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A B S T R A C T   

Machine learning has increasingly been applied to a wide range of questions in phylogenetic inference. Supervised machine learning approaches that rely on 
simulated training data have been used to infer tree topologies and branch lengths, to select substitution models, and to perform downstream inferences of intro
gression and diversification. Here, we review how researchers have used several promising machine learning approaches to make phylogenetic inferences. Despite 
the promise of these methods, several barriers prevent supervised machine learning from reaching its full potential in phylogenetics. We discuss these barriers and 
potential paths forward. In the future, we expect that the application of careful network designs and data encodings will allow supervised machine learning to 
accommodate the complex processes that continue to confound traditional phylogenetic methods.   

1. Introduction 

Phylogenetics aims to elucidate the evolutionary relationships 
among species. In recent decades, owing to rapid growth in the avail
ability of genomic data, phylogenetic analysis has been able to use 
hundreds to thousands of loci (Delsuc et al., 2005). Using whole ge
nomes, or even near-whole genomes, may allow for a more compre
hensive view of the evolutionary events shaping species (Scornavacca 
et al., 2020). However, the accuracy of inference may be compromised 
when using such large datasets, as even small biases can be magnified 
many-fold. Biases in phylogenetics are often due to unmodeled hetero
geneity in the evolutionary process, including heterogeneity across time, 
sites, genes, or lineages (Kapli et al., 2020). These processes may arise 
either individually or in combination, presenting challenges in subse
quent analyses. 

Recently, machine learning techniques have been used across fields, 
demonstrating impressive power in uncovering intricate relationships 
from data that contains extensive heterogeneity. Notable examples 
include successful applications in image classification (Krizhevsky et al., 
2017), language models (Devlin et al., 2019), protein structure predic
tion (Jumper et al., 2021), and population genetics (Schrider and Kern, 
2018). Machine learning is comprised of two fundamental para
digms—supervised and unsupervised approaches. Supervised learning 
relies on the availability of labeled training data, where the true un
derlying state or value of the data is known. In phylogenetics and related 
fields, large amounts of labeled training data are generally unavailable, 
so simulations are often used to generate such data. The primary 

objective of supervised machine learning is to learn a function that can 
map input data to appropriate outputs. Within supervised learning, 
there are two primary tasks: classification and regression. While classi
fication aims to predict discrete labels or categories, regression predicts 
continuous-valued outputs. In contrast, unsupervised learning operates 
without the need for labeled data, focusing instead on discerning un
derlying structures or patterns in the input data. Unsupervised ap
proaches include tasks such as clustering and dimensionality reduction. 
Notably, deep learning is a specialized subset of machine learning that 
leverages neural networks (NNs) with many layers (hence ”deep”). Some 
NN architectures are adept at automatically extracting hierarchical 
features from raw data, obviating the need for manual feature engi
neering—a significant advantage over traditional machine learning 
methods. 

In the context of phylogenetics, machine learning algorithms are 
extremely flexible, both with regards to the structuring of input data, 
and the data used for training. Furthermore, machine learning ap
proaches can learn complex relationships from input data without 
calculating likelihoods. This facilitates the application of machine 
learning to complex models, especially scenarios in which standard 
likelihood and Bayesian inference may be intractable. Given the lack of 
analytical phylogenetic solutions that can be reasonably applied to large 
genomic datasets, machine learning offers the promise of moving 
beyond conventional methods. 

Despite the promise that machine learning in general has for 
addressing many biological problems, there is uncertainty about its su
periority over conventional approaches in many applications to 
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phylogenetics. While a growing number of papers have applied machine 
learning to multiple problems in the field, researchers have not yet seen 
a clear advantage to such approaches. Here, we review recent applica
tions of machine learning to different tasks in phylogenetics (Table 1), 
examining their limitations and strengths. We attempt to provide a 
general overview of the types of machine learning approaches that have 
been used—and those that could be used—in the hope that future work 
will bring the promise of machine learning to fruition. 

2. Tree reconstruction 

Reconstructing evolutionary relationships among taxa is a central 
goal in evolutionary biology. A phylogenetic tree is composed of two 
primary components: a topology and a set of branch lengths. The to
pology serves as a representation of the hierarchical evolutionary re
lationships among species. The branch lengths represent evolutionary 
change, measured either in absolute time, in the number of nucleotide 
substitutions, or in other units. This section reviews machine learning 
approaches for inferring both components of phylogenetic trees. 

2.1. Topology inference 

Perhaps the most natural framing of the problem of topology infer
ence is to use supervised machine learning approaches for classification, 
since the goal is to predict a discrete output (topology) from sequence 
data. Recall that supervised machine learning approaches require 
labeled training data, which are generally unavailable in phylogenetics. 
Because of this, in most phylogenetic applications simulations are per
formed under each model of interest prior to inference, and these 
simulated data are used to train the machine learning network. When 
the goal is topology inference, the model space includes, at a minimum, 
the number of possible tree topologies. With as few as ten taxa, there are 
more than two million unrooted topologies, making it infeasible to use 
such approaches to infer tree topologies for even moderate numbers of 
taxa. The challenges associated with a large state-space of topologies are 
not unique to machine learning approaches: even conventional methods 
have difficulties in inferring trees for large numbers of species (Roch, 
2006; Felsenstein, 1978b). To circumvent this problem, researchers 
have used three different types of approaches in order to apply machine 
learning to phylogenetic inference (Fig. 1). Here we review these ap
proaches and the specific models that have been used. 

2.1.1. Quartet-based methods 
The first machine learning approaches in phylogenetics used quartet- 

based methods. In general, quartet-based methods involve extracting 
sets of four taxa from the full dataset, building trees for each set of four 
taxa, and then constructing a phylogeny from these quartet trees using 
one of several quartet amalgamation approaches, such as quartet puz
zling (Bryant and Steel, 2001; Snir and Satish, 2012; Reaz et al., 2014). 
Because there are only three possible topologies for an unrooted quartet, 
such approaches are not plagued by the need to consider a very large 
state-space of topologies. Quartet-based methods therefore provide 
efficient inference algorithms that are scalable to very large datasets. 

Several supervised learning approaches have been used to infer 
quartet trees. Suvorov et al. (2020) used a convolutional neural network 
(CNN) that takes integer-encoded nucleotide alignments as input. Ma
chine learning algorithms generally require that input data are numer
ical, and integer-encoding can be used to represent categorical variables. 
In this application, each nucleotide was encoded as an integer between 
0 and 3, with gaps encoded as 4, and each alignment was represented as 
a matrix in which rows correspond to sequences and columns corre
spond to sites in the alignment. The topology associated with each 
alignment was an integer-encoded class label. Training data were 
simulated under a wide range of branch lengths, several substitution 
models, with site heterogeneity, and with or without gaps. In the 
absence of gaps, the CNN generally performed as well as or better than 

traditional approaches. On datasets that included gaps, the CNN sub
stantially outperformed traditional approaches, likely because it better 
utilized this significant source of phylogenetic signal. The CNN initially 
exhibited reduced accuracy in some zones of branch length space (e.g., 
the Felsenstein zone; (Felsenstein, 1978a)). However, when more 
training data were included from these regions the CNN was able to 
outperform other approaches, highlighting the importance of carefully 
considering where to put effort in training such models. 

In a similar approach, Zou et al. (2020) used a residual neural 
network, which takes as input one-hot encoded amino acid sequences. 
One-hot encoding is an alternative to integer-encoding for representing 
categorical variables as numeric input. In this application, each site was 
represented by twenty channels, with each channel corresponding to an 
amino acid. For an individual site, the channel corresponding to the 
amino acid present in the position is set to one, while all other channels 
are set to zero. One-hot encoding may be more appropriate than integer- 
encoding, since it avoids implicit ordered relationships among states. In 
Zou et al.’s approach, models were trained on amino acid sequences 
simulated on large, random trees, which were then pruned to subsets of 
four taxa. Both site and time heterogeneity were included in the simu
lations; additionally, the training data intentionally included a sizable 
proportion of trees susceptible to long branch attraction, to ensure that a 
large number of difficult examples were included. When benchmarked 
against existing inference approaches, the residual network predictors 
consistently delivered better results with less computational time (not 
including training time), especially when dealing with several cases that 
confound existing methods—such as long branch attraction and heter
otachy. By combining their approach with a quartet amalgamation 
approach, these authors were able to infer larger species trees with 
moderate accuracy. 

Both of the methods described above treat alignments as images. 
While this approach to representing data has been found to be powerful 
in population genetics (Flagel et al., 2019), there are several limitations 
in the context of phylogenetics. For example, when inferring relation
ships among taxa, we would like the order in which sequences are 
included in the model to be irrelevant (a property referred to as ”per
mutation equivariant”). However, most network architectures do not 
perform in this way. Zou et al. (2020) accommodated this behavior by 
including all permutations of the alignment when training, but such an 
approach increases the compute time and memory needed to train a 
neural network. Solís-Lemus et al. (2023) addressed this issue using a 
symmetry-preserving long short-term memory (LSTM) recurrent neural 
network (RNN). By avoiding the need to include permutations of the 
training alignments, they substantially improved compute times and 
memory usage compared to Zou et al. (2020). These approaches have 
also been limited in the ease with which they can be applied to empirical 
datasets both due to limitations in the lengths of alignments that can be 
considered and the lack of a user-friendly pipeline. Fusang (Wang et al., 
2023) addresses these issues by using a sliding window approach to 
accommodate variable alignment lengths and developing an easy-to-use 
pipeline. Fusang takes as input an alignment including no more than 40 
sequences, infers quartet topologies, and then uses a stepwise addition 
algorithm with beam search to infer larger trees from quartet trees. 

Even though NNs can be very efficient for inferring quartet trees, 
considering larger trees remains prohibitive—the approaches described 
above still must rely on quartet-amalgamation approaches to build 
larger trees. Additionally, as with all supervised machine learning, ac
curacy is likely limited in cases where the training data is not reflective 
of real data. Zaharias et al. (2022) explored these limitations by 
comparing the networks from Zou et al. (2020) to standard approaches 
on larger trees and on test datasets with higher rates of nucleotide 
evolution and/or shorter alignment lengths. They found that the neural 
networks only outperformed traditional approaches when the goal was 
to infer a quartet tree from relatively long amino acid sequences simu
lated under model conditions very similar to those used for training. 
Furthermore, when larger trees were considered, traditional approaches 
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Table 1 
Recent machine learning applications in phylogenetics.  

Purpose Method type Algorithm/ 
architecture 

Input/alignment 
format 

Encoding Output Reference 

Topology inference classification CNN Nucleotide Integer Quartet topology Suvorov et al., 2020 
classification Residual NN Amino acid One-hot Quartet topology PhyDL (Zou et al., 

2020) 
classification LSTM Amino acid Integer + Embedding Quartet topology Solís-Lemus et al., 

2023 
classification CNN Nucleotide Integer Tree topology Fusang (Wang et al., 

2023) 
regression Transformer Amino acid One-hot Pairwise evolutionary 

distances 
Phyloformer ( 

Nesterenko et al., 
2022) 

regression Matrix 
factorization / 
Autoencoder 

Distance matrix with 
missing entries 

None An imputed distance matrix Bhattacharjee & 
Bayzid, 2020 

regression CNN Reference tree and 
sequences from 

reference and query 
species 

One-hot Distances between the query 
and all backbone sequences 

Jiang et al., 2023 

generative GAN Nucleotide Integer Tree topology phyloGAN (Smith & 
Hahn, 2023) 

Improving steps in 
topology 
inference 

regression Random forest Phylogeny Summary statistics Ranking of possible SPR moves Azouri et al., 2021 
regression Reinforcement 

learning 
Nucleotide Summary statistics Tree topology The Phylogenetic 

Game (Azouri et al., 
2023) 

classification MLP Nucleotide Site pattern frequencies Classification of alignment as 
Felsenstein- or Farris-type 

F-zoneNN ( 
Leuchtenberger et al., 

2020) 
regression Random forest Nucleotide, amino acid, 

or morphological data 
Summary statistics The degree of difficulty of a 

phylogenetic dataset 
Haag et al., 2022 

Branch length 
inference 

regression MLP / CNN Nucleotide Site pattern frequencies 
/ Integer 

Branch lengths Suvorov & Schrider, 
2022 

classification Logistic regression Phylogeny Summary statistics Whether an independent 
branch-rates model should be 

rejected in favor of an 
autocorrelated model 

CorrTest (Tao et al., 
2019) 

Substitution model 
selection 

regression Random forest Nucleotide Summary statistics Ranking of substitution models 
based on their predicted 

performance in branch length 
estimation 

ModelTeller (Abadi 
et al., 2020) 

classification Residual NN Nucleotide Summary statistics Model of sequence evolution NNmodelfind ( 
Burgstaller- 

Muehlbacher et al., 
2023) 

classification 
and regression 

Bidirectional LSTM Nucleotide Summary statistics Whether rate heterogeneity 
should be considered, and if so 

an estimate of the shape 
parameter 

NNalphafind ( 
Burgstaller- 

Muehlbacher et al., 
2023) 

Discordance 
detection 

regression Linear regression / 
Ensemble / MLP 

Nucleotide Summary statistics The amount of biological 
discordance in a set of gene 

trees 

ml4ils (Rosenzweig 
et al., 2022) 

regression CNN Nucleotide One-hot The proportion of each 
possible topology for four- or 

five-taxon trees 

ERICA (Zhang et al., 
2023) 

Introgression 
detection 

classification Extra-Trees 
classifier 

Nucleotide Summary statistics Classification of a genomic 
region as introgressed or not 

FILET (Schrider et al., 
2018) 

classification CNN (U-Net) biallelic SNP matrix Integer Classification of alleles as 
introgressed or not 

IntroUNET (Ray et al., 
2023) 

classification CNN biallelic SNP matrix Counts of minor alleles 
per haplotype per 

window 

Classification of regions 
experiencing adaptive 

introgression 

Genomatnn (Gower 
et al., 2021) 

classification CNN Nucleotide Summary statistics Best scenario of hybridization 
and admixture 

HyDe-CNN (Blischak 
et al., 2021) 

classification MLP Nucleotide Summary statistics Best scenario of hybridization 
and admixture 

Burbrink & Gehara, 
2018 

classification Various machine 
learning 

algorithms 

Gene trees in coalescent 
units 

Summary statistics Distinguishing the speciation 
history from the introgression 

history 

Hibbins & Hahn, 2022 

Diversification rate 
inference 

classification 
and regression 

MLP / CNN Phylogeny Summary statistics / 
Vectorized 

representation 

One of three possible 
phylodynamic models or 

estimates of phylodynamic 
model parameters 

PhyloDeep (Voznica 
et al., 2022) 

(continued on next page) 
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outperformed the combination of neural networks and quartet amal
gamation. Machine learning approaches are therefore severely limited 
by their inability to directly infer trees from larger numbers of taxa, as 
well as by the specifics of the data used in training. 

2.1.2. Distance-based methods 
Rather than using machine learning to directly infer trees from 

sequence alignments, it is possible to instead infer evolutionary dis
tances, which can then be used as input to standard distance-based ap
proaches. Although often scoffed at by modern phylogeneticists, 
distance-based approaches such as neighbor joining (Saitou and Nei, 
1987) are in fact guaranteed to infer the correct tree in most of 
parameter space, as long as distances are accurately inferred. In addi
tion, they are much more accurate than maximum likelihood in the 
presence of high amounts of incomplete lineage sorting (Liu and 
Edwards, 2009; Mendes and Hahn, 2018). Therefore, it makes sense to 
apply machine learning to the task of accurately inferring distances. 

Nesterenko et al. (2022) developed Phyloformer, which uses self- 
attention networks to infer evolutionary distances for up to 100 spe
cies. Their model encapsulates alignment in a pairwise way, introducing 
a representation for each pair with the attention mechanism. The pro
cess entails an iterative sharing of information, first across sites within 
each pair (referred to as site-level attention) and subsequently across 
pairs within each site (termed pair-level attention). Such an approach is 
permutation-equivariant, and accommodates alignments of varying 
sizes. After inferring distances, these authors used neighbor joining for 
tree construction. Their approach outperformed traditional distance- 
based approaches, and was competitive with (and much faster than) 
maximum likelihood when training and testing data included similar 
numbers of species. However, Phyloformer does not always compare 
favorably to standard methods, especially on trees with more than 

twenty leaves. 
In a related approach, Bhattacharjee and Bayzid (2020) used 

autoencoders and matrix factorization to impute missing values in dis
tance matrices. Alternatively, Jiang et al. (2023) used a CNN for 
phylogenetic placement—placing sequences from individual genes onto 
trees that may have been inferred using different genomic regions. In 
this case they inferred evolutionary distances for these new sequences, 
and then used a distance-based algorithm to place the new sequences on 
the tree (Balaban et al., 2022). Inferring evolutionary distances reframes 
phylogenetic inference as a regression problem, rather than as a classi
fication problem. This reframing makes it possible to scale machine 
learning approaches to larger trees. 

2.1.3. Direct methods 
In maximum likelihood and Bayesian approaches to phylogenetic 

inference, the large number of possible topologies is accommodated by 
using heuristic searches to explore tree space; such approaches could 
also be used for direct inference of tree topologies from sequence data in 
machine learning contexts. Generative adversarial networks (GANs) 
consist of a generator, which aims to produce realistic data, and a 
discriminator, which aims to distinguish real and fake data (Goodfellow, 
2020). Recently, Smith and Hahn (2023) proposed phyloGAN. phylo
GAN consists of a generator, which generates topologies and branch 
lengths, and a CNN-based discriminator, which attempts to distinguish 
alignments simulated under these topologies and branch lengths from 
empirical (real) alignments. Ideally, at the end of training, it should be 
virtually impossible to distinguish simulated and empirical alignments. 
Once this level of accuracy is achieved, the topology that underpins the 
simulated data is considered to be the inferred topology. phyloGAN was 
tested on up to fifteen species, and a version incorporating gene tree 
heterogeneity was tested on six species. While phyloGAN worked well 

Table 1 (continued ) 

Purpose Method type Algorithm/ 
architecture 

Input/alignment 
format 

Encoding Output Reference 

regression MLP / CNN Phylogeny with or 
without binary traits on 

tips 

Summary statistics / 
Vectorized 

representation 

Estimates of diversification 
model parameters 

Lambert et al., 2023 

regression Various neural 
networks 

Phylogeny with or 
without binary traits on 

tips 

Summary statistics, 
Vectorized 

representations, Graphs 

Estimates of diversification 
model parameters 

Lajaaiti et al., 2023  

Fig. 1. Methods for topology inference using machine learning. A. Quartet-based methods infer one of the three topologies possible with unrooted quartets. Trees 
from each quartet are inferred with neural networks (NNs); a collection of such trees are then fed into existing quartet amalgamation algorithms (e.g. Quartet 
Puzzling) to infer a larger phylogeny. B. Distance-based methods estimate pairwise distances using NNs (e.g. Phyloformer). Distances are combined using standard 
methods (e.g. Neighbor Joining) to reconstruct trees. C. Direct methods infer a tree directly from an alignment using NNs (e.g. phyloGAN). 

Y.K. Mo et al.                                                                                                                                                                                                                                   



Molecular Phylogenetics and Evolution 196 (2024) 108066

5

with small numbers of species (up to ten), it was computationally 
intensive, and several metrics indicated issues during training. Addi
tionally, since phyloGAN performs a heuristic exploration of tree space, 
it must be trained anew for each empirical dataset, and thus many of the 
potential computational benefits of machine learning approaches are 
not realized. Future work may explore alternative approaches for heu
ristically exploring model spaces using machine learning frameworks, 
including approaches covered in the next section. 

2.1.4. Improving steps in topology inference 
Machine learning approaches have been used to assist standard 

phylogenetic approaches for topology inference. For example, machine 
learning approaches have been used to improve heuristic searches for 
tree topologies. Azouri et al. (2021) used a random forest (RF) regressor 
to predict likelihood scores for subtree-prune-regraft (SPR) moves, a 
standard and important step in heuristic tree searches. Given a starting 
topology, their network could accurately predict the change in likeli
hood associated with different SPR moves, which suggests that such an 
approach could be used to limit search space and therefore to reduce the 
computational requirements for heuristic searches. In a follow-up paper, 
Azouri et al. (2023) used reinforcement learning as an alternative to 
traditional heuristic search algorithms. By allowing for suboptimal 
moves that, nonetheless, improved the final outcome of the search, this 
approach out-competed greedy search strategies. 

Machine learning approaches have also been used to guide re
searchers in their decisions about which standard approaches to use for 
topological inference. Leuchtenberger et al. (2020) developed a feed- 
forward neural network to classify alignments as belonging to the Far
ris (Siddall, 1998) or Felsenstein zone (Felsenstein, 1978a; Huelsenbeck 
and Hillis, 1993). They based their choice to use maximum parsimony 
(in the Farris Zone) or maximum likelihood (in the Felsenstein zone) on 
the predictions of this neural network. Using this approach resulted in 
higher overall accuracy compared to always using either maximum 
parsimony or maximum likelihood. In a follow-up paper, Leuchten
berger and von Haeseler (2024) simplified this neural network to 
develop a simple, more interpretable classifier, illustrating how subse
quent investigations into complex networks can yield theoretical in
sights. In a similar application, Haag et al. (2022) developed a random 
forest regressor, Pythia, to predict the difficulty of inferring a tree from a 
particular alignment. They suggested that the predicted level of diffi
culty be used to guide decisions regarding analysis design, including 
potentially collecting more data prior to analyses for difficult 
alignments. 

2.2. Branch length inference 

In addition to a tree topology, most researchers are also interested in 
inferring the branch lengths of a tree. However, few studies have suc
cessfully inferred branch lengths using machine learning. While it may 
seem that this regression problem should be easier than the classification 
problem of inferring topologies, the size of the output vector depends on 
the number of edges in the tree—there are 2n − 2 branches in a rooted 
tree with n tips. The dependence on the number of tips complicates the 
use of machine learning approaches. 

Suvorov and Schrider (2022) employed both a CNN and a multilayer 
perceptron (MLP) to infer branch lengths on fixed tree topologies with 
four or eight taxa. For the CNN-based approach, they adapted a previ
ously proposed architecture (Suvorov et al., 2020). Instead of a classi
fication task, the model was restructured for regression, aiming to 
predict all branch lengths simultaneously. Meanwhile, the MLP was fed 
with feature vectors derived from site pattern frequencies present within 
each alignment. Notably, the predictions generated by their models 
showed slightly superior accuracy compared to maximum likelihood 
estimates. Despite these promising results, there remains a degree of 
skepticism regarding the scalability of machine learning to infer branch 
lengths, especially when considering more species. Nevertheless, the 

flexibility of machine learning approaches with respect to the types of 
input data that can be considered offers many interesting possibilities. 
For instance, in the future such methods could facilitate the integration 
of heterogeneous fossil data in estimating time-calibrated trees. 

As with topological inference, machine learning approaches can also 
be used to guide researchers in decisions about which approaches may 
be most appropriate for inferring branch lengths. For example, Tao et al. 
(2019) used a logistic regression model to predict whether rates of 
molecular evolution are autocorrelated in inferred phylogenies. Their 
approach, CorrTest, can be used to determine whether an independent 
branch-rate model or an autocorrelated branch-rate model should be 
used to estimate divergence times. 

3. Other kinds of phylogenetic inferences 

In addition to phylogenetic tree inference, machine learning ap
proaches have been applied to both upstream and downstream tasks in 
phylogenetics. Prior to tree inference using many approaches (e.g., 
Bayesian inference, maximum likelihood, neighbor joining) it is neces
sary to infer a sequence substitution model. After tree inference, re
searchers are often interested in detecting and quantifying discordance, 
testing for introgression, and inferring macroevolutionary parameters. 
Below, we review some recent machine learning approaches to these 
upstream and downstream tasks. 

3.1. Substitution models 

It is crucial to select a suitable substitution model for accurate 
phylogenetic inference from sequence data, as it has long been known 
that misspecified models can lead to inaccurate estimates of trees 
(Buckley, 2002; Sanderson, 2002) and branch lengths (Abadi et al., 
2019). Existing methods for model selection infer the model that pro
vides the best fit to the data, using one of several criteria. Popular 
criteria include likelihood ratio tests (LRTs), Akaike information criteria 
(AIC), corrected AIC (AICc), Bayesian information criteria (BIC), and 
decision theory (DT). However, these criteria rely on assumptions that 
are often not met in phylogenetics, and there is a lack of consensus 
regarding which criteria are the most appropriate (Abadi et al., 2019). 
Additionally, substitution model choice tends to impact branch length 
estimates more-so than topology inference (Abadi et al., 2019), but no 
criteria to-date have been designed to select the model best-suited for 
branch length inference. Finally, using these criteria to perform substi
tution model selection is computationally expensive, as it requires 
computation of the likelihood. Here we discuss two recent machine 
learning approaches that attempt to address these gaps. 

ModelTeller (Abadi et al., 2020) is a machine learning approach that 
uses an RF regressor to rank 24 potential substitution models according 
to their accuracy in downstream branch length inference. Features fed 
into the model included over 50 summary statistics that can be broadly 
categorized into four primary groups: features inherent to the align
ment, features drawn from an approximated tree inferred through a 
distance-based method, parameters inferred under a parameter-rich 
substitution model, and sequence similarity within certain subsets. 
ModelTeller’s primary distinction compared to traditional approaches 
lies in selecting a substitution model that improves accuracy in branch 
length inference. This leads to improved performance in terms of the 
accuracy of branch length estimates under the models selected using 
ModelTeller compared to models selected using more standard ap
proaches, particularly on datasets simulated under realistic models. 
Additionally, ModelTeller was substantially faster than standard 
methods. 

A later model, ModelRevelator (Burgstaller-Muehlbacher et al., 
2023) aims to infer the correct generating model of nucleotide substi
tution using two neural networks. The first network, NNmodelfinder, 
takes as input a set of statistics calculated from pairwise alignments and 
predicts the best substitution model from a set of six possible models. 
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The second network, NNalphafind, takes as input base composition 
profiles and predicts whether a site homogeneous model is appropriate 
or not. If a site homogeneous model is not appropriate, then NNalpha
find estimates the α parameter of a model with Γ-distributed rate het
erogeneity among sites. Used together, these networks can predict the 
best substitution model for a given sequence alignment, whether rate 
heterogeneity should be included, and, when rate heterogeneity is 
included, the α parameter to use in downstream inference. Mod
elRevelator performed comparably to maximum likelihood combined 
with substitution model selection under BIC as implemented in IQ-TREE 
(Minh et al., 2020), with substantially reduced computation times on 
large alignments. 

Both ModelTeller and ModelRevelator are designed to select a sub
stitution model that is suitable for inference; however, each uses 
different criteria for assessing suitability. ModelTeller is particularly 
focused on identifying a model that results in the most accurate esti
mates of branch lengths. The primary objective of ModelRevelator is to 
select the best substitution model and to estimate the α parameter when 
the best model includes rate heterogeneity. 

3.2. Levels of discordance 

Gene tree topologies often differ from the species tree topology due 
to several biological factors, including incomplete lineage sorting, 
introgression, and gene duplication and loss (Maddison, 1997). Two 
recent studies used deep learning to estimate the amount of discordance 
in phylogenetic datasets (Rosenzweig et al., 2022; Zhang et al., 2023). 
Rosenzweig et al. (2022) used several approaches, including a deep 
neural network (DNN), to estimate the amount of discordance in four- 
taxon datasets using a set of summary statistics calculated from align
ments and inferred gene trees. Estimates from their DNN were more 
accurate than relying on inferred gene trees alone to estimate discor
dance, particularly when branch lengths were long. In addition to their 
network for estimating the amount of discordance, they introduced a 
network for inferring the quartet species tree topology from the same set 
of statistics. Similarly, Zhang et al. (2023) used CNNs to estimate the 
proportion of all different possible topologies for four and five-taxon 
datasets from multiple sequence alignments. Their CNN, called ERICA, 
was able to accurately infer topology proportions. The authors then used 
these inferred proportions to try to infer introgression and to identify 
potentially introgressed genomic windows. The ability of these ap
proaches to estimate the proportions of quartet topologies more accu
rately than standard pipelines—which rely on inferred gene trees 
alone—offers promise for improving many quartet-based methods for 
species tree inference, as these generally assume that quartet frequencies 
are accurately estimated from input gene trees (Mirarab and Warnow, 
2015). 

3.3. Introgression 

Most machine learning approaches for studying introgression have 
focused on population-scale data, rather than phylogenetic data. For 
example, Schrider et al. (2018) used ExtraTrees classifiers to detect 
introgressed regions between closely related species, while Ray et al. 
(2023) used a CNN and image segmentation for a similar task. Similarly, 
Gower et al. (2021) developed a CNN to detect adaptive introgression 
given data from three closely related populations or species. Several 
recent papers have also addressed introgression from a phylogenetic 
perspective using machine learning. 

Two recent studies used supervised machine learning to determine 
whether there was evidence for reticulation in a dataset. Blischak et al. 
(2021) used a CNN to detect various types of reticulation in four-taxon 
trees, including hybrid speciation and introgression. Their CNN takes as 
input mean and minimum values of dXY (a measure of sequence diver
gence) between sets of populations. They compared HyDe-CNN to an RF 
classifier trained on several phylogenetic statistics for detecting 

introgression and found that HyDe-CNN had increased power. In a 
similar approach, Burbrink and Gehara (2018) trained a neural network 
to distinguish a bifurcating species tree from models including reticu
lation between two parent clades and one clade with a putative reticu
late history. As input, their network takes pairwise distances between all 
sequences in the phylogeny (11 sequences from three clades). Their 
network had moderate power to distinguish among models with and 
without reticulations. When applied to their empirical data, the model 
supported a reticulate history for a clade in which reticulation was also 
inferred using SNaQ (Solís-Lemus and Ané, 2016). Most recently, Hib
bins and Hahn (2022) used supervised machine learning to distinguish 
speciation and introgression histories. Under many regions of parameter 
space, gene trees and site patterns matching the introgression history 
can become more common than those matching the species tree, chal
lenging many traditional approaches to species tree inference. By using 
several summary statistics calculated from gene trees, Hibbins and Hahn 
were able to accurately infer the speciation history for rooted three- 
taxon trees, even in regions of parameter space where traditional ap
proaches fail. While powerful, these approaches have primarily focused 
on four or fewer taxa. Future work may expand machine learning ap
proaches to study introgression on larger trees. 

3.4. Diversification rates 

In addition to the kinds of inferences described above, recent studies 
have attempted to use inferred phylogenies for downstream inference of 
diversification rates. One challenge in any such analysis is determining 
the optimal way to encode phylogenetic trees. To address this issue, 
Voznica et al. (2022) introduced the compact bijective ladderized vector 
(CBLV), an encoding of phylogenetic trees that can be used as input into 
a CNN. They trained a CNN that takes as input the CBLV to infer pa
rameters of phylodynamic birth–death models and to perform model 
selection. They compared the performance of this CNN to a feed-forward 
neural network trained on summary statistics calculated from phyloge
netic trees. Both networks were able to accurately infer parameters and 
distinguish among phylodynamic models. Lambert et al. (2023) used 
similar networks to infer speciation and turnover rates under a constant 
rate birth–death (CRBD) model and to infer the parameters of a binary 
state speciation and extinction (BiSSE) model. Lajaaiti et al. (2023) 
compared these networks to several other networks for inferring 
diversification parameters. They trained an additional CNN and RNN on 
lineage through time (LTT) plots. They also trained a graph neural 
network (GNN) that took phylogenies encoded as graphs directly as 
input. Under the CRBD model, the RNN and CNN trained on LTT plots 
outperformed the network trained on CBLV encodings. However, these 
same networks performed poorly under the BiSSE model, likely because 
the LTT plots did not include additional information about tip states, 
which was included in the other networks. Perhaps surprisingly, the 
GNN performed poorly across both models. These approaches highlight 
the importance of carefully choosing network architectures and data 
encodings for the task at hand. 

4. Discussion 

Recent progress has revealed the promise of machine learning in 
phylogenetics. However, inferences have often been limited to relatively 
small trees and relatively limited regions of parameter space. Moving 
forward, careful considerations of training datasets, network architec
tures, and data encodings will facilitate the use of machine learning to 
address fundamental challenges in phylogenetic inference. 

Supervised machine learning requires a labeled training set. In the 
context of phylogenetics, however, we do not have labels for many real- 
world examples—we therefore have to simulate data. Despite attempts 
to simulate realistic data across a wide range of parameter space, biases 
will inevitably creep in. For example, training data generated under one 
substitution model may not generalize to empirical datasets that evolved 
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under a different model. Importantly, this challenge is not specific to 
machine learning, and likelihood-based approaches may also fail due to 
model misspecification. The relative robustness of machine learning 
approaches and likelihood-based approaches to misspecified models 
remains unclear, with recent work suggesting similar impacts of model 
violations (Thompson et al., 2024). Just as it is important to evaluate the 
robustness of likelihood-based approaches to prevalent model mis
specifications, it is important to evaluate the robustness of machine 
learning approaches to misspecifications of the model(s) used to simu
late training data. Because of the flexibility of machine learning ap
proaches, one approach to avoiding such biases would be to generate 
synthetic training data across increasingly large sets of models and pa
rameters. However, this is computationally costly, and even when re
searchers attempt to consider a broad range of relevant parameters, 
there will inevitably be mismatches between training and empirical 
data, potentially leading to poor generalization to unseen data. To 
develop more robust networks, widely used techniques such as dropout, 
regularization, and ensemble methods can be employed. Alternatively, 
noise can be added to training data to improve generalization (as is done 
with image augmentation). In the context of phylogenetics, adding noise 
could involve masking regions of the alignment during training. Alter
natively, techniques from domain adaptation have emerged as prom
ising solutions. Domain adaptation aims to develop networks that are 
robust to differences between the distribution of training data and the 
distribution of target or empirical data. Mo and Siepel (2024) used 
domain adaptation to make more accurate inferences of recombination 
rates and selection coefficients in the presence of domain differences. 
Their approach used adversarial domain-invariant feature extraction, 
which incorporates an additional layer to prevent the model from 
extracting features that differ between the training and target data. Such 
an approach promotes the extraction of domain-invariant features, and 
could be used to make robust inferences in phylogenetics. 

A major intended advantage of machine learning is that, once 
trained, models can be applied to new datasets with minimal compu
tational expenses. Even though a trained model makes inferences almost 
instantaneously, training remains computationally expensive. Ideally, 
trained networks would be applicable across a wide range of empirical 
datasets, but this is limited by the details of the training data used and 
the choice of network architectures. Specifically, many network archi
tectures (e.g., most CNNs) are not invariant to dataset size. In other 
words, only datasets with the exact dimensions of the training data can 
be analyzed. However, in phylogenetics, datasets may vary in size due to 
different alignment lengths or different numbers of taxa. This challenge 
has been addressed in population genetics through padding (Flagel 
et al., 2019), and by designing appropriate network architectures that 
are size invariant (Sanchez et al., 2021). Approaches that treat align
ments as images in phylogenetics have often not considered alignments 
of variable sizes. However, Suvorov et al. (2020) used padding to 
accommodate simulated alignments that vary in length due to indels; 
since their model was only applicable to quartets, it did not consider 
variation in the number of taxa. Similarly, Wang et al. (2023) used a 
sliding window approach to accommodate variable alignment lengths. 
Approaches that rely on summary statistics can generally accommodate 
variable alignment lengths and numbers of taxa, as long as the statistics 
themselves do not change in dimensionality (Abadi et al., 2020; 
Burgstaller-Muehlbacher et al., 2023). Alternatively, Nesterenko et al. 
(2022) accommodated variable input sizes in Phyloformer through a 
carefully designed network, rather than through any manipulation of 
the input data. Moving forward, designing machine learning approaches 
that can be applied to alignments varying in size should be a central 
goal. To facilitate the reuse of networks in new empirical systems, 
techniques from transfer learning could also be used. Specifically, su
pervised transfer learning can be useful when limited training data are 
available from a new domain. For example, a network that has already 
been trained on data from one domain can be reused in a related, but 
distinct, domain. Supervised transfer learning and limited simulations in 

the new domain can be used to generate a robust network with reduced 
computational expenses compared to training the network from scratch. 
Combined, these approaches may facilitate more efficient uses of su
pervised machine learning in phylogenetic contexts. 

Another major consideration is how to encode input data. Most 
commonly, encoded alignments (Zou et al., 2020; Suvorov et al., 2020; 
Suvorov and Schrider, 2022), or summary statistics (Abadi et al., 2020; 
Burgstaller-Muehlbacher et al., 2023) have been used as input. When 
using encoded alignments, a primary challenge is scalability to longer 
alignments or more taxa. This is especially pertinent as available 
genomic data continues to grow. Encoded alignments can also pose 
challenges to network reusability, as discussed above. Alternatively, the 
input can be represented with summary statistics that are explanatory 
features drawn from alignments and trees for the task at hand. However, 
selecting a good set of features relies on prior knowledge, and the choice 
of statistics can heavily impact inference. Alternative strategies for 
representing alignments have been proposed, using attention mecha
nisms (Rao et al., 2021; Nesterenko et al., 2022; Burgstaller- 
Muehlbacher et al., 2023) or language models (Lupo et al., 2022). 
Such approaches can lead to networks that can accept variable input 
sizes, and are capable of incorporating relationships among sites and 
lineages simultaneously. It is also essential to develop a suitable repre
sentation for phylogenetic trees. Several efforts in this direction have 
been made, from explanatory summary statistics (Voznica et al., 2022), 
to embeddings such as the CBLV (Voznica et al., 2022), to graphical 
representations in GNNs (Lajaaiti et al., 2023). While early uses are 
promising, these encodings have only been explored for a small set of 
inferential tasks, and it is unclear which encodings will prove most 
useful over a wider range of questions. 

The promise of supervised machine learning is to efficiently consider 
a wide range of the complex processes that complicate phylogenetic 
inference. To date, most machine learning approaches for tree inference 
have largely not addressed heterogeneity introduced by incomplete 
lineage sorting (ILS), gene duplication and loss, and introgression 
(though several exceptions have been described here). While standard 
phylogenetic approaches also have trouble modeling this heterogeneity, 
machine learning shows potential to include multiple of these processes 
at once. For example, if machine learning approaches can be used to 
more accurately infer quartet frequencies in the presence of these pro
cesses (as demonstrated in the case of ILS by (Rosenzweig et al., 2022; 
Zhang et al., 2023)) then the accuracy of phylogenetic trees could be 
improved. Moving forward, we expect that creative network architec
tures, data encodings, and task designs will facilitate the use of machine 
learning to improve phylogenetic inferences in the presence of complex 
processes that cannot be accommodated by standard approaches. 
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Haag, J., Höhler, D., Bettisworth, B., Stamatakis, A., 2022. From easy to 
hopeless—predicting the difficulty of phylogenetic analyses. Mol. Biol. Evol. 39 (12), 
msac254. 

Hibbins, M.S., Hahn, M.W., 2022. Distinguishing between histories of speciation and 
introgression using genomic data. bioRxiv, doi: 10.1101/2022.09.07.506990. 

Huelsenbeck, J., Hillis, D., 1993. Success of phylogenetic methods in the four-taxon case. 
Syst. Biol. 42 (3), 247–264. 

Jiang, Y., Blaban, M., Zhu, Q., Mirarab, S., 2023. DEPP: Deep learning enables extending 
species trees using single genes. Syst. Biol. 72 (1), 17–34. 

Jumper, J., et al., 2021. Highly accurate protein structure prediction with AlphaFold. 
Nature 596 (7873), 583–589. 

Kapli, P., Yang, Z., Telford, M.J., 2020. Phylogenetic tree building in the genomic age. 
Nat. Rev. Genet. 21 (7), 428–444. 

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2017. ImageNet classification with deep 
convolutional neural networks. Commun. ACM 60 (6), 84–90. 

Lajaaiti, I., Lambert, S., Voznica, J., Morlon, H., Hartig, F., 2023. A comparison of deep 
learning architectures for inferring parameters of diversification models from extant 
phylogenies. bioRxiv, doi: 10.1101/2023.03.03.530992. 

Lambert, S., Voznica, J., Morlon, H., 2023. Deep learning from phylogenies for 
diversification analyses. Syst. Biol. 72 (6), 1262–1279. 

Leuchtenberger, A.F., Crotty, S.M., Drucks, T., Schmidt, H.A., Burgstaller- 
Muehlbacher, S., von Haeseler, A., 2020. Distinguishing Felsenstein zone from Farris 
zone using neural networks. Mol. Biol. Evol. 37 (12), 3632–3641. 

Leuchtenberger, A.F., von Haeseler, A., 2024. Learning from an artificial neural network 
in phylogenetics. IEEE/ACM Trans. Comput. Biol. Bioinf. https://doi.org/10.1109/ 
TCBB.2024.3352268. 

Liu, L., Edwards, S.V., 2009. Phylogenetic analysis in the anomaly zone. Syst. Biol. 58 
(4), 452–460. 

Lupo, U., Sgarbossa, D., Bitbol, A.-F., 2022. Protein language models trained on multiple 
sequence alignments learn phylogenetic relationships. Nat. Commun. 13 (1), 6298. 

Maddison, W., 1997. Gene trees in species trees. Syst. Biol. 46 (3), 523–536. 
Mendes, F.K., Hahn, M.W., 2018. Why concatenation fails near the anomaly zone. Syst. 

Biol. 67 (1), 158–169. 
Minh, B., Schmidt, H., Chernomor, O., Schrempf, D., Woodhams, M., von Haeseler, A., 

Lanfear, R., 2020. IQ-TREE 2: New models and efficient methods for phylogenetic 
inference in the genomic era. Mol. Biol. Evol. 37 (5), 1530–1534. 

Mirarab, S., Warnow, T., 2015. ASTRAL-II: coalescent-based species tree estimation with 
many hundreds of taxa and thousands of genes. Bioinformatics 31 (12), i44–i52. 

Mo, Z., Siepel, A., 2024. Domain-adaptive neural networks improve supervised machine 
learning based on simulated population genetic data. PLOS Genet. 19 (11), 
e1011032. 

Nesterenko, L., Boussau, B., Jacob, L., 2022. Phyloformer: towards fast and accurate 
phylogeny estimation with self-attention networks. bioRxiv, doi: 10.1101/ 
2022.06.24.496975. 

Rao, R.M., et al., 2021. MSA transformer. In: In International Conference on Machine 
Learning. PMLR, pp. 8844–8856. 

Ray, D.D., Flagel, L., & Schrider, D.R. (2023). IntroUNET: identifying introgressed alleles 
via semantic segmentation. bioRxiv, doi: 10.1101/2023.02.07.527435. 

Reaz, R., Bayzid, M.S., Rahman, M.S., 2014. Accurate phylogenetic tree reconstruction 
from quartets: A heuristic approach. PLOS ONE 9 (8), e104008. 

Roch, S., 2006. A short proof that phylogenetic tree reconstruction by maximum 
likelihood is hard. IEEE/ACM Trans. Comput. Biol. Bioinf. 3 (1), 92–94. 

Rosenzweig, B.K., Kern, A.D., Hahn, M.W., 2022. Accurate detection of incomplete 
lineage sorting via supervised machine learning. bioRxiv, doi: 10.1101/ 
2022.11.09.515828. 

Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing 
phylogenetic trees. Mol. Biol. Evol. 4 (4), 406–425. 

Sanchez, T., Cury, J., Charpiat, G., Jay, F., 2021. Deep learning for population size 
history inference: Design, comparison and combination with approximate Bayesian 
computation. Mol. Ecol. Resour. 21 (8), 2645–2660. 

Sanderson, M.J., 2002. Estimating absolute rates of molecular evolution and divergence 
times: a penalized likelihood approach. Mol. Biol. Evol. 19 (1), 101–109. 

Schrider, D.R., Ayroles, J., Matute, D.R., Kern, A.D., 2018. Supervised machine learning 
reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia. PLoS 
Genet. 14 (4), e1007341. 

Schrider, D.R., Kern, A.D., 2018. Supervised machine learning for population genetics: a 
new paradigm. Trends Genet. 34 (4), 301–312. 

Scornavacca, C., Delsuc, F., Galtier, N., 2020. Phylogenomics in the genomic era. Open 
access book, https://hal.inria.fr/PGE. 

Siddall, M., 1998. Success of parsimony in the four-taxon case: long-branch repulsion by 
likelihood in the Farris zone. Cladistics 14 (3), 209–220. 

Smith, M.L., Hahn, M.W., 2023. Phylogenetic inference using generative adversarial 
networks. Bioinformatics 39 (9), btad543. 

Snir, S., Satish, R., 2012. Quartet MaxCut: A fast algorithm for amalgamating quartet 
trees. Mol. Phylogenet. Evol. 62 (1), 1–8. 
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