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Little is known about the genetic changes that distinguish 
domestic cat populations from their wild progenitors. Here we 
describe a high-quality domestic cat reference genome assembly 
and comparative inferences made with other cat breeds, wildcats, 
and other mammals. Based upon these comparisons, we identified 
positively selected genes enriched for genes involved in lipid 
metabolism that underpin adaptations to a hypercarnivorous diet. 
We also found positive selection signals within genes underlying 
sensory processes, especially those affecting vision and hearing in the 
carnivore lineage. We observed an evolutionary tradeoff between 
functional olfactory and vomeronasal receptor gene repertoires in the 
cat and dog genomes, with an expansion of the feline chemosensory 
system for detecting pheromones at the expense of odorant de-
tection. Genomic regions harboring signatures of natural selection 
that distinguish domestic cats from their wild congeners are enriched 
in neural crest-related genes associated with behavior and reward in 
mouse models, as predicted by the domestication syndrome hypoth-
esis. Our description of a previously unidentified allele for the gloving 
pigmentation pattern found in the Birman breed supports the hy-
pothesis that cat breeds experienced strong selection on specific 
mutations drawn from random bred populations. Collectively, these 
findings provide insight into how the process of domestication altered 
the ancestral wildcat genome and build a resource for future disease 
mapping and phylogenomic studies across all members of the Felidae. 

Felis catus | domestication | genome 

The domestic cat (Felis silvestris catus) is a popular pet species,
with as many as 600 million individuals worldwide (1). Cats 

and other members of Carnivora last shared a common ancestor 
with humans ∼92 million years ago (2, 3). The cat family Felidae 
includes ∼38 species that are widely distributed across the world, 
inhabiting diverse ecological niches that have resulted in di-
vergent morphological and behavioral adaptations (4). The 
earliest archaeological evidence for human coexistence with cats 
dates to ∼9.5 kya in Cyprus and ∼5 kya in central China (5, 6), 
during periods when human populations adopted more agricul-
tural lifestyles. Given their sustained beneficial role surrounding 
vermin control since the human transition to agriculture, any 
selective forces acting on cats may have been minimal sub-
sequent to their domestication. Unlike many other domesticated 
mammals bred for food, herding, hunting, or security, most of 
the 30–40 cat breeds originated recently, within the past 150 y, 
largely due to selection for aesthetic rather than functional traits. 

Previous studies have assessed breed differentiation (6, 7), 
phylogenetic origins of the domestic cat (8), and the extent of 
recent introgression between domestic cats and wildcats (9, 10). 
However, little is known regarding the impact of the domesti-
cation process within the genomes of modern cats and how this 
compares with genetic changes accompanying selection identified in 
other domesticated companion animal species. Here we describe, to 
our knowledge, the first high-quality annotation of the complete 
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We present highlights of the first complete domestic cat reference 
genome, to our knowledge. We provide evolutionary assessments 
of the feline protein-coding genome, population genetic discoveries 
surrounding domestication, and a resource of domestic cat genetic 
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gating genetic variation in pigmentation phenotypes has reached 
fixation within a single breed, and also highlight the genomic dif-
ferences between domestic cats and wildcats. Specifically, the sig-
natures of selection in the domestic cat genome are linked to genes 
associated with gene knockout models affecting memory, fear-
conditioning behavior, and stimulus-reward learning, and poten-
tially point to the processes by which cats became domesticated. 
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domestic cat genome and a comparative genomic analysis including 
whole-genome sequences from other felids and mammals to identify 
the molecular footprints of the domestication process within cats. 

Results and Discussion 
To identify molecular signatures underlying felid phenotypic inno-
vations, we developed a higher-quality reference assembly for the 
domestic cat genome using whole-genome shotgun sequences 
(Materials and Methods and SI Materials and Methods). The as-
sembly (FelCat5) comprises 2.35 gigabases (Gb) assigned to all 18 
autosomes and the X chromosome relying on physical and linkage 
maps (11) with a further 11 megabases (Mb) in unplaced scaffolds. 
The assembly is represented by an N50 contig length of 20.6 kb and 
a scaffold N50 of 4.7 Mb, both of which show substantial im-
provement over previous light-coverage genome survey sequences 
that included only 60% of the genome (12, 13). The Felis catus 
genome is predicted to contain 19,493 protein-coding genes and 
1,855 noncoding RNAs, similar to dog (14). Hundreds of feline 
traits and disease pathologies (15) offer novel opportunities to ex-
plore the genetic basis of simple and complex traits, host suscepti-
bility to infectious diseases, as well as the distinctive genetic changes 
accompanying the evolution of carnivorans from other mammals. 

To identify signatures of natural selection along the lineages 
leading to the domestic cat, we identified rates of evolution using 
genome-wide analyses of the ratio of divergence at nonsynonymous 
and synonymous sites (dN/dS) (16)  (Materials and Methods and 
SI Materials and Methods). We used the annotated gene set (19,493 
protein-coding genes) to compare unambiguous mammalian gene 
orthologs shared between cat, tiger, dog, cow, and human (n = 10,317). 
Two-branch and branch-site models (17) collectively identified 467, 
331, and 281 genes that were putatively shaped by positive selection 
in the carnivore, felid, and domestic cat (subfamily Felinae) an-
cestral lineages, respectively (S1.1–S1.3 in Dataset S1). We assessed 
the potential impact of amino acid changes using TreeSAAP (18) 
and PROVEAN (19). The majority of identified genes possess 
substitutions with significant predicted structural or biochemical 
effects based on one or both tests  (Fig. S1 and S1.4 in Dataset S1). 
Although the inferences produced by our methods call for addi-
tional functional analyses, we highlight several positively selected 
genes to illustrate their importance to carnivore and feline biology. 
Carnivores are endowed with extremely acute sensory adap-

tations, allowing them to effectively locate potential prey before 
being discovered (20). Within carnivores, cats have the broadest 
hearing range, allowing them to detect both ultrasonic commu-
nication by prey as well as their movement (21). We identified six 
positively selected genes (Fig. 1) that conceivably evolved to 
increase auditory acuity over a wider range of frequencies in the 
carnivore ancestor and within Felidae, as mutations within each 
gene have been associated with autosomal, nonsyndromic deaf-
ness or hearing loss (22, 23). Visual acuity is adaptive for hunting 
and catching prey, especially for crepuscular predators such as 
the cat and other carnivores. Accordingly, we identified elevated 
dN/dS values for 20 carnivoran genes that, when mutated in 
humans, have well-described roles in a spectrum of visual pa-
thologies (Fig. 1). For example, truncating mutations in human 
CHM cause the progressive disease choroideremia (24), begin-
ning with a loss of night vision and peripheral vision and later 
a loss of central vision. Many carnivores have excellent night 
vision (20, 25), and we postulate that the acquisition of selec-
tively advantageous amino acid substitutions within several genes 
increased visual acuity under low-light conditions. In one in-
teresting dual-role example, MYO7A encodes a protein involved 
in the maintenance of both auditory and visual systems that, 
when mutated, results in loss of hearing and vision (26). 
Cats differ from most other carnivores as a result of being ob-

ligately carnivorous. One outcome of this adaptive process is that 
cats are unable to synthesize certain essential fatty acids, spe-
cifically arachidonic acid, due to low Delta-6-desaturase activity 
(27). This has led to suggestions that cats use an alternate (yet 
unknown) pathway to generate this essential fatty acid for normal 
health and reproduction. Furthermore, cats fed a diet rich in 

saturated and polyunsaturated fatty acids showed no effects on 
plasma lipid concentrations that in humans are risk factors for 
coronary heart disease and atherosclerosis (28). These aspects of 
feline biology are reflected in our positive selection results, where 
the notable classes of genes overrepresented in the Felinae list 

Fig. 1. Dynamic evolution of feline sensory repertoires (Upper). The phy-
logenetic tree depicts relationships scaled to time between dog, tiger, and 
domestic cat. Positively selected genes are listed (Top Right), with lines in-
dicating genes identified on the ancestral branch of Carnivora (Top), Felidae 
(Middle), and Felinae (Bottom). Genes highlighted in red and orange were 
identified with significant structural or biochemical effects by two tests or one 
test, respectively (S1.4 in Dataset S1). MYO7A (*) expression is associated 
with hearing and vision. Numbers at each tree node represent the recon-
structed ancestral functional olfactory receptor gene (Or) repertoire for carni-
vores and felids. Numbers labeling each branch are estimated Or gene gain 
(green) and loss (red). The pie charts refer to functional and nonfunctional 
(pseudogenic) vomeronasal (V1r; Top) and  Or (Bottom) gene repertoires, with 
circles drawn in proportion to the size of each gene repertoire. Or genes are 
depicted in blue (functional) and red (nonfunctional), and V1r genes are depic-
ted in green (functional) and yellow (nonfunctional). Beneath each pie chart are 
numbers of functional/nonfunctional/total genes identified in the current ge-
nome annotations of the three species. Bar graphs depict rates of Or gene gain 
and loss. Location of signatures of positive selection (Lower). Several genes en-
code members of the myosin gene family of mechanochemical proteins, with 
MYO15A notably under selection in all three branches tested. Curved lines 
represent the estimated dN/dS values (y axis) calculated in 90-bp sliding windows 
(step size of 18 bp) along the length of the gene alignment (x axis) for dog, cat, 
and tiger. Colored boxes indicate known functional domains. Arrowheads in-
dicate the location of positively selected amino acid sites based on the results of 
the branch-site test. Stars indicate deleterious mutations in the domestic cat 
(Materials and Methods). Motifs and domains include the IQ calmodulin-binding 
motif (IQ); the myosin tail homology 4 domain (MyTH4); the FERM domain 
(FERM); the SRC homology 3 domain (SH3); and the PDZ domain (PDZ). 
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are related to lipid metabolism (S1.5 in Dataset S1). For exam-
ple, one of the positively selected genes, ACOX2, is critical for 
metabolism of branch-chain fatty acids and has been suggested to 
regulate triglyceride levels (29), whereas mutations in PAFAH2 
have been associated with risk for coronary heart disease and is-
chemia (30). The enrichment of genes related to lipid metabolism 
is likely a signature of adaptation for accommodating the hyper-
carnivorous diet of felids (31), and mirrors similar signs of selection 
on lipid metabolic pathways in the genomes of polar bears (32). 
Gene duplication and gene loss events often play substantial 

roles in phenotypic differences between species. To identify 
protein families that rapidly evolved in the domestic cat, either 
by contraction or expansion, we examined gene family expansion 
along an established species tree (33) using tree orthology (34). 
Two extensive chemosensory gene families, coding for olfactory 
(Or) and vomeronasal (V1r) receptors, are responsible for small-
molecule detection of odorants and other chemicals for medi-
ating pheromone perception, respectively. Cats rely less on smell 
to hunt and locate prey in comparison with dogs, which are well-
known for their olfactory prowess (35). These observations are 
confirmed by our analysis of the complete Or gene repertoires for 
cat, tiger, and dog (Fig. 1), illustrating smaller functional reper-
toires in felids relative to dogs (∼700 genes versus >800, respec-
tively). By contrast, the V1r gene repertoire is markedly reduced 
in dogs but expanded in the ancestor of the cat family (8 versus 
21 functional genes, respectively), with evidence for species-specific 
gene loss in different felids (Fig. 1 and Figs. S2 and S3). A growing 
body of evidence cataloging Or gene repertoires in diverse mammals 
demonstrates common tradeoffs between functional Or reper-
toire size and other sensory systems involved in ecological niche 
specialization, such as loss of Or genes coinciding with gains in 
trichromatic color vision in primates (36) and chemosensation in 
platypus (37). These results add further evidence supporting cats’ 
extensive reliance on pheromones for sociochemical communi-
cation (38), which is consistent with a genomic tradeoff between 
functional Or and V1r repertoires in response to uniquely evolved 
ecological strategies in the canid and felid lineages (4). 
Cats are considered only a semidomesticated species, because 

many populations are not isolated from wildcats and humans do 
not control their food supply or breeding (39, 40). We therefore 
predicted a relatively modest effect of domestication on the cat 
genome based on recent divergence from and ongoing admixture 
with wildcats (8–10), a relatively short human cohabitation time 

compared with dogs (5, 6), and the lack of clear morphological 
and behavioral differences from wildcats, with docility, gracility, and 
pigmentation being the exceptions. To identify genomic regions 
showing signatures of selection influenced by the domestication 
process, we used whole-genome analyses of cats from different 
domestic breeds and wildcats (i.e., other F. silvestris subspecies) using 
pooling methods that control for genetic drift (41). Detecting the 
genomic regions under putative selection during cat domestica-
tion can be complicated by random fixation due to genetic drift 
during the formation of breeds. We mitigated this effect by com-
bining sequence data from a collection of 22 cats (∼58× coverage) 
from six phylogenetically and geographically dispersed domestic 
breeds (42) before variant detection and performed selection 
analyses relative to variants detected within a pool of European 
(F. silvestris silvestris) and  Near  Eastern (F. silvestris lybica) 
wildcats (∼7× coverage; Figs. S4 and S5 and S2.1 in Dataset S2). 
After stringent filtering of resequencing data, we aligned sequen-

ces to the cat reference genome and identified 8,676,486 and 
5,190,430 high-quality single-nucleotide variants (SNVs) among 
domestic breeds and wildcats, respectively, at a total of 10,975,197 
sites (Fig. S3). We next identified 130 regions along cat autosomes 
with either pooled heterozygosity (Hp) 4 SDs below the mean or 
divergence (FST) greater than 4 SDs from the mean (Figs. S4 and 
S6, SI Materials and Methods, and S2.2 and S2.3 in Dataset S2). 
After parsing regions of high confidence displaying both low 
domestic Hp and high FST, we found 13 genes underlying five 
chromosomal regions (Fig. 2, Fig. S4, and S2.4 in Dataset S2). 
Genes within each of these regions play important roles in neural 
processes, notably pathways related to synaptic circuitry that in-
fluence behavior and contextual clues related to reward. 
One putative region of selection along chromosome A1 

(chrA1) (Fig. 3) is denoted by a pair of protocadherin genes 
(PCDHA1 and PCDHB4), which establish and maintain specific 
neuronal connections and have implications for synaptic speci-
ficity, serotonergic innervation of the brain, and fear condition-
ing (43). PCDHB4 was also identified in the dN/dS analyses. A 
second region, also on chrA1 (Fig. 3), overlaps with a glutamate 
receptor gene, GRIA1. Glutamate receptors are the predominant 
excitatory neurotransmitter receptors in the mammalian brain and 
play an important role in the expression of long-term potenti-
ation and memory formation (44). GRIA1 knockout mice ex-
hibit defects in stimulus-reward learning, notably those related 
to food rewards (45). Two additional glutamate receptor genes, 

Fig. 2. Sliding window analyses identify five regions of putative selection in the domestic cat genome. Measurements of Z-transformed pooled heterozy-
gosity in cat [inner plot; Z(Hp)] and the Z-transformed fixation index between pooled domestic cat and pooled wildcat [outer plot; Z(FST)] for autosomal 100-kb 
windows across all 18 autosomes (Left). Red points indicate windows that passed the threshold for elevated divergence [>4 Z(FST)] or low diversity [<4 Z(HP)]. 
The five regions of putative selection are represented by the straight lines and include contiguous windows that passed both thresholds for elevated 
divergence and low diversity (Right). These regions, across cat autosomes A1, B3, and D3, contain 12 known genes. 

17232 | www.pnas.org/cgi/doi/10.1073/pnas.1410083111 Montague et al. 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410083111/-/DCSupplemental/pnas.1410083111.sd01.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410083111/-/DCSupplemental/pnas.201410083SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410083111/-/DCSupplemental/pnas.201410083SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410083111/-/DCSupplemental/pnas.201410083SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410083111/-/DCSupplemental/pnas.201410083SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410083111/-/DCSupplemental/pnas.1410083111.sd02.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410083111/-/DCSupplemental/pnas.201410083SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410083111/-/DCSupplemental/pnas.201410083SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410083111/-/DCSupplemental/pnas.201410083SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410083111/-/DCSupplemental/pnas.201410083SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410083111/-/DCSupplemental/pnas.1410083111.sd02.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410083111/-/DCSupplemental/pnas.201410083SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410083111/-/DCSupplemental/pnas.1410083111.sd02.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1410083111


GRIA2 and NPFFR2, have elevated  dN/dS rates within the domestic 
cat branch of the felid tree (Fig. 1). A third region on chromosome 
D3 (Fig. 3) encompasses a single gene, DCC, encoding the netrin 
receptor. This gene shows abundant expression in dopaminergic 
neurons, and behavioral studies of DCC-deficient mice show altered 
dopaminergic system organization, culminating in impaired memory, 
behavior, and reward responses (46, 47). Two additional regions on 
chromosome B3 harbor strong signatures of selection (Fig. S7). The 
first contains three genes, including ARID3B (AT rich interactive 
domain 3B), which plays a critical role in neural crest cell survival 
(48). The second region contains a single gene, PLEKHH1, which  
encodes a plekstrin homology domain expressed predominantly in 
human brain. Human genome-wide association studies link variants 
in PLEKHH1 with sphingolipid concentrations that, when altered, 
lead to neurological and psychiatric disease (49). 
The genetic signals from this analysis fall in line with the pre-

dictions of the domestication syndrome hypothesis (50), which 
posits that the morphological and physiological traits modified by 
mammalian domestication are explained by direct and indirect 
consequences of mild neural crest cell deficits during embryonic 
development. ARID3B, DCC, PLEKHH1, and protocadherins are 
all implicated in neural crest cell migration. ARID3B is induced in 
developing mouse embryos during the differentiation of neural crest 
cells to mature sympathetic ganglia cells (51). DCC directly interacts 
with the Myosin Tail Homology 4 (MyTH4) domain of MYO10 
(myosin X) (52), a gene critical for the migratory ability of neural 
crest cells. In this way, DCC regulates the function of MYO10 to 
stimulate the formation and elongation of axons and cranial 
neural crest cells in developing mouse (53) and frog embryos (54). 
Like MYO10, PLEKHH1 contains a MyTH4 domain and interacts 
with the transcription factor MYC, a regulator of neural crest cells, 
to activate transcription of growth-related genes (55). Taken to-
gether, we propose that changes in these neural crest-related genes 
underlie the evolution of tameness during cat domestication, in 
agreement with analyses of other domesticated genomes (56–58). 

We also examined regions of high genetic differentiation between 
domestic cats and wildcats and observed enrichment in several 
Wiki and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways (S2.5 in Dataset S2), including homologous recombination 

and axon guidance. Divergence in regions harboring homologous 
recombination genes (RAD51B, ZFYVE26, BRCA2) may con-
tribute to the high recombination rate reported for domestic cats 
relative to other mammals (59). Previous studies have suggested that 
domestication may select for an increase in recombination as 
a mechanism to generate diversity (60). Specifically, selection for 
a recombination driver allele may be favored when it is tightly 
linked to two or more genes with alleles under selection (61). We 
hypothesize that the close proximity (<350 kb) of two adjacent genes 
that regulate homologous recombination (ZFYVE26 and RAD51B, 
which directly interact with BRCA2), two visual genes (RDH11 
and RDH12) related to retinol metabolism and dark adaptation 
(62), and one of our candidate domestication genes, PLEKHH1 
(S2.4 in Dataset S2), represents such a case of adaptive linkage. 
Aesthetic qualities such as hair color, texture, and pattern 

strongly differentiate wildcats from domesticated populations 
and breeds; however, unlike other domesticated species, less 
than 30–40 genetically distinct breeds exist (63). At the beginning 
of the cat fancy ∼200 y ago, only five different cat “breeds” were 
recognized, with each being akin to geographical isolates (64). 
Long hair and the Siamese coloration of “points” were the only 
diagnostic breed characteristics. Although most breeds were 
developed recently, following different breeding strategies and 
selection pressures, much of the color variation in cats developed 
during domestication, before breed development, and thus is 
known as “natural” or “ancient” mutations by cat fanciers. 
White-spotting phenotypes are a hallmark of domestication, and 

in cats can range from a complete lack of pigmentation (white) to 
intermediate bicolor spotting phenotypes (spotting) to white at only 
the extremities (gloving). For instance, the Birman breed is char-
acterized by point coloration, long hair, and gloving (Fig. 4). A 
recent study in several white-spotted cats localized the mutation 
responsible for the spotting pigmentation phenotype within KIT 
intron 1 (65). The KIT gene, located on cat chromosome B1 (66), is 
primarily involved in melanocyte migration, proliferation, and sur-
vival (67). Surprisingly, direct PCR and sequencing excluded the 
published dominant allele as being associated with the white col-
oration pattern in Birman (SI Materials and Methods). At the same 
time, whole-genome resequencing data from a pooled sample of 
Birman cats (n = 4; SI Materials and Methods and S2.6 in Dataset 
S2) identified the genomic region containing KIT as an outlier 
exhibiting unusually low genetic diversity (Fig. 4). We therefore 
resequenced KIT exons in a large cohort of domestic cats with 
various white-spotting phenotypes to genotype candidate SNVs 
(409 from 21 breeds, 5 Birman outcrosses, and 315 random bred 
cats). We identified just two adjacent missense mutations that were 
concordant with the gloving pattern in Birman cats (Fig. 4 and S2.7 
in Dataset S2). Genotyping these SNPs in a larger sample including 
150 Birman cats and 729 additional cats confirmed that all Birman 
cats were homozygous for both SNPs and that all first-generation 
outcrossed Birman cats with no gloving were carriers of the poly-
morphisms (S2.8 in Dataset S2). 
Several lines of evidence indicate that the gloving phenotype 

in the Birman breed is the result of these two recessive mutations 
in KIT. Both mutations affect the fourth Ig domain of KIT, and  
mutations in this motif near the dimerization site have been shown to 
result in accelerated ligand dissociation and reduced downstream 
signal transduction events (68). Interestingly, the frequency of the 
Birman gloving haplotype in the Ragdoll breed, which shares an ex-
tremely similar white-spotting phenotype, was only 12.3%. We sug-
gest that other genetic variants, including the endogenous retrovirus 
insertion in KIT intron 1 (65), likely contribute to the white-spotting 
phenotype in the Ragdoll breed. The frequency of the Birman gloving 
haplotype is just 10% in the random nonbreed population, thus il-
lustrating a case where segregating genetic variation in ancestral 
nonbred populations has reached fixation within Birman cats through 
strong artificial selection in a remarkably short time frame. 
In conclusion, our analyses have identified genetic signatures 

within feline genomes that match their unique biology and sensory 
skills. The number of genomic regions with strong signals of selec-
tion since cat domestication appears modest compared with those in 

Fig. 3. Comparison between domestic cats and wildcats identifying genes 
within putative regions of selection in the domestic cat genome that are 
associated with pathways related to synaptic circuitry and contextual clues 
related to reward. We identified 130 regions along cat autosomes with ei-
ther pooled domestic Z(Hp) < −4 or  Z(FST) > 4, and 5 annotated regions met 
both criteria. A total of 12 genes was found within these regions, many of 
which are implicated in neural processes; for instance, genes within regions 
along chromosomes A1 and D3 are highlighted. 
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the domestic dog (41), which is concordant with a more recent 
domestication history, the absence of strong selection for specific 
physical characteristics, as well as limited isolation from wild pop-
ulations. Our results suggest that selection for docility, as a result of 
becoming accustomed to humans for food rewards, was most likely 
the major force that altered the first domesticated cat genomes. 

Materials and Methods 
A female Abyssinian cat, named Cinnamon, served as the DNA source for all 
sequencing reads (12). From this source we generated ∼14× whole-genome 
shotgun coverage with Sanger and 454 technology. A BAC library was also 
constructed and all BACs were end-sequenced. We assembled the combined 
sequences using CABOG software (69) (SI Materials and Methods). 

We estimated nonsynonymous and synonymous substitution rates using 
the software PAML 4.0 (17). The following pipeline was used to perform 
genome-wide selection analyses. (i) We identified 10,317 sets of 1:1:1:1:1 
orthologs from the whole-genome annotations of human (GRCh37), cow 
(UMD3.1), dog (CanFam3.1), tiger (tigergenome.org), and domestic cat using 
the Ensembl pipeline (70). We tested for signatures of natural selection as-
suming the species tree topology (((cat, tiger), dog), cow, human). (ii) We  
aligned the translated amino acid sequence of the coding region of each 
gene using MAFFT (71) with the slow and most accurate parameter settings. 
A locally developed Perl script pipeline was applied that removed poorly 
aligned or incorrectly annotated amino acid residues caused by obvious 
gene annotation errors within the domestic cat and tiger genome assem-
blies. Aligned amino acid sequences were used for guiding nucleotide-
coding sequences by adding insertion gaps and removing poorly aligned 
regions. (iii) Model testing and likelihood ratio tests (LRTs) were performed 
using PAML 4.0. Paired models representing different hypotheses consisted 
of branch tests and branch-site tests (fixed ω = 1 vs. variable ω). For the 
branch-specific tests, free ratio vs. one-ratio tests were used to identify pu-
tatively positively selected genes. These genes were subsequently tested by 
two-ratio and one-ratio models to identify genes with significant positive 
selection of one branch versus all other branches (two-branch test). Signifi-
cance of LRT results used a threshold of P < 0.05. We also report the mean 
synonymous rates along the ancestral felid lineage as well as the tiger, cat, 
and dog lineages (Fig. S1). We assessed enrichment of gene functional 
clusters under positive natural selection using WebGestalt (72) (S1.5–S1.7 in 
Dataset S1). Entrez Gene IDs were input as gene symbols, with the organism 
of interest set to Homo sapiens using the genome as the reference set. 
Significant Gene Ontology categories (73), Pathway Commons categories 

(74), WikiPathways (75), and KEGG Pathways (76) were reported using 
a hypergeometric test, and the significance level was set at 0.05. We 
implemented the Benjamini and Hochberg multiple test adjustment (77) to 
control for false discovery. 

Using the whole-genome assembly of domestic cat (FelCat5) as a reference, 
we mapped Illumina raw sequences from a pool of four wildcat individuals 
[two European wildcats (F. s. silvestris) and two Eastern wildcats (F. s. lybica)]. Six 
additional domestic cat breeds from different worldwide regional populations 
were sequenced using the Illumina platform (SI Materials and Methods). Before 
sequencing, we pooled samples by breed for the following individuals: Maine 
Coon (n = 5), Norwegian Forest (n = 4), Birman (n = 4), Japanese Bobtail (n = 4), 
and Turkish Van (n = 4). Whole-genome sequencing was also performed on an 
Egyptian Mau cat (n = 1) and on the Abyssinian reference individual (n = 1). 

We combined the raw reads from the following breed sequencing experi-
ments (described above) before alignment and variant calling: Egyptian Mau, 
Maine Coon, Norwegian Forest, Birman, Japanese Bobtail, and Turkish Van. The 
domestic cat pool (n = 22) was sequenced to a genome coverage depth of ∼58-
fold, whereas the wildcat pool was sequenced to a depth of ∼7-fold (S2.1 in 
Dataset S2). Base position differences were called using the convergent out-
comes of the software SAMtools (78) and VarScan 2 (79). Parameters included 
a P value of 0.1, a map quality of 10, and parameters for filtering by false 
positives. A clustered variant filter was implemented to allow for a maximum 
of five variant sites in any 500-bp window. Variants were finally filtered using 
PoPoolation2 (80) to yield a high-confidence set of SNVs (n = 6,534,957; fil-
tering steps included a minimum coverage of 8, a minimum variant count of 6, 
a maximum coverage of 500 for the domestic cat pool, and a maximum cov-
erage of 200 for the wildcat pool). 

We screened for positively selected candidate genes during cat domesti-
cation by parsing specific 100-kb windows that showed low diversity [low 
pooled heterozygosity (Hp)] in domestic cat breeds and had high divergence [a 
high fixation index (FST)] between domestic cats and wildcats (41, 81). FST was 
calculated using PoPoolation2, and measurements of Hp were calculated using 
a custom script. A total of 6,534,957 high-quality SNV sites were used to cal-
culate FST and Hp at each 100-kb window, and a step size of 50 kb was in-
corporated. All windows containing less than 10 variant sites were removed 
from the analysis, resulting in n = 46,906 100-kb windows along cat auto-
somes, as represented in the FelCat5 assembly. We Z-transformed the auto-
somal Hp [Z(Hp)] and FST [Z(FST)] distributions and designated as putatively 
selected regions those that fell at least 4 SDs away from the mean [Z(Hp) < −4 
and Z(FST) > 4]. We applied a threshold of Z(Hp) ≤ −4 and  Z(FST) ≥ 4 for  putative  
selective sweeps, because windows below or above these thresholds represent 
the extreme lower and extreme upper ends of the respective distributions (Fig. 
S4). Windows with elevated FST or depressed Hp were annotated for gene 
content using the intersect tool in BEDTools (82). Enrichment analysis of un-
derlying gene content was carried out using WebGestalt (72) using the same 
methods as described above, except only significant WikiPathways (75) and 
KEGG Pathways (76) were reported (S2.5 and S2.10–S2.11 in Dataset S2). 

Primers to amplify KIT exons (ENSFCAG00000003112) were designed using 
Primer3Plus (83) and annealed to intronic regions flanking each exon. A PCR 
assay was performed to determine the presence or absence of the dominant, 
white-spotting retroviral insertion in KIT (65). An allele-specific PCR assay 
was designed for genotyping exon 6 SNPs (S2.9 in Dataset S2). See SI Materials 
and Methods for additional details. 
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