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SUMMARY Variation in gene expression may underlie 
many important evolutionary traits. However, it is not known 
at what stage in organismal development changes in gene 
expression are most likely to result in changes in phenotype. 
One widely held belief is that changes in early development 
are more likely to result in changes in downstream 
phenotypes. In order to discover how much genetic variation 
for transcript level is present in natural populations, we studied 
zygotic gene expression in nine inbred lines of Drosophila 
melanogaster at two time points in their development. We find 

abundant variation for transcript level both between lines 
and over time; close to half of all expressed genes show 
a significant line effect at either time point. We examine the 
contribution of maternally loaded genes to this variation, as 
well as the contribution of variation in upstream genes to 
variation in their downstream targets in two well-studied gene 
regulatory networks. Finally, we estimate the dimensionality of 
gene expression in these two networks and find thatFdespite 
large numbers of varying genesFthere appear to be only two 
factors controlling this variation. 

INTRODUCTION 

It has become increasingly evident that differences in gene 
expression underlie many phenotypic differences within and 
between species (reviewed in Raff 1996; Carroll et al. 2001; 
Davidson 2001; Wray et al. 2003). Microarray studies in mice 
(Karp et al. 2000; Schadt et al. 2003), humans (Schadt et al. 
2003), fish (Oleksiak et al. 2002), flies (Jin et al. 2001; Wayne 
et al. 2004), corn (Schadt et al. 2003), and yeast (Cavalieri 
et al. 2000; Brem et al. 2002) all indicate that genetic variation 
in transcript abundance is pervasive within populations. In 
addition, studies examining between-species variation in gene 
expression have also found abundant differences (e.g., Enard 
et al. 2002; Oleksiak et al. 2002; Rifkin et al. 2003; Nuzhdin 
et al. 2004). How this variation in transcript levels translates 
into phenotypes, however, still remains to be elucidated in a 
vast majority of cases (Wray et al. 2003). 

Two main questions on the relationship between geno-
type and phenotype at the level of gene expression stand out. 
First, at what stage in organismal development are changes 
in gene expression most likely to result in changes in phe-
notype? Although it has been thought for many years that 
changes in early development might play a large role in 
morphological changes (e.g., Gould 1977), no studies that we 
know of have examined genome-wide variation among in-
dividuals in transcript level during early embryonic/zygotic 
stages. Second, we wish to know how similar phenotypes are 

maintained when such a large number of genes vary in 
expression. For instance, surveys on adult Drosophila 
melanogaster have found that 10–25% of all genes show 
variation in transcript level among individuals within the 
species (Jin et al. 2001; Wayne et al. 2004), and that 
approximately 30% of all genes differ in transcript level from 
the almost morphologically indistiguishable sister species, 
Drosophila simulans (Michalak and Noor 2003; Meiklejohn 
et al. 2003; Nuzhdin et al. 2004). One possibility for this 
apparent stasis of observable phenotypes is that most differ-
ences in adult gene expression are simply noise, with no 
functional consequences; it may be that all the evolutionarily 
important differences are expressed before adult life stages. 

Another, perhaps more interesting, possibility is that the 
variation at any stage is structured such that those genes that 
vary act in concert rather than orthogonally to one another. If 
there are only a few dimensions along which all variations act, 
then the apparent glut of diversity may only translate at the 
phenotypic level into very few observable differences. The 
mechanisms by which early development proceedsFin which 
transcription factors bind to their targets in an orchestrated 
set of connectionsFmay underlie such a structured output. 
The gene regulatory networks (GRNs) for development 
specify the logic maps that control the connections between 
transcription factors and their targets (Levine and Davidson 
2005). Whereas previous studies of gene expression have 
considered variation at each gene individually, or in small 
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pathways of interacting genes (e.g., Tarone et al. 2005), our 
aim here is to show that GRNs can be used to reliably predict 
variation in a large set of interacting genes. 

In this article, we examine gene expression among nine 
inbred lines of D. melanogaster, at two time points in 
development. We show that there is abundant variation in 
transcript levels both among lines and over time across 
development. We examine the contribution that maternal and 
zygotic gene expression make to these differences, and com-

pare our results with previous work on gene expression during 
D. melanogaster development. We also show that the con-
nections in two GRNsFfor segmentation and dorsal–ventral 
patterningFcan be used to predict the relationship in gene 
expression between upstream and downstream genes. Finally, 
we show that this variation appears to act in two dimensions 
in both networks: one working to activate target genes and 
the other to repress them. 

MATERIALS AND METHODS 

The flies originated from the Wolfskill Orchard in Winters, CA. 
They were established by mating a single pair of progeny for each 
of nine gravid females sampled in nature. Each line was made 
inbred by at least 20 generations of full-sib mating. Flies were 
raised on standard cornmeal medium with yeast, with an excess 
amount of yeast added to the top of the vials to increase the body 
size of the females. The flies were kept at room temperature with 
normal day and night light cycles. Approximately 200 young, 
nonvirgin females were collected from each line and allowed to lay 
on 25% grape/3% agar plates supplied with yeast paste overnight, 
or approximately 18 h. They were then transferred onto fresh plates 
containing the same medium and allowed to lay for 1 h in a quiet, 
dark place. Consecutively, they were transferred to fresh plates 
three times more at 1-h intervals. Plates were washed with deion-
ized water to remove the embryos and filtered using coffee filters. 
After allowing 30–50 embryos per line develop for 5 h from laying 
(time point 1) or for 8 h (time point 2, one of the linesF127Fwas 
sampled 7 h after laying), the tubes were flash frozen using liquid 
nitrogen and stored at  201C in 50  ml of RNAlater (Ambion, 
Austin, TX, USA). Two RNA samples per line per time point (5 
and 8 h) were extracted using the manufacturer’s TRIzol reagent 
protocol (Invitrogen, Carlsbad, CA, USA). The concentrations of 
these samples were tested using a spectrophotometer and Na2HPO4 

spec solution. The 36 samples (9 lines  2 time points  2 samples) 
of extracted RNA were labeled using the one-cycle cDNA Syn-
thesis protocol from Affymetrix. cDNA was made from the ex-
tracted RNA by first making a T7-Oligo(dT) Primer Master Mix 
and allowing it incubate with the samples for 10 min at 701C and  
cooling for 2 min at 41C. A First-Strand Master Mix was added, 
and the samples were incubated for 2 min at 421C. After 200U/ml 
SuperScript II was added, the samples were incubated for an ad-
ditional hour at 421C and then cooled at 41C for 2 min. A Second-
Strand Master Mix was added to the samples and then they were 
incubated at 161C for 2 h and then cooled for 2 min at 41C. The 
samples were incubated for another 5 min at 161C after T4 DNA 
polymerase was added, the samples were cooled at 41C for  2  min,  

and 0.5 M EDTA was added. The now double-stranded cDNA was 
cleaned up using spin columns and 100% ethanol. An IVT reaction 
mix was added to the samples to synthesize biotin-labeled cRNA, 
and they were allowed to incubate at 371C overnight (approx-
imately 16 h). The newly biotin-labeled cRNA was cleaned up and 
quantified using a spectrophotometer. Sample purity was between 
1.96 and 1.7 (A260/A280). Fragmented samples were then stored at 
 201C until hybridizations. Hybridizations to the Affymetrix 
Drosophila 2.0 GeneChip microarray took place in the Microarray 
Core Facility at UC Davis. All raw data from the experiment were 
deposited in the GEO database (http://www.ncbi.nlm.nih.gov/geo/) 
under the series record GSE9982. 

The transcript levels were reconstructed from feature hybrid-
izations using ArrayAssist, with subsequent log and variance nor-
malization using the PLIER procedure (Therneau and Ballman 
2005). There was no evidence for spot saturation in any of the 
arrays and all analyses were conducted on unadjusted data. Inten-
sity values are weighted averages of the set of oligonucleotide 
probes for each gene. The data are available in supporting infor-
mation, Table S1. As a minority of the genes are expected to be 
expressed in 5–8 h-old embryos, the transcript-level data were 
purged of genes called Absent by the Affymetrix MAS5 procedure 
in more than half the samples, which left 5065 genes (shown in 
supporting information, Table S2). 

Downstream analyses of gene-level hybridization intensities 
were performed in SAS (SAS Institute, Cary, NC, USA) using proc 
GLM. Normalized transcript levels from the microarray hybrid-
izations were fit to the following model: Yijk 5 m1li1tj1eijk, where  
the parameter m is the overall mean transcript abundance for each 
gene, and the terms l and t stand for line (random) and time (fixed) 
effect (‘‘k’’ represents the replicate arrays). We did not include the 
line-by-time interaction term as only four observations are avail-
able in each of nine lines for a total of 36 microarrays. 

Factor analysis and factor loadings were estimated on mean-

centered data using an oblique rotation in FACTOR Proc (SAS 
Institute). Following FACTOR Proc guidelines, we used variables 
(including factors themselves) standardized to have a unit variance 
(in this case, standardized regression coefficients are equivalent to 
correlation coefficients). Specifically, we used the options method 5 
prin, priors 5 sms, rotate 5 promax. The resulting set of eigenvalues 
was plotted in a SCREE plot, and the number of factors was chosen 
such that a sharp drop-off between eigenvalues was apparent, and a 
reasonable proportion of the variation was still explained (Stevens 
1996). Once the number of factors was identified, the analysis was 
repeated for that fixed number of factors to estimate loading values 
(the correlation between individual genes and the estimated net-
work). Coffman et al. (2005) implemented extensive simulations to 
establish a sensible way to apply factor analyses to microarray data, 
which typically have rather few samples but many observations; we 
followed the general recommendations of this work. 

RESULTS AND DISCUSSION 

Variation in early embryo transcript levels 
We first examined the total number of genes showing signifi-
cant variation among lines of D. melanogaster in early zygotic 
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gene expression. Of the 5065 genes expressed in a majority of 
lines (see ‘‘Materials and methods’’), 3754 showed significant 
variation among lines across both time points at Po0.05 
(supporting information, Table S3). The expected number of 
significant genes at this threshold is 253, giving a false dis-
covery rate (FDR) of 0.07 (Benjamini and Hochberg 1995). 

If we examine variation in gene expression at each time 
point separately, we find 3084 genes with significant line 
effects at 5 h (Po0.05; FDR 5 0.08) and 2794 genes with sig-
nificant line effects at 8 h (Po0.05; FDR 5 0.09). There are 
1948 genes that show significant effects at both time points in 
development, which implies that the remaining genes only 
have genotypic variation in gene expression during some frac-
tion of Drosophila development. It is also possible that we 
have less power to detect line effects in these 1948 genes 
because the variance in expression changes over time; unfor-
tunately, we have too few samples to detect such changes. In 
addition, 1780 genes show significant time effects (FDR 5 
0.14), indicating that they differ in expression across the two 
time points of development. These changes involve both in-
creases and decreases in transcript level (see next section). 

Comparing our results with previous studies of gene ex-
pression in adult flies, we find evidence that there is more 
genetic variation in embryos than adults, and a larger effect of 
age on gene expression in embryos than adults. The earliest 
studies of genetic variation in D. melanogaster adults found 
evidence for an effect of genotype on 10–25% of all genes (Jin 
et al. 2001; Meiklejohn et al. 2003; Rifkin et al. 2003; Gibson 
et al. 2004), and an effect of age for only 1% of genes (Jin et 
al. 2001). We find that 74% (3754/5065) of all expressed genes 
show a significant genotypic effect. Likewise, 35% (1780/ 
5065) of expressed genes show a significant age effect across 
the two time points sampled here. We believe that our results 
are consistent with previous studies of embryonic gene 
expression in D. melanogaster. In a comprehensive study of 
gene expression in a single genotype across Drosophila 
development, Arbeitman et al. (2002) found that 86% 
(3483/4028) of genes showed significant variation over time; 
of these, 60% (2089/4028) appeared to vary across the first 
20 h of development. Together with the results presented here 
and those of Jin et al. (2001), this appears to indicate that 
fluctuating levels of gene expression are typical of early 
development and are relatively rare in adults. 

As our results show relatively more variation in gene ex-
pression than previous studies, it is unlikely that our results 
are due to an idiosyncratic experimental design or microarray 
platform: many of these studies in D. melanogaster have also 
used Affymetrix GeneChip arrays (e.g., Michalak and Noor 
2003; Nuzhdin et al. 2004; Wayne et al. 2004). Because only 
two replicates per line were used, it is possible that the vari-
ance has been misestimated. Likewise, our small number of 
replicates means that we cannot determine whether the vari-
ance is heteroskedastic over time. Either of these situations 

could lead to an overestimation of the number of significant 
results. However, our experimental design does not differ 
considerably from similar microarray experiments, and we 
therefore do not believe that our results are due solely to 
statistical error. Our results do indicate that there is abundant 
genetic variation for early gene expression. Extensive varia-
tion in early zygotic transcript levels implies that there is a 
large source of genetic variation on which evolution can act in 
early development. This variation may underlie many changes 
in morphology and behavior (e.g., Kim et al. 2000), and is 
predicted to be a major source of evolutionary novelty (Raff 
and Kaufman 1983). 

One question raised by our results is the source of vari-
ation in levels of transcription: that is, is it zygotic or mater-

nal? Many transcripts are maternally loaded into the egg 
during oogenesis, with either no direct zygotic expression or a 
gradual increase in zygotic expression as maternal transcripts 
turn over (Davidson 1986). Estimates put the proportion of 
maternally deposited genes as high as 30% (Arbeitman et al. 
2002). Maternal variation in either the production of these 
transcripts or in the loading of these transcripts can result in 
apparent variation in expression in the embryo; likewise, 
variation among embryos in rates of maternal mRNA turn-
over can result in varying transcript levels. Although all of this 
does not mean that the observed variation is not genetic, it 
does indicate the possibility that control of expression lies in 
adult flies. Even when genetic control of an individual gene’s 
expression lies with the embryo, however, it still does not 
indicate that the important source of variation is in the 
embryo. For instance, if nutrient deposition is genetically 
controlled by the mother, then it may be that the embryos we 
have collected have varying developmental rates and are 
therefore not developmentally synchronized. If developmental 
rates vary in a way that is somehow proportional to the 
amount of nutrient supplied, there will appear to be genetic 
variation in embryonic gene expression, even though the 
source of this genetic variation lies with the maternal parent. 
Such ‘‘molecular heterochrony’’ (cf. Kim et al. 2000) may 
underlie some significant fraction of variation in gene expres-
sion. With these caveats in mind, we still conclude that abun-
dant genetic variationFat least partially of zygotic originFis 
present for transcript levels during early development. 

Maternal and zygotic gene expression 
To further examine the interplay between maternal and zygo-
tic genes, as well as variation in expression between lines and 
over time, we directly compared our results with those of 
Arbeitman et al. (2002). These researchers defined five classes 
of genes: (1) changing during development; (2) strictly mater-

nal; (3) maternal; (4) strictly zygotic; and (5) zygotic. Those 
genes classified as ‘‘changing during development’’ showed 
variation over time in the first 20 h in their experiment 
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(n 5 2089); ‘‘strictly maternal’’ were strongly degraded after 
fertilization and did not reappear until female oogenesis 
(n 5 27); ‘‘maternal’’ genes showed gradual declines in tran-
script levels during development (n 5 49); ‘‘strictly zygotic’’ 
genes increased expression by at least 10-fold in the first 6.5 h 
of development (n 5 53); and ‘‘zygotic’’ showed gradual 
increases in transcript levels (n 5 532; Arbeitman et al. 2002). 

Overall, our data on expression variation over time were 
highly consistent with these previous findings (Table 1). For 
instance, we detected expression in 21 of the 27 ‘‘strictly 
maternal’’ genes on the Affymetrix array. As expected, 19 of 
the 21 significantly differ in transcript level between the 5- and 
8 h-old embryos, and every one of these genes declines in 
expression. For the ‘‘strictly zygotic’’ genes, 19 of the 22 
that showed differences in expression over time showed the 
expected increase in expression. However, three genes showed 
an unexpected pattern of decreased expression (Table 1), 
although this pattern is not significantly different from the 
expected (w2 5 1.4, P 5 0.23). There are even more previously 
defined ‘‘zygotic’’ genes that show decreases in expression 
over development in our experiment (38 of 176 expressed), a 
significant excess relative to the expectation that zygotic genes 
are all increasing in expression (w2 5 57.5, P 5 3.4  10 14). 
We attribute these and other similar deviations from expected 
patterns to genetic differences between our lines and those of 
Arbeitman and colleagues (however, inconsistencies among 
platforms are a persistent feature of microarray analyses 
[Yauk et al. 2004] that might also contribute to the differences 
we observe). Although genes that showed the most extreme 
changes in transcript levels in the previous experiment showed 
similar changes here, there was much more lability in those 
genes that showed only gradual, modest changes. These 
results imply that annotating the function of genes based on 
the transcriptional profile of a single genotype may often 

result in misannotation and incorrect functional assignment. 
As this is done quite often in many organisms and throughout 
‘‘systems biology’’ (e.g., Spellman et al. 1998), results from 
single-genotype experiments should be viewed with the 
appropriate amount of caution. 

Our data show a huge amount of genetic variation in 
expression for all five classes of genes (Table 1), although not 
all of this variation results in a reversal in the direction of 
transcript-level changes. Between 78% and 100% of all genes 
that have been classified as maternal or zygotic appear to 
differ in transcript level among our lines. There are minor 
differences in the proportion of genes with varying transcript 
levels between maternal and zygotic, with a higher proportion 
for ‘‘maternal’’ than ‘‘zygotic’’ as well as for ‘‘strictly mater-

nal’’ compared with ‘‘strictly zygotic’’ (Table 1). This differ-
ence in variation between maternal and zygotic genes has been 
predicted by some models because maternal effects are only 
expressed in a single sex (Demuth and Wade 2007), although 
the differences observed here are not close to the expected 2:1 
ratio (Barker et al. 2005). It is important to note that, overall, 
fewer genes are significantly different between time points 
than among lines. Accordingly, imperfect synchronization 
during egg collections cannot completely account for the 
among-line variation we observe (see Table 1). 

GRNs 
One major goal of studies into GRNs (Levine and Davidson 
2005) is to be able to describe variation in transcript levels in 
terms of the interactions between genes in the network (e.g., 
Tarone et al. 2005). In order to achieve this goal, however, we 
need data on both the structure of the network and on the 
genetic variation in gene transcript levels. Detailed knowledge 
of the GRNs for both Drosophila segmentation (Schroeder 

Table 1. Variation in gene expression 

Gene category 
Arbeitman 
et al. (2002) 

Found on Affymetrix  
microarray Expressed 

Varying 
among lines 

Varying 
over time Increasing Declining 

Changes during 
development 

2089 20651 1215 950 698 224 491 
(AST72) (ST4) (ST5) (ST6) (ST7) (ST8) (ST9) 

Strictly maternal 27 27 21 21 19 0 19 
(AST12) (ST10) (ST11) (ST12) (ST13) (ST14) 

Maternal 49 50 41 35 22 2 20 
(AST13) (ST15) (ST16) (ST17) (ST18) (ST19) (ST20) 

Strictly zygotic 53 57 29 25 22 19 3 
(AST19) (ST27) (ST28) (ST29) (ST30) (ST31) (ST32) 

Zygotic 532 514 176 141 127 89 38 
(AST18) (ST21) (ST22) (ST23) (ST24) (ST25) (ST26) 

1In a few instances, two different measurements per gene were obtained from Affymetrix slides, causing slight mismatches of numbers in the table 
(for instance, Arbeitman et al. [2002] detected 53 strictly zygotic genes, which on Affymetrix microarray are represented by 57 probes). We retained all of 
them in this table (all the data can be downloaded from supporting information tables). 

2AST stands for supporting information table in Arbeitman et al. [2002] and ST is for the supporting information table in this article. 
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et al. 2004) and dorsal–ventral patterning (Levine and 
Davidson 2005) provides us with much of the information 
needed to mechanistically describe variance–covariance pat-
terns in transcription. These patterns can then be used to 
validate individual protein–DNA interactions that represent 
‘‘cis-regulatory transactions’’ inferred to be present in the 
GRN via other means (Levine and Davidson 2005). 

Embryonic segmentation is an outcome of the maternal 
gradient genesFbicoid (bcd), hunchback (hb), caudal (cad), 
Torso (Tor), and Stat92E (D-Stat)Faffecting downstream 
gap factorsFKruppel (Kr), knirps (kni), giant (gt), and tailless 
(tll) (Carroll 1990; Rivera-Pomar and Jackle 1996). Crossreg-
ulation among these genes establishes their patterns of spatial 
and temporal expression, as well as those of their downstream 
targets. Both computational and experimental results have 
linked these upstream genes to target genes at later stages in 
the segmentation GRN (Schroeder et al. 2004). We hypoth-
esized that variation in the transcript abundance of upstream 
genes should result in variation in the transcript abundance of 
downstream targets of these genes. For instance, the even 
skipped (eve) stripe 1  cis-regulatory module is strongly bound 
by bcd and Kr in one of the regions of the embryo, and is also 
more weakly bound by hb and gt in another region. This 
implies transcriptional control of eve by bcd and Kr. To test  
this relationship, we regressed the transcript level of eve 
(predicted variable) on the transcript levels of bcd and Kr 
(predictor variables). We developed this and other regression 
models for the segmentation GRN in exact accordance with 
fig. 4 from Schroeder et al. (2004). We omitted genes for 
which evidence of among-line variation is missing. 

We were able to construct 34 separate regression models 
describing the relationships between upstream effector genes 
and their downstream targets. A description of the full set of 
models and their overall fit to the data are summarized in 
supporting information, Table S33. Out of 34 models in 
total, 30 were significant at Po0.05, four of them at 
Po0.0001. The effects of upstream genes were both positive 
and negative; they therefore appear to act as both activators 
and repressors (see next section). We conclude that this anal-
ysis represents a compelling case of a high overall fit of the 
variance–covariance structure of transcript levels to the pat-
tern expected from previous molecular genetic experiments. 

The dorsal–ventral GRN is composed of nearly 60 genes 
(see fig. 2 in Levine and Davidson 2005). As we used a rather 
stringent cut-off for calling a gene ‘‘Expressed’’ (called present 
in more than half the samples), many of these genes did not 
meet this criterion (supporting information, Table S2). We 
therefore limited our analysis to a consecutive stretch of the 
GRN consisting of cactus (cact), dorsal (dl), easter  (ea), pelle 
(pll), spatzle (spz), tube (tub), snail (sna), stumps  (also called 
hbr), and twist (twi)Feach expressed and varying (see 
supporting information, Table S3). From the relationships 
among these genes, we were able to construct seven regression 

models (Fig. 1). Of the seven total models, five were signifi-
cant at Po0.05 and three of these were significant at Po0.01 
(Fig. 1). Random pairing of 1000 genes in our experiment 
shows that six of the seven models have correlations higher 
than expected (Po0.05). Although we are able to make fewer 
comparisons than in the segmentation GRN, our results also 
show a good concordance between the variance–covariance 
structure of the transcript level and the previous experimental 
evidence on the structure of the dorsal–ventral GRN. 

The dimensionality of variation 
Although encouraging, the above analyses perhaps do not 
fully capture the biological mechanisms underlying transcrip-
tional variation. Imagine, for example, that what really varies 
between  samples is a gradient  of  hb. Downstream, hb variation 
generates variation in hb targets; these in turn generate vari-
ation in their own downstream targets, ad infinitum. Accord-
ingly, a single factor might cascade down the GRN, resulting 
in numerous variance–covariance profiles all fitting seemingly 
different regression models. Described in more intuitive terms, 
we can say that transcriptional variation might have low 
dimensionality. To search for the number of dimensions 
potentially accounting for variation in multiple expression 
profiles, we used factor analysis (cf. Coffman et al. 2005). 

As applied to array data, factor analysis is an analytic 
approach that can describe the covariation among a set of 
genes through the estimation of factors (Coffman et al. 2005). 
Individual factors represent putative biological mechanisms 
by which genes are coregulated; in this case, they likely rep-
resent individual transcription factors. The factor model that 
results from such analyses represents a set of coordinately 
expressed genes (genes may participate in multiple factor 
models). Factor analysis represents the relationship between 
each gene and the factor as a load between  1 and  1,  where  
the value indicates the strength and direction of each factor’s 
influence on transcript levels. Following the recommendations 
of Coffman et al. (2005) for the analysis of microarray data, 
we initially limited our analyses to the upstream genes of the 
segmentation (Kr, D-Stat, bcd, cad, gt, hb, kni, tll, and  Tor) 
and dorsal–ventral (cact, dl, ea, pll, spz, tub, sna, stumps, and  
twi) GRNs.  

Fig. 1. Relationships between genes in the dorsal–ventral gene reg-
ulatory network. Each arrow represents a regression model, with 
upstream genes affecting their downstream targets based on the 
directionality of each arrow.  Po0.05,  Po0.01. 
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For the segmentation GRN, we retained two factors 
because their eigenvalues exceeded one, the appearance of the 
SCREE plot, and at least three different genes significantly 
loaded (40.4) on each factor (see ‘‘Materials and methods’’ 
and supporting information, Table S34). The two selected 
factors account for 85% of the total variance in transcript 
level. The loadings of genes on rotated factors are shown in 
Table 2. Generally, maternal genes load positively on Factor 2 
and negatively on Factor 1. Gap genes, in contrast, load 
negatively on Factor 2 but positively on Factor 1. That this 
split so closely resembles the previously defined roles of ma-

ternal and gap genes is an esthetically and scientifically pleas-
ing outcome of the analysis. It also authenticates the 
relationships between genes that have previously only been 
defined by computational means, or by empirical means in 
only a small number of genotypes. 

More specifically, maternal genes vary in two dimensions, 
with D-Stat, cad, and  Tor positively and highly significantly 
loading on Factor 2, and bcd and hb loading negatively and 
highly significantly on Factor 1. Gap genes appear to vary in 
a single dimension with high positive loading on Factor 1. It is 
tempting to speculate that genetic variation in these genes 
causes downstream variation in gap genes. We should point 
out, however, that correlation is not equivalent to causation. 
Two factors largely account for variation of the other seg-
mentation genes as well. Every single gene in the segmentation 
GRN (D, Btd, cnc, ems, eve, fkh, ftz, h, hkb, knrl, nub, oc, odd, 
pdm2, run, and slp2: see fig. 4 in Schroeder et al. 2004) is 
positively correlated with Factor 1, resembling the pattern for 
maternal genes and contrasting with the loadings of gap 
genes. For most of these relationships, the correlations are 
close to 1 and highly significant (with the exception of cnc: 
r 5 0.14, P 5 0.716, and nub: r 5 0.66, P 5 0.055). Similar to 
maternal genes, negative correlations are typical with Factor 2 
(supporting information, Table S35). These patterns remain 
robust if we analyze either of the time points alone, and the 
same general structure of factors is recovered when the differ-
ence in expression between time points is analyzed rather than 
the individual transcript levels at each (results not shown). 
We conclude that nearly all variation in transcript levels of 
segmentation genes is explained by two factors. 

Based on arguments identical to those for the segmenta-

tion GRN, two factors were retained for the dorsal–ventral 
GRN (supporting information, Table S36). These two factors 
account for 90% of among-line variation. The second factor 
nearly perfectly covaries with the ea gene, which is far up-
stream in the modeled portion of the network. The first factor 
is marked, again due to nearly perfect correlation, by the cact 
gene (Table 2). Most of the genes significantly load on this 
factor, but show negative correlations with cact. This is ex-

pected as cact is suppressed by pll, and is itself a suppressor of 
dl, although the true cause of these relationships is unknown. 
Overall, variation in the transcript levels of downstream 

genesFtwi, sna, and  stumpsFappears to be jointly accounted 
for by the two factors, with different strengths of effects for 
each. When the genes in the remaining dorsal–ventral GRN 
are correlated with the identified factors, most of the variation 
for most of genes is accounted for by the two factors (sup-
porting information, Table S37). 

Overall, we conclude that the variance–covariance struc-
ture of transcriptional variation fits reasonably well with 
the known hierarchical structure of GRNs. In addition, few 
dimensions of variation appear to account for most of 
the variation in transcript level. This result reaffirms many 
previous studies that have shown that maternal genes lie up-
stream of gap genes; it also shows that these genes may act as 
either activators or repressors. We do not think this confir-
mation should be surprising, although we have shown for the 
first time that the known mechanistic relationships are reca-
pitulated by patterns of genetic variation. One standard 
interpretation of our results finding a small number of factors 
for both the segmentation and the dorsal–ventral GRNs is 
that there may be just a few mutations controlling all of the 
downstream variation. This would imply that most of the 
variation in gene expression that we observe lies in trans-
acting factors, rather than many cis-acting changes in 
the varying genes; this contradicts some previous results in 
Drosophila (e.g., Wittkopp et al. 2004). An alternative inter-
pretation, however, is that the structure of the GRNs is such 
that even multiple cis-acting mutations acting throughout 
genes in the network would result in only a small number of 
factors. This would come about because the network strongly 
constrains the effects of each member gene; if each can only 
act locally as either an activator or a repressor, the emergent 
behavior of the network may resemble the action of only two 
factors. As we cannot distinguish between these two possibil-
ities at the moment, an answer will have to await further 
linkage studies (e.g., Wayne et al. 2004). 

Table 2. Factor analysis of expression variation 

Gene 
Loading on 
factor 1 

Loading on 
factor 2 Gene 

Loading on 
factor 1 

Loading on 
factor 2 

Kr 0.84   0.19 cact 1.04  0.16 
D-

Stat 
0.29 1.04  dl  0.88  0.15 

bcd  0.74  0.35 ea 0.30 1.06  

cad  0.38 0.72  pll  0.92   0.01 
gt 0.68   0.25 spz  0.70  0.38 
hb  0.94   0.40 tub  0.44  0.67  

kni 0.79   0.18 sna 0.64   0.42  

tll 0.84   0.19 stumps 0.24  0.81  

Tor  0.28 0.76  twi 0.99  0.12 

The genes from the segmentation network are on the left, those from 
the dorsal–ventral network on the right. 
 Significant correlations at Po0.05 are starred. 
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