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Abstract 

Motivation: Genome sequencing projects have revealed frequent gains and losses of genes between species. 
Previous versions of our software, Computational Analysis of gene Family Evolution (CAFE), have allowed research-
ers to estimate parameters of gene gain and loss across a phylogenetic tree. However, the underlying model 
assumed that all gene families had the same rate of evolution, despite evidence suggesting a large amount of vari-
ation in rates among families. 

Results: Here, we present CAFE 5, a completely re-written software package with numerous performance and user-
interface enhancements over previous versions. These include improved support for multithreading, the explicit 
modeling of rate variation among families using gamma-distributed rate categories, and command-line arguments 
that preclude the use of accessory scripts. 

Availability and implementation: CAFE 5 source code, documentation, test data and a detailed manual with exam-
ples are freely available at https://github.com/hahnlab/CAFE5/releases. 

Contact: danvand@indiana.edu 

Supplementary information: Supplementary data are available at Bioinformatics online. 

1 Introduction 

The earliest eukaryotic genome sequencing projects revealed large 
and frequent changes between species in the size of gene families 
(Gibbs et al., 2007; Rubin et al., 2000; Waterston et al., 2002). 
Variation in family size results from the gain or loss of genes, either 
of which may be advantageous, deleterious or neutral. To enable the 
rigorous study of changes in gene family size, we previously pro-
posed a statistical framework that would allow for inferences 
regarding gene family evolution among species along a phylogenetic 
tree (Hahn et al., 2005). We showed that this model can be used for 
hypothesis testing, inference of ancestral states and estimation of 
gene duplication and loss rates. Since its release, the software imple-
menting this model, Computational Analysis of gene Family 
Evolution (CAFE), has been steadily improved to accommodate 
growing genomic resources (De Bie et al., 2006; Han et al., 2013). 
CAFE continues to be widely used in comparative genomics. 
However, in order to fully exploit the benefits of the rapidly grow-
ing number of sequenced genomic datasets, improvements such as 
multi-core parallelization and more sophisticated models of gene 
family evolution must be implemented. 

CAFE models rates of change among gene families with a birth-
death distribution having a mean rate (k) of gain and loss common 
to all families. In reality, individual families can evolve at very dif-
ferent rates, with the most rapidly evolving families in terms of gain 
and loss (e.g. sex and reproduction-related, immunity) being the 
same as those observed to be evolving most rapidly at the sequence 
level (Demuth et al., 2006; Hahn et al., 2007). Furthermore, there 
appears to be a class of genes that are extremely resistant to duplica-
tion or loss, a trait that can be used to assess genome assembly qual-
ity (Waterhouse et al., 2013). Recent studies have confirmed 
variation in rates among families to be true in many different taxa 
(Casola and Lawing, 2019). Both DupliPHY (Ames et al., 2012) and 
Badirate (Librado et al., 2012), older programs designed for gene 
family analysis, employ measures to account for rate variation 
among families in some way. 

Here, we present CAFE 5, an upgrade that explicitly models 
rate-variation among families in a manner directly analogous 
to similar models used for nucleotides and amino acids. Below 
we describe the implementation and testing of this model, as 
well as the other new features and improvements included in 
CAFE 5. 
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2 Materials and methods 

2.1 Improved performance, stability and usability of 

CAFE 
CAFE 5 introduces a more modular style of programming with a re-
write from C into Cþþ. The current version employs powerful com-
pilers and matrix multiplication libraries and is able to take 
advantage of multiple cores, with noticeable performance increases 
up to at least 64 cores (Supplementary Fig. S1). To provide a simpler 
experience for the user, the script-based paradigm of earlier versions 
has been discarded in favor of a strictly command-line interface. 
Output files have been reconfigured to minimize post-processing, 
with trees written to a Nexus file for easy viewing. 

2.2 New features in CAFE 5 
A common approach used in molecular phylogenetics to model vari-
ation in rates among nucleotide or amino acid sites is to use a dis-
crete approximation of the gamma (C) distribution (Yang, 1994). 
CAFE 5 uses this same approach (as does DupliPHY, Ames et al., 
2012), with the number of discrete rate categories, K, specified a pri-
ori and each category assumed equi-probable (1/K). The C distribu-
tion is scaled such that the mean rate across categories is 1, with 
shape parameter a (¼b) estimated from the data. The shape of the C 
distribution determines a unique rate for each category, under which 
a gene family has its probability (given a set of parameter values) 
calculated. CAFE 5 then uses an empirical Bayes approach to esti-
mate the posterior probability of a family belonging to a rate cat-
egory, which in turn enables down-stream analyses of ‘slow’ or ‘fast’ 
families. 

In addition, ancestral state reconstruction is now performed 
using the algorithm of Pupko et al. (2000), resulting in run times 
that scale linearly with the number of taxa in the tree. 

3 Results 

We used CAFE 5 to analyze three published datasets consisting of 
gene families from primates (Thomas et al., 2020b), birds of para-
dise (Prost et al., 2019) and Hymenoptera (Thomas et al., 2020a). 
For each dataset rates were estimated using increasing values for K 
(Fig. 1a).For primates, the highest likelihood was found using K¼4 
rate categories, with k¼0.00453 and a¼0.62. The birds of paradise 
dataset had the highest likelihood using K¼10 rate categories, with 
k¼0.00226 and a¼0.98. The Hymenoptera had the highest likeli-
hood using K¼6 rate categories, with k¼0.00375 and a¼0.373. As 
expected (Gillespie, 1986; Golding, 1984; Yang, 1996) single-rate 
models consistently underestimate k (Fig. 1a), highlighting the need 
to model rate variation. Although K > 1 always results in higher 
likelihoods, the maximum likelihood value does not always have the 
largest value of K considered; indeed, models with K ¼ 2–3 often 

overestimate k. This latter effect is likely due to the bifurcation of 
the data into one rate category for families that undergo little or no 
change and the other category accounting for all other families that 
change across the tree. 

To assess the accuracy of the software and these results, we 
simulated three datasets (see Supplementary Material for simulation 
conditions) intended to match the distributions inferred from the 
empirical data. In all cases, CAFE 5 accurately estimated the max-
imum likelihood value of k and of K (Fig. 1b). As in the empirical 
datasets, we also see that k is consistently underestimated with K¼1, 
and slightly overestimated for K ¼ 2–3. 

4 Summary 

• CAFE 5 is now written in Cþþ, a modular style of programming 

facilitating future development. 
• Support for powerful compilers, parallelization and matrix 

multiplication allow CAFE 5 to take advantage of high-

performance computing clusters. 
• Accurate and fast joint ancestral state reconstruction is now 

available. 
• Variation in the evolutionary rate among gene families is accounted 

for using a discrete approximation of the gamma distribution. 

Accounting for rate variation among families using a discrete 
gamma approximation results in a better model fit and more accur-
ate rate estimates. While this can be accomplished with as few as 
K¼2 rate categories, we recommend testing K¼3–4 categories with 
real data. 
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