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The sustainability of malaria control in Africa is threatened by 
the rise of insecticide resistance in Anopheles mosquitoes, which 
transmit the disease1. To gain a deeper understanding of how 
mosquito populations are evolving, here we sequenced the genomes 
of 765 specimens of Anopheles gambiae and Anopheles coluzzii 
sampled from 15 locations across Africa, and identified over 
50 million single nucleotide polymorphisms within the accessible 
genome. These data revealed complex population structure and 
patterns of gene flow, with evidence of ancient expansions, recent 
bottlenecks, and local variation in effective population size. Strong 
signals of recent selection were observed in insecticide-resistance 
genes, with several sweeps spreading over large geographical 
distances and between species. The design of new tools for mosquito 
control using gene-drive systems will need to take account of high 
levels of genetic diversity in natural mosquito populations. 

Blood-sucking mosquitoes of the An. gambiae species complex are 
the principal vectors of Plasmodium falciparum malaria in Africa. 
Substantial reductions in malaria morbidity and mortality have been 
achieved by the use of insecticide-based interventions2, but increasing 
levels of insecticide resistance and other adaptive changes in mosquito 
populations threaten to reverse these gains1 . A better understanding 
of the molecular, ecological and evolutionary processes driving these 
changes is essential to maximize the active lifespan of existing insec-
ticides, and to accelerate the development of new strategies and tools 
for vector control. The Anopheles gambiae 1000 Genomes Project 
(Ag1000G; http://www.malariagen.net/ag1000g) was established to 
provide a foundation for detailed investigation of mosquito genome 
variation and evolution. Here we report the first phase of the project, 
which analysed 765 wild-caught specimens of An. gambiae sensu stricto 
and An. coluzzii. These two species account for the majority of malaria 
transmission in Africa, and are morphologically indistinguishable and 
often sympatric, but are genetically distinct3,4 and differ in geographical 
range5 , larval ecology6 , behaviour7 and strategies for surviving the dry 
season8. The specimens were collected at 15 locations across 8 African 
countries, spanning a range of ecologies including rainforest, inland 
savannah and coastal biomes, and thus provide a broad sample in which 
to explore factors shaping mosquito population variation (Extended 
Data Fig. 1; Supplementary Information 1). 

Specimens were sequenced using the Illumina HiSeq platform, and 
single nucleotide polymorphisms (SNPs) were identified by alignment 
against the AgamP3 reference genome (Methods; Supplementary 
Information 2). A rigorous evaluation of data quality, including the 
use of experimental genetic crosses to quantify error rates, identified 
genomic regions totalling 141 megabases (Mb; 61% of the reference 
genome) that were accessible for the analysis of population variation 
(Supplementary Information 3; Extended Data Fig. 2). We identified 
52,525,957 high-quality SNPs, of which 21% had three or more alleles, 
an average of one variant allele every 2.2 bases of the accessible genome 
(Fig. 1a). Individual mosquitoes carried between 1.7 and 2.7 million 
variant alleles, with no systematic difference observed between the 
two species (Extended Data Fig. 3a). In most populations, nucleotide 

diversity was 1.5% on average (Extended Data Fig. 3b) and more than 
3% at synonymous coding sites (Extended Data Fig. 3c), confirming 
that these are among the most genetically diverse eukaryotic species9 . 

High levels of natural diversity have practical implications for the 
development of gene-drive technologies for mosquito control10 . 
CRISPR–Cas9 gene drives can be designed to edit a specific gene 
and confer a phenotype such as female sterility, which could suppress   
mosquito populations and thereby reduce disease transmission. 
However, naturally occurring polymorphisms within the approxi-
mately 21-base-pair (bp) Cas9 target site could prevent target recog-
nition, and thus undermine gene-drive efficacy in the field. We found 
viable Cas9 targets in 11,625 protein-coding genes, but only 5,474 
genes remained after excluding target sites with nucleotide variation 
in any of the 765 genomes sequenced here (Extended Data Fig. 3d; 
Supplementary Information 5). Resistance to gene drive could be 
countered by designing constructs that target multiple sites within the 
same gene, and we identified 863 genes that each contain at least 10 
non-overlapping conserved target sites, including 13 putative sterility 
genes10 (Supplementary Information 5.2). However, clearly more 
variants remain to be discovered (Extended Data Fig. 3d), and extensive 
sampling of multiple populations will be needed to inform the design 
of gene drives that are robust to natural genetic variation. 

An. gambiae and An. coluzzii have a geographical range that spans 
sub-Saharan Africa and encompasses a variety of ecological settings5 . 
Previous studies have found evidence that populations are locally 
adapted, and that migration between populations is limited by both 
geographical distance and major ecological discontinuities, notably the 
Congo Basin tropical rainforest and the East African rift system11–14 . As 
a starting point for the analysis of population structure, we constructed 
neighbour-joining trees to explore patterns of genetic similarity 
between individuals (Fig. 1b; Supplementary Information 6.1).   
We observed four contrasting patterns of relatedness, associated with 
different regions of the genome. Within pericentromeric regions of 
chromosomes X, 3 and arm 2R, mosquitoes segregated into two highly 
distinct clades, largely corresponding to the two species as determined 
by conventional molecular diagnostics, consistent with previous studies 
that showed that genome regions of reduced recombination are associ-
ated with stronger differentiation between closely related species15. The 
large chromosomal inversions 2La and 2Rb were each associated with a 
distinct pattern of relatedness, as expected if recombination is reduced 
between inversion karyotypes. In most of the remaining genome, there 
was evidence of clustering by geographical region but not by species. 
There were also some genome regions in which we found unusually 
short genetic distances between individuals from different countries 
and/or species, indicating the influence of recent selective sweeps and 
adaptive gene flow. 

To investigate geographical sub-divisions in more detail, we 
focused on euchromatic regions of chromosome 3, which are free 
from polymorphic inversions and regions of reduced recombination 
(Supplementary Information 6). ADMIXTURE models and principal 
component analysis (PCA) supported five major ancestral populations, 
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represented by: (i) An. gambiae from Guinea, Burkina Faso, Cameroon 
and Uganda; (ii) An. gambiae from Gabon; (iii) all individuals from 
Kenya; (iv) An. coluzzii from Angola; and (v) An. coluzzii from Burkina 
Faso and all individuals from Guinea-Bissau (Fig. 2; Extended Data   
Figs 4, 5). Within each species, we found relatively high allele frequency 
differentiation across the Congo Basin rainforest, exceeding differen-
tiation between the two species at a single location (Extended Data 
Fig. 5b). There were also more subtle distinctions within and between 
populations. For example, in Cameroon, mosquitoes were sampled 
along a cline from savannah into forest, and there was some population 
structure associated with these different ecologies. However, among 
An. gambiae populations north of the Congo Basin, differentiation was 
extremely weak overall, despite considerable distances between popu-
lations, suggesting substantial gene flow. 

Earlier studies concluded that purposeful movement of Anopheles 
mosquitoes is limited to short-range dispersal of up to 5 km16; however, 
recent evidence has emerged for long-distance seasonal migration in 
An. gambiae8. To explore evidence for migration, we computed joint 
site frequency spectra for selected population pairs and fitted models 
of population history (Methods; Supplementary Information 8). For 
all pairs examined, models with migration provided a better fit than 
models without migration (Supplementary Table 2). The inferred rate 
of migration was high between An. gambiae savannah populations, 
but some migration was also inferred between species and across both 
the Congo Basin rainforest and the East African rift. Although these 
analyses do not allow us to infer the timing or direction of gene flow 
events, they suggest that mosquito migration between different parts 
of the continent could affect the spread of insecticide resistance and 
dynamics of disease transmission. 

A key question in mosquito evolution concerns the extent and 
effect of gene flow between species, and An. gambiae and An. coluzzii   
are known to undergo hybridization at a rate that varies over space 
and time17. To study this phenomenon, we analysed 506 SNPs 
previously found to be highly differentiated between the two species18 

(Extended Data Fig. 6; Supplementary Information 6.6). These 
ancestry-informative markers (AIMs) showed that a genomic region 
on chromosome arm 2L has introgressed from An. gambiae into   
An. coluzzii in Burkina Faso and Angola. This region spans the Vgsc 
gene, in which introgression of insecticide-resistance alleles has been 
reported in Ghana19 and Mali20, although this is the first evidence, to 
our knowledge, that introgressed alleles have spread to An. coluzzii   
south of the Congo Basin. AIMs also highlighted two populations 
with uncertain species status. In Guinea-Bissau, mosquitoes carried a 

mixture of alleles from both species on all chromosomes. These indi-
viduals were sampled from the coast, within a region of West Africa that 
is thought to be a zone of secondary contact because previous studies 
have found evidence for extensive introgression21,22. We also found that 
mosquitoes from coastal Kenya carried a mixture of both species’ alleles 
on all chromosomes. This was unexpected, as the geographical range of   
An. coluzzii is not thought to extend beyond the East African rift. There 
are several possible explanations for the Kenyan data, including histori-
cal admixture between species and retention of ancestral variation, and 
further analysis and population sampling are required. However, our 
data demonstrate that a simple gambiae/coluzzii dichotomy is not ade-
quate for describing malaria vector species composition in some parts 
of Africa, and caution against the use of any single marker to infer 
species ancestry or recent hybridization. 

Historical fluctuations in effective population size (Ne) can be 
inferred from the genomes of extant individuals. Analysis of our 
genome variation data indicated a major expansion in all populations 
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Figure 1 | Patterns of genomic variation. a, Density of nucleotide 
variation in 200-kb windows over the genome. b, Variation in the   
pattern of relatedness between individual mosquitoes over the genome. 
The three chromosomes are painted using colours to represent the 
major pattern of relatedness found within each 100-kb window. Bottom, 

neighbour-joining trees are shown from a selection of genomic windows 
that are representative of the four major patterns of relatedness found, as 
well as for the window spanning the Vgsc gene. AO, Angola; BF, Burkina 
Faso; CM, Cameroon; GA, Gabon; GN, Guinea; GW, Guinea-Bissau; 
KE, Kenya; UG, Uganda. 
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Figure 2 | Geographical population structure and migration. Top, each 
mosquito is depicted as a vertical bar painted by the proportion of the 
genome inherited from each of K =   8 inferred ancestral populations. Pie 
charts on the map depict the same ancestry proportions summed over all 
individuals for each population. Text in white shows average fixation index 
(FST) followed in parentheses by estimates of the population migration rate 
(2Nm). 
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north of the Congo Basin and west of the East African rift (Fig. 3a; 
Extended Data Fig. 7; Methods; Supplementary Information 8). 
Knowledge of the Anopheles mutation rate is required to date this 
expansion, and this has not yet been determined, but assuming it is 
similar to Drosophila then the onset of expansion would be within 
the range 7,000 to 25,000 years ago (Fig. 3a; Methods). Because   
An. gambiae and An. coluzzii are highly anthropophilic, mos-
quito population expansion could be linked to that of humans, and 
particularly to the expansion of agricultural Bantu-speaking groups 
that originate from north of the Congo Basin beginning approximately 
5,000 years ago23. It is possible to reconcile this theory with our data 
if Anopheles has a higher mutation rate than Drosophila, causing us 
to overestimate the age of the expansion, but it is also possible that 
mosquito populations benefited from earlier human population 
growth, or that other factors such as climate change were involved. 

We also observed genomic signatures of a major recent population 
decline of An. gambiae in coastal Kenya. All Kenyan specimens (but no 
specimens from other locations) had long runs of homozygosity that 
comprised 10–60% of the genome, indicating high levels of inbreeding 
consistent with a recent population bottleneck (Fig. 3b). In Kenya, 
free mass distribution of insecticide-treated nets (ITNs) starting in 
2006 resulted in a major increase in ITN coverage24. The specimens 
in this study were collected in 2012, raising the question of whether 
the population decline of An. gambiae can be attributed to ITN usage. 
To address this question, we analysed sharing of genome regions that 
are identical by descent (IBD) (Methods; Extended Data Fig. 8a, b). 
We estimated that the An. gambiae population in Kenya has fallen in 
size by at least two orders of magnitude, to Ne <1,000 (Extended Data   
Fig. 8c; Supplementary Information 8.4). The beginning of this inferred 
decline occurred approximately 200 generations before the date of 
sampling, which would pre-date mass distributions of ITNs, assuming 
approximately 11 generations per year. This is consistent with other 
studies that have found evidence for low Ne values11 and changes in 
mosquito species abundance25 in the region before high levels of ITN 
coverage. Nevertheless, our data show that major demographic events 
leave genetic signatures that could be used to gain important informa-
tion about the impact of vector control interventions. 

Many genes have been associated with insecticide resistance in 
Anopheles, but different genetic variants may be responsible for resist-
ance in different populations, and it is not yet clear where or how 
resistance is spreading. Genomic data can help to address these ques-
tions by identifying genes with evidence of recent evolutionary adap-
tation in one or more mosquito populations. We found strong signals 
of recent positive selection at several genes that are known to have a 
role in resistance, including: Vgsc, the target site for dichlorodiphenyl-
trichloroethane (DDT) and pyrethroid insecticides26; Gste, a cluster of 
glutathione S-transferase genes including Gste2, previously implicated 

in the metabolism of DDT and pyrethroids27; and Cyp6p, a cluster of 
genes encoding cytochrome P450 enzymes, including Cyp6p3, which 
is upregulated in permethrin- and bendiocarb-resistant mosquitoes28 

(Extended Data Fig. 9; Supplementary Information 9). We also 
observed strong signals of selection at multiple loci with no known 
resistance genes, and these merit detailed investigation in future studies. 

Mutations in An. gambiae Vgsc codon 995 (orthologous to Musca 
domestica Vgsc codon 1014), known as ‘kdr’ owing to their knock-
down-resistance phenotype, reduce susceptibility to DDT and 
pyrethroids26 . We found the leucine-to-phenylalanine (Leu995Phe) 
kdr variant at high frequency in West and Central Africa (Guinea 
100%; Burkina Faso 93%; Cameroon 53%; Gabon 36%; Angola 86%).   
A second kdr allele, a leucine-to-serine (Leu995Ser) variant, was present 
in Central and East Africa (Cameroon 15%; Gabon 65%; Uganda 
100%; Kenya 76%). To investigate the evolution and spread of the two 
kdr alleles, we analysed the genetic backgrounds on which they were 
carried (Fig. 4; Supplementary Information 9.3). Leu995Phe occurred 
within five distinct haplotype clusters (labelled F1–F5 in Fig. 4), whereas 
Leu995Ser was found in a further 5 haplotype clusters (labelled S1–S5 
in Fig. 4). Cluster F1 contained individuals of both species and from 
four countries spanning the Congo Basin, proving that recent gene 
flow has carried resistance alleles between these populations. Three kdr 
haplotypes (F4, F5 and S2) were found in both Cameroon and Gabon, 
providing multiple examples of recent gene flow between these two 
populations. The S3 haplotype was present in both Uganda and coastal 
Kenya, thus resistance alleles can reach populations on both sides of 
the rift system. 

Although the evolution of resistance in the Vgsc gene is clearly driven 
primarily by the two kdr alleles, we also found 15 other non-synon-
ymous variants at a frequency of above 1% in our cohort (Fig. 4). 
Thirteen of these variants occurred almost exclusively on haplotypes 
carrying the Leu995Phe allele (Lewontin’s D′ >  0.96). These included 
Asn1570Tyr, previously found on Leu995Phe haplotypes in West and 
Central Africa and shown to confer increased resistance29. Overall, 
there was a statistically significant enrichment for non-synonymous 
mutations on haplotypes carrying the Leu995Phe allele, indicating sec-
ondary selection on multiple variants that either enhance or compen-
sate for the Leu995Phe phenotype (Supplementary Information 9.5). 

Resistance due to genes that enhance insecticide metabolism is also a 
serious concern, as it has been implicated in extreme resistance pheno-
types in some Anopheles populations27,28. Although several metabolic 
genes have been shown to be upregulated in resistant mosquitoes, only 
a single molecular marker of metabolic resistance (Gste2-Ile114Thr) 
has previously been identified in An. gambiae or An. coluzzii27. At both 
Gste and Cyp6p, we found evidence that resistance has emerged on 
several genetic backgrounds and is spreading between species and over 
considerable distances. At the Gste locus, we found at least four distinct 
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Figure 3 | Population size history. a, Stairway plot of changes in 
population size over time. Absolute values of time and Ne are shown on 
alternative axes as a range of values, assuming lower and upper limits for 
the mutation rate μ as 2.8 × 10−9 and 5.5 × 10−9, respectively, and t = 11 

generations per year. ka, thousand years ago. b, Runs of homozygosity 
(ROH) in individual mosquitoes, highlighting recent inbreeding in 
Kenyan (grey) and colony (black) mosquitoes. G, Ghana; K, Kisumu; 
M, Mali; P, Pimperena. 
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haplotypes under selection (Extended Data Fig. 10a). One of these 
haplotypes carried the known Gste2-Ile114Thr resistance allele, and 
this haplotype was found in all populations except Guinea-Bissau and 
Uganda, indicating a continent-wide spread. However, the other three 
haplotypes did not carry this allele, thus other genetic variants with 
a resistance phenotype must be present at this locus. At the Cyp6p 
locus, we found at least eight distinct haplotypes under selection, 
but limited spread between populations (Extended Data Fig. 10b). 
At both loci, we found multiple SNPs associated with haplotypes 
under selection that could be used as markers to track the spread of 
resistance and characterize resistance phenotypes (Extended Data 
Fig. 10). 

In 1899, Ronald Ross proposed that malaria could be controlled by 
destroying breeding sites of the mosquitoes that transmit the disease30 . 
An. gambiae, identified in the same year by Ross as a vector of malaria 
in Africa, has proved resilient to a century of attempts to repress it. The 
vector control armamentarium needs to be expanded, not only with 
new classes of insecticide and genetic control strategies, but also with 
tools to gather intelligence, to enable those responsible for planning 
and executing interventions to stay ahead of the mosquito’s remark-
able capacity for rapid evolutionary adaptation. There remain major 
knowledge gaps concerning the ecology and life history of Anopheles 
mosquitoes, such as the rate and range of migration, which are fun-
damental to understand both malaria transmission and the spread of 
insecticide resistance, and which will require spatiotemporal analysis 
of mosquito populations. Most importantly, it is essential to start   
collecting population genomic data prospectively as an integral part of 
vector control interventions, to identify which strategies are causing 
increased insecticide resistance, or what it takes to cause a population 
crash of the magnitude observed in our Kenyan data. By treating each 
intervention as an experiment, and by analysing its effect on both mos-
quito and parasite populations, we can aim to improve the efficacy and 
sustainability of future interventions, while at the same time learning 
about basic processes in ecology and evolution. 

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper. 
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MeThODS 
Population sampling. Mosquitoes were collected from natural populations at 15 
sampling sites in 8 African countries (Extended Data Fig. 1). Sampling locations, 
dates, specimen collection methods and DNA extraction methods are given in 
Supplementary Information 1.1. We also performed genetic crosses between adult 
mosquitoes obtained from laboratory colonies (Supplementary Information 1.2).   
Parents and progeny of four crosses were contributed to Ag1000G phase 1 
(Extended Data Fig. 1). No statistical methods were used to predetermine sample 
size. 
Whole-genome sequencing. Sequencing was performed on the Illumina HiSeq 
2000 platform at the Wellcome Trust Sanger Institute. Paired-end multiplex 
libraries were prepared using the manufacturer’s protocol, with the exception that 
genomic DNA was fragmented using Covaris Adaptive Focused Acoustics rather 
than nebulization. Multiplexes consisted of 12 tagged individual mosquitoes, and   
3 lanes of sequencing were generated for each multiplex to even out variation in 
yield between sequencing runs. Cluster generation and sequencing were under-
taken per the manufacturer’s protocol for paired-end 100-bp sequence reads with 
insert size in the range 100–200 bp. 
Sequence analysis and variant calling. Sequence reads were aligned to the 
AgamP3 reference genome31 using bwa32 and SNPs were discovered using GATK 
following best practice recommendations33,34 (Supplementary Information   
3.1–3.2). After sample quality control, we analysed data on 765 wild-caught 
specimens and a further 80 specimens comprising parents and progeny from the 
four laboratory crosses (Supplementary Information 3.3). The alignments were 
also used to identify genome regions accessible to SNP calling, where short reads 
could be uniquely mapped and there was minimal evidence for structural variation 
(Supplementary Information 3.4). Mendelian errors in the crosses were used to 
guide the design of filters to remove poor-quality variant calls (Supplementary 
Information 3.5). We performed capillary sequencing of five genes in 58 individual 
mosquitoes to provide an estimate for the SNP false discovery rate, sensitivity and 
genotyping accuracy (Supplementary Information 3.6). We also performed geno-
typing by primer-extension mass spectrometry using the Sequenom MassARRAY 
platform at 158 SNPs in 229 individual mosquitoes to provide a second estimate 
for genotyping accuracy (Supplementary Information 3.7). 
Haplotype estimation. We used SHAPEIT2 to perform statistical phasing with 
information from sequence reads35 for all wild-caught individuals (Supplementary 
Information 4.1). We assessed phasing performance by comparison with 
haplotypes generated from the crosses and from male X chromosome haplotypes 
(Supplementary Information 4.2; Extended Data Fig. 2b, c). 
Population structure. To investigate variation in patterns of relatedness along 
the genome, we performed a windowed analysis using genetic distance and 
neighbour-joining trees (NJT). We divided the genome into 1,418 contiguous 
non-overlapping windows, where each window contained 100 kb of accessible 
positions. Within each window, we computed the city-block distance between all 
pairs of individuals. We used these distance matrices to construct a NJT for each 
window. We then computed the Pearson correlation coefficient between all pairs 
of distance matrices, and performed a singular value decomposition (SVD) on the 
correlation matrix. The resulting SVD components were used to identify major 
patterns of relatedness (Supplementary Information 6.1). We analysed geographical 
population structure using ADMIXTURE36 and PCA37. For these analyses, we 
used biallelic SNPs from within the regions 3R: 1–37 Mb and 3L: 15–41 Mb and 
with minor allele frequency ≥   1%, then each chromosome arm was randomly 
down-sampled to 100,000 variants using 10 different random seeds to provide 10 
replicate variant sets, and then each set was pruned to remove variants in linkage 
disequilibrium (Supplementary Information 6.2). For each of the 10 replicate 
variant sets, ADMIXTURE was run for K (number of ancestral populations) from 
2 to 11 with fivefold cross-validation. Each ADMIXTURE analysis was repeated   
10 times with different seeds, resulting in a total of 100 runs for each value of K. 
We then used CLUMPAK38 to analyse the ADMIXTURE results and compute 
ancestry proportions (Supplementary Information 6.2). Average FST values were 
computed using Hudson’s estimator and the ratio of averages, and standard errors 
were computed using a block-jackknife39 (Supplementary Information 6.4). AIMs 
were ascertained by starting with SNPs previously discovered in Mali18 with an 
allele frequency difference between An. gambiae and An. coluzzii >  0.9, then taking 
the intersection with biallelic SNPs discovered in this study, resulting in 506 AIMs 
(Supplementary Information 6.6). 
Population size history. We inferred the scale and timing of historical changes in 
Ne using two methods, stairway plot40 and ∂a∂i41, both using site frequency spectra 
but taking different modelling approaches. To compute site frequency spectra, we 
used SNPs from within the regions 3R: 1–37 Mb and 3L: 15–41 Mb, taking only 
intergenic SNPs at least 5 kb from the nearest gene (Supplementary Information 
8). We modified the stairway plot to include an additional parameter representing 

the probability of ancestral misclassification for each SNP (Supplementary 
Information 8.1). We fitted a three-epoch (two Ne changes) ∂a∂i model for each 
population singly, and fitted joint population models for selected pairs of popu-
lations (Supplementary Information 8.2). Scaling of parameters assumed that the 
Anopheles mutation rate is within the range of values estimated for Drosophila, 
in which estimates42,43 range from 2.8 ×  10−9 to 5.5 ×  10−9 . For joint population 
models, we computed the joint site frequency spectrum for each pair of popu-
lations from the same set of SNPs used for single-population inferences. Joint   
population models allowed for a phase of exponential size change in the ancestral 
population up until the time of the population split, after which each of the 
daughter populations experienced their own exponential size change until the 
present. We fitted these models with and without the addition of a symmetric, 
bidirectional migration rate parameter following the split. To study recent popu-
lation history in Kenya we used IBDseq44 to infer genome tracts IBD, then ran the 
IBDNe program (http://faculty.washington.edu/browning/ibdne.html)45 to infer 
population size history (Supplementary Information 8.4). 
Recent selection. To scan the genome for signals of recent selection, we com-
puted the H12 haplotype diversity statistic46 for each population, and the cross- 
population extended haplotype homozygosity (XP-EHH) score47 for selected pairs 
of populations. H12 was computed in non-overlapping windows over the genome, 
in which each window contained a fixed number of SNPs, and window sizes were 
calibrated separately for each population to account for differences in the extent of 
linkage disequilibrium (Supplementary Information 9.1). XP-EHH was computed 
for all SNPs with a minor allele frequency ≥ 5% in the union of both populations in 
each pair, and normalized within each chromosome (Supplementary Information 
9.2). To study haplotype structure at the Vgsc, Gste and Cyp6p loci, we computed 
the Hamming distance between all pairs of haplotypes, then performed hierarchical 
clustering of haplotypes (Supplementary Information 9.3). To identify haplotype 
clusters resulting from recent selection, we cut the dendrograms at a small genetic 
distance (0.0004 SNP differences per accessible base pair) and studied the largest 
clusters obtained after cutting. To look for evidence that the haplotype clusters we 
identified were related via recombination events, we performed the same clustering 
analysis but in non-overlapping windows upstream and downstream of the target 
region and compared the resulting clusters. 
Plotting and maps. All figures were produced using the matplotlib package for 
Python48. The map component of Fig. 2 was produced via the matplotlib basemap 
package, using the NASA Blue Marble image as the map background. The map 
components of Fig. 4 and Extended Data Fig. 10 were plotted via the cartopy 
package, using the Natural Earth shaded relief raster as the map background. The 
map in Extended Data Fig. 1 was plotted via the cartopy package, using data from 
the map of standardized terrestrial ecosystems of Africa49 as the map background. 
Data availability. Sequence read alignments and variant calls from Ag1000G 
phase 1 are available from the European Nucleotide Archive (ENA; http://www. 
ebi.ac.uk/ena) under study PRJEB18691. Variant and haplotype calls and associated 
data from Ag1000G phase 1 can be explored via an interactive web application or 
downloaded via the MalariaGEN website (https://www.malariagen.net/projects/ 
ag1000g#data). All other data are available from the corresponding authors upon 
reasonable request. 
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Extended Data Figure 1 | Overview of population sampling. Red circles 
show sampling locations for wild-caught mosquitoes. Colours in the map 
represent ecosystem classes; dark green represents forest ecosystems; see 
figure 9 in ref. 49 for a complete colour legend. The Congo Basin tropical 
rainforest is the large region of dark green in Central Africa. Sampling 
details for each site are shown in light grey boxes, including country 
(two-letter country code), location and year of collection, predominant 
ecosystem classification for the local region, and number and sex of 

individuals sequenced. For colony crosses, the direction of cross 
(colony of origin of mother and father) and number of offspring is shown. 
The inset map depicts geological fault lines in the East African rift system 
(http://pubs.usgs.gov/publications/text/East_Africa.html). Species 
assignment for Guinea-Bissau and Kenya specimens is uncertain, see   
main text. Sequencing depth per individual is shown as median   
(5th–95th percentile) for each population. 
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Extended Data Figure 2 | Genome accessibility and haplotype 
validation. a, Percentage of accessible bases in non-overlapping 400-kb 
windows. The schematic of chromosomes below shows chromatin state 
predictions from ref. 50. b, Haplotypes inferred in the crosses. Each panel 
shows either maternal or paternal haplotypes from a single cross. Each 
row within a panel represents a single progeny haplotype. Haplotypes 
are coloured by parental inheritance (blue denotes allele from parent’s 
first chromosome; red denotes allele from parent’s second chromosome). 

Switches between colours along a haplotype indicate recombination 
events. Regions that were within a run of homozygosity in the parent and 
thus not informative for haplotype validation are masked in grey. c, Error 
rate estimates for haplotypes inferred in wild-caught individuals. Top 
plots show estimates for the mean switch distance (red line), compared to 
the mean switch distance if heterozygotes were phased randomly (black 
line). Bottom plots show the switch error rate (probability of a switch error 
occurring between two adjacent heterozygous genotype calls). 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 
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Extended Data Figure 3 | Variant discovery and nucleotide diversity. 
a, Number of variant alleles discovered per individual mosquito. Only 
females are plotted. b, Genetic diversity within populations. Nucleotide 
diversity (π) and Tajima’s D were calculated in non-overlapping 20-kb 
genomic windows. SNP density depicts the distribution of allele 
frequencies (site frequency spectrum) for each population, scaled such 
that a population with constant size over time is expected to have a 

constant SNP density over all allele frequencies. c, Average nucleotide 
diversity (π) and ratio of diversity between sex-linked (X) and autosomal 
(A) chromosomes in relation to gene architecture. d, Relationship between 
number of individuals sampled and the cumulative number of variant sites 
discovered (left), availability of conserved Cas9 target sites within genes 
(centre), and number of genes containing at least 1 conserved Cas9 target 
site which could thus be ‘targetable’ for gene drive (right). 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 
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Extended Data Figure 4 | ADMIXTURE analysis. a, Ancestry 
proportions within individual mosquitoes for ADMIXTURE models 
from K = 2 to K = 10 ancestral populations. Each vertical bar represents 
the proportion of ancestry within a single individual, with colours 

corresponding to ancestral populations. These data are the average of the 
major q-matrix clusters derived by CLUMPAK analysis. b, Violin plot of 
cross-validation error for each of 100 replicates for each K value. 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 
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Extended Data Figure 5 | Population structure and differentiation. 
a, Principal components analysis of the 765 wild-caught mosquitoes. 
b, Average allele frequency differentiation (FST) between pairs of 
populations. The bottom left triangle shows average FST values 
between each population pair. The top right triangle shows the 

Z score for each FST value estimated via a block-jackknife procedure39. 
CM* denotes Cameroon savannah sampling site only. c, Allele sharing 
in doubleton (f2) variants. The height of the coloured bars represent the 
probability of sharing a doubleton allele between two populations. Heights 
are normalized row-wise for each population. 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 
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Extended Data Figure 6 | Ancestry informative markers. Rows represent 
individual mosquitoes (grouped by population) and columns represent 
SNPs (grouped by chromosome arm). Colours represent species 
genotype. The column at the far left shows the species assignment 
according to the conventional molecular test based on a single marker on 

the X chromosome, which was performed for all individuals except Kenya 
(KE). The column at the far right shows the genotype for kdr variants in 
Vgsc codon 995. Lines at the lower edge show the physical locations of the 
AIM SNPs. 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 
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Extended Data Figure 7 | Population size history. a, Stairway plot of 
inferred histories for each population. The shaded area shows the 95% 
confidence interval from 199 bootstrap replicates. b, Inferred histories 
from three-epoch ∂a∂i models41. The thick line shows the history with 
the highest likelihood found by optimization; thin lines show 100 histories 
with the highest likelihoods from even sampling of the model parameter 
space. c, Inferred histories from ∂a∂i two-population models allowing for 

migration. For each population pair, solutions from 5 optimization runs 
with the highest likelihoods are shown, with the thick line showing the 
history with the highest likelihood. In all panels, time and Ne are scaled 
assuming 11 generations per year and a mutation rate of μ = 3.5 × 10−9 . 
Scaling of time and Ne is proportional to 1/μ, for example, if the true 
mutation rate is twice as high then estimates of time and Ne would be 
halved. ya, years ago. 
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Extended Data Figure 8 | Identity by descent and recent effective 
population size history. a, Patterns of IBD sharing within populations. 
Each marker represents a pair of individuals. b, The distribution of IBD 
tract lengths within populations. c, Recent population size history for 
the Kenyan population inferred by the IBDNe program45 . d, Comparison 
of the IBD tract length distribution between Kenya and four simulated 

demographic scenarios. e, Population size histories inferred by IBDNe 
(red dashed lines) from data generated by simulations (black line shows 
the simulated population size history). f, Comparison of patterns of IBD 
sharing generated by simulations (black contour lines) with Kenyan data 
(filled blue contours). See Supplementary Information 8.4 for details of 
simulations. ga, generations ago. 
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Extended Data Figure 9 | Genome scans for signatures of recent 
selection. a, Haplotype diversity. Each track plots the H12 statistic in 
non-overlapping windows over the genome. A value of 1 indicates low 
haplotype diversity within a window, expected if one or two haplotypes 
have risen to high frequency owing to recent selection. A value of 0 
indicates high haplotype diversity, expected in neutral regions. b, XP-EHH 

scans. For each population comparison (for example, BF gambiae versus 
BF coluzzii), positive scores indicate longer haplotypes and therefore 
recent selection in the first population (for example, BF gambiae), and 
negative scores indicate selection in the second population (for example, 
BF coluzzii). 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 
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Extended Data Figure 10 | Haplotype structure at metabolic insecticide-
resistance loci. Plot components are as described for Fig. 4. For both 
loci, SNPs shown in the bottom panel are all either non-synonymous or 
splice site variants, and are associated with one or more haplotypes under 

selection. a, Haplotype clustering using 1,375 SNPs within the region 
3R: 28,591,663–28,602,280 spanning 8 genes (Gste1–Gste8). b, Haplotype 
clustering using 1,844 SNPs within the region 2R: 28,491,415–28,502,910 
spanning 5 genes (Cyp6p1–Cyp6p5). 
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