it does not represent 
the discordant relationships themselves. The latter can 
be achieved using networks to represent the discordance 
(e.g. Huson 1998; Huson and Scornavacca 2012), overlaying 
the topology of each gene tree onto the species tree itself 
(e.g. Bouckaert 2010; Schliep 2011) or by coloring align
ments based on the inferred topology of each region 
(e.g. Fontaine et al. 2015; Edelman et al. 2019). However, 
none of these approaches is ideal, and each has its own lim
itations. New approaches that enable fast and clear ways to 
visualize and to query discordant relationships would help 
researchers to quickly understand and interrogate their 
phylogenomic datasets.

Concluding Remarks
Phylogenomic datasets are rapidly approaching complete 
sampling, i.e. entire genomes sequenced and assembled 
for every tip of the tree being estimated. Largely because 
of this, researchers will continue to move beyond single re
presentations of the relationships among taxa (e.g. species 
trees and species networks) and will increasingly focus on 
estimating and interpreting the complex set of relation
ships underlying all sites of the sampled genomes. CFs 
are a useful tool for summarizing and interpreting this vari
ation, ones that will be particularly useful for bridging the 
gap between species trees and underlying genomic vari
ation. We envision their ever-widening use and further de
velopment for the foreseeable future.
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