:ISME

ARTICLE

www.nature.com/ismecomms

W) Check for updates

High-resolution phylogenetic and population genetic analysis
of microbial communities with RoC-ITS

Douglas B. Rusch

© The Author(s) 2022

™ Jie Huang', Chris Hemmerich' and Matthew W. Hahn'?*3

Microbial communities are inter-connected systems of incredible complexity and dynamism that play crucial roles in health, energy,
and the environment. To better understand microbial communities and how they respond to change, it is important to know which
microbes are present and their relative abundances at the greatest taxonomic resolution possible. Here, we describe a novel
protocol (RoC-ITS) that uses the single-molecule Nanopore sequencing platform to assay the composition of microbial communities
at the subspecies designation. Using rolling-circle amplification, this methodology produces long-read sequences from a circular
construct containing the complete 16S ribosomal gene and the neighboring internally transcribed spacer (ITS). These long reads
can be used to generate a high-fidelity circular consensus sequence. Generally, the ribosomal 16S gene provides phylogenetic
information down to the species-level, while the much less conserved ITS region contains strain-level information. When linked
together, this combination of markers allows for the identification of individual ribosomal units within a specific organism and the
assessment of their relative stoichiometry, as well as the ability to monitor subtle shifts in microbial community composition with a
single generic assay. We applied RoC-ITS to an artificial microbial community that was also sequenced using the lllumina platform,
to assess its accuracy in quantifying the relative abundance and identity of each species.
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INTRODUCTION

The bacterial ribosomal RNA operon (rrn) typically produces a
polycistronic precursor RNA containing the 5S, 16S, and 23S rRNA
genes along with an internal transcribed spacer (ITS) region [1].
While there are exceptional circumstances, for example with the
recent observation of 16S genes unlinked from the other
ribosomal genes [2], these cases are the exception rather than
the rule. After expression, the precursor RNA is cleaved by a
cascade of RNases to generate the individual gene products, and
the ITS region is degraded [3]. The individual genes produce key
RNA products that are involved in protein production and thus
these genes, or their homologs, are found in all free-living
organisms. Individual genomes may have one or more ribosomal
operons [4] and the presence of multiple rrn copies is thought to
allow cells to quickly respond to favorable growth conditions by
increasing growth rates [5]. Although multiple rrn copies are often
homogenized by concerted evolution, there are many instances of
intragenomic rRNA heterogeneity [4, 6].

The 16S gene has become the focus of modern microbial
phylogenetics by virtue of its length and mix of highly
conserved and variable regions. The conserved regions make it
amenable for polymerase chain reaction (PCR) amplification,
while the variable regions make it a useful phylogenetic marker
[7]. As a result, it has a long history of use in phylogenetics and is
widely used to taxonomically survey microbial populations [8, 9].
While longer, the 23S gene has a lower density of informative
markers and is therefore rarely used for general phylogenetic

purposes in eubacteria; [7] the 5S gene is small and relatively
rapidly evolving, so has seen occasional use as a phylogenetic
marker [10-12]. The ITS region is the most rapidly evolving part
of the rrn [13], likely because it has no defined functional role
except for the occasional tRNA genes found within) [1]. This
poor conservation and variability in length has made it difficult
to use as a phylogenetic marker. However, the position of the ITS
region between the highly conserved portions of the 16S and
23S genes means that it can be readily amplified with conserved
primers. It has therefore been used as a high-resolution
phylogenetic marker [14-17] or more generically as a DNA
fingerprinting in a technique called ARISA [18-20].

Due to its ease of amplification and the density of informative
sites, the 16S gene has long been the primary target for
phylogenetic and taxonomic study. The full-length 16S sequence
can be used for phylogenetic resolution down to the species level
[21] and can be readily acquired using Sanger sequencing. As 454
[22, 23] and later lllumina [24] short-read sequencing technologies
became available at much lower costs per base, 16S sequencing
shifted to focus on individual or small subsets of the nine
recognized variable regions [22, 25]. Depending on the organisms
involved, this smaller number of regions was sufficient to classify
microbes taxonomically to the genus or species level but lacked
the phylogenetic resolution of the full-length gene. Recently,
strategies that look at multiple variable regions in parallel have
been developed to improve the resolution of these variable
region-based approaches [26]. On the other hand, metagenomic
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Fig. 1 Diagram illustrating RoC-ITS strategy. The 16S-ITS region is isolated using PCR. Gibson Assembly is then used to circularize the PCR
products. A long single-stranded DNA product encompassing multiple iterations around the circular template is then generated using the
phi29 polymerase. The linear product is finally modified by constructing a double-stranded A-tailed end (Nanopore Library Adapter). At this
point, the product is ready for normal library construction using a Nanopore DNA library kit.

studies of random genomic regions have revealed tremendous
genetic and functional diversity within species [27-29], indicating
that short-read sequencing of 16S fails to reflect much of the
within-species variation. However, the low cost of short-read
sequencing platforms resulted in an explosion of microbial data,
along with new databases and tools for analyzing, profiling, and
comparing these enormous datasets [30, 31].

New developments in sequencing technologies have ushered
in attempts to combine quantity with quality and to recover the
richness of the full-length 16S gene and beyond, including the
entire rRNA and various portions of it including the ITS, 5S and
23S genes [32-39]. Long-read, single molecule sequencing
methods including the Pacific Biosciences and Oxford Nanopore
Technologies sequencing platforms have made it possible to
sequence thousands and even tens of thousands of base pairs in
with a single read [40, 41]. These sequencing techniques have a
higher error rate than lllumina short reads, but recent innova-
tions both in how the sequencing is performed and in the
reliability of the base calling have greatly improved the quality
of the reads. PacBio HiFi reads use a circular consensus strategy
to get 99% accuracy on inserts from 15 to 20 kb. Creative use of
Oxford Nanopore Technologies (hereafter “Nanopore”) long
reads to repetitively sequence a circularized template have
similarly resulted in “consensus reads” with reduced error rates;
[19, 42-46] on-going improvements to Nanopore base-calling
software (e.g., guppy) [47] have achieved 99% accuracy on
single pass sequencing data.

Here, we describe a new high-throughput sequencing strategy
that relies on rolling-circle amplification coupled with Nanopore
long-read single molecule sequencing to capture the entire 165
and ITS region. By sequencing the entire 16S region our method
provides high-quality phylogenetic information, including resolu-
tion at the species level. The inclusion of the ITS region also allows
for the ability to distinguish between sub-species including
among individual rrn copies within a genome. Together, these
tools allow for resolution between microbial strains, leading to
more complete characterization of microbial populations and
their dynamics. We describe the steps necessary to prepare and
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sequence a library of reads using our method, which we call RoC-
ITS (pronounced like the word rockets), and detail a computa-
tional pipeline that can quickly and effectively analyze the data.
We applied RoC-ITS to an artificial community of eubacteria that
have also been sequenced with Illumina short-reads in order to
demonstrate its effectiveness.

METHODS

The RoC-ITS approach (Fig. 1) involves multiple amplification, circulariza-
tion, and linearization steps. We describe each of these in turn, followed by
additional methods used in this study. Table 1 contains a glossary defining
several terms commonly used in the text.

RoC-ITS: PCR amplification

RoC-ITS uses PCR to amplify the 16S-ITS region(s) from an extracted DNA
sample. The RoC-ITS 27F 16S primer (5-AATGATACGGCGACCACCGAGATN
NNNNAGAGTTTGATCMTGGCTCAG-3’) was derived from the 27F 16S
primer [48, 49] while the RoC-ITS 189R 23S primer (5-ATGGAAGACGCCAA
AAACATAAAGGCTGCNNNNNTACTDAGATGTTTCASTTC-3')  was  derived
from the 189R primer [50]. In combination, this primer pair should amplify
the 16S-ITS regions from eubacterial organisms. Both primers contain a
5-base molecular barcode and have a unique 5’ sequence (underlined;
referred to as RoC-ITS 27F Unique and RoC-ITS 189R Unique, respectively).
PCR reactions contained 20 ng input DNA in 12.5 pl of KAPA 2X Master Mix
(KAPA HiFi HotStart ReadyMix. Catalog number: KK2602. Vendor: Roche
Diagnostic), 10 uM forward primer and/or 10 uM reverse primer, and
nuclease-free water to bring the final volume to 25 pl.

The overall PCR recipe is given in Supplemental Table 1. Briefly, the first
round of PCR added a molecular barcode to the 16S side of the template.
The 16S-ITS product was then cleaned with a 0.5x bead cleanup
(HighPrepTM PCR paramagnetic bead solution. Vendor: MAGBIO. Catalog
number: AC-60050 using a MagStrip Magnet Stand 10. Vendor: MAGBIO.
Catalog number: MBMS-10) to remove any unused primer. The second
round of PCR and cleanup similarly added the molecular barcode on the
23S end of the molecule. Subsequent rounds of PCR used only the outer
(underlined) sequences to amplify only those products that possessed
both molecular barcodes. We examined the PCR product on an Agilent
TapeStation using a D5000 tape to ensure the bulk of the product was
between 2000 and 3500 bp in length.
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Table 1. Definitions of commonly used terminology.

Term Definition
16S-ITS Region

16S-ITS Product
189R primers

V4 Region
RoC-ITS Consensus Sequence
RoC-ITS Sequence

An instance of the 16S ribosomal RNA and its adjacent ITS region
The PCR product consisting of an instance of the 16S and ITS region defined by the RoC-ITS 27F and RoC-ITS

The 4th variable region of the 16S gene as defined by the Earth Microbiome F515/R806 primers
Consensus sequence derived from multiple independent RoC-ITS sequences
Consensus sequence derived from the amplification and iterated sequencing of a specific 16S-ITS region

RoC-ITS Read A long Nanopore read derived from a circularized 16S-ITS product consisting of 0 or more sub-reads
Sub-Read An individual 16S-ITS product found in a RoC-ITS read

Splint DNA Derived from the lambda virus genome, a sequence used to circularize the 16S-ITS products

ITS Internally transcribed spacer region; part of the ribosomal RNA operon

ASV Amplicon sequencing variants; unique sequences identified by DADA2 here derived from the V4 region

Set of Sub-Reads
MSA Multiple sequence alignment

Multiple sub-reads derived from a single RoC-ITS read

rmn Ribosomal RNA operon including the 16S and 23S genes flanking the ITS region

RoC-ITS: splint amplification

A splint molecule containing part of the lambda phage genome was
generated via PCR similarly to the protocol of Volden et al. [51]. This splint
was 386 bp long and has sequence identity with the RoC-ITS 27F Unique
and RoC-ITS 189R Unique primers. The splint was generated by PCR with
two primers, Lambda_F_23S CTTTATGTTTTTGGCGTCTTCCATAAAGGGATAT
TTTCGATCGCTTG, where the underlined portion matches the RoC-ITS 189 R
Unique primer, and the Lambda_R_16S ATCTCGGTGGTCGCCGTATCATTTG
AGGCTGATGAGTTCCATATTTG, that matches the RoC-ITS 27F Unique
primer. The PCR was carried out with 1pl of Lambda DNA (20 ng/pl;
Catalog number: N3011S. Vendor: New England Biolabs Inc), 12.5 ul of
KAPA 2X Master Mix, 1 pl of 10 uM Lambda_F_23S and the Lambda_R_16S
primers, and nuclease-free water to bring it to its final volume (25 pl).
The PCR recipe for this step is shown in Supplementary Table 2. Following
PCR, the product was eluted in 30 uL of nuclease-free water after a 1.2x
bead cleanup.

RoC-ITS: circularization

The linear RoC-ITS product was circularized with a DNA splint that matches
the RoC-ITS 27F Unique and RoC-ITS 189r Unique primers using Gibson
assembly [52]. In a 20 pl reaction, 150 ng of RoC-ITS product and splint
DNA were combined with 10yl of Gibson Assembly 2X Master mix
(Catalog number: E2611S Vendor: New England Biolabs Inc) and incubated
at 50 °C for 60 min. The reaction was bead-cleaned with 1.0x bead ratio
(HighPrepTM PCR paramagnetic bead solution. Vendor: MAGBIO. Catalog
number: AC-60050) and eluted in 42l of nuclease-free water. Linear
molecules in the reaction mixture were then degraded using an
exonuclease with the reaction carried out in a 50l volume: 2l of
25 mM ATP solution, 5 ul of 10X reaction buffer and 1 pl of Plasmid-Safe
DNASe at 37 °C for 30 min. The circularized reaction product was isolated
with a 1.0x bead cleanup and eluted in 12 pl of nuclease-free water.

RoC-ITS: rolling circle linearization

The circularized RoC-ITS product was converted into a long single-stranded
linear product using the phi29 polymerase (Fig. 1). The phi29 initiation
primer  (5'-CGCCAGGGTTTTCCCAGTCACGACGAAGACGCCAAAAACATAAA
G-3') has a unique 5’ end (underlined) that does not match the circular
template; it was used during the subsequent Nanopore library construction
step. The 3’ end of the splint-primer was designed to anneal to the region
adjoining the splint DNA adjacent to the RoC-ITS 189r Unique primer and
should occur only once per circularized molecule (Fig. 1). This means that
only a single product should be produced per circularized molecule,
without the usual complications (i.e., branched products) associated with
phi29 hexanucleotide-based amplification procedures [51]. The length of
the phi29 product is dependent on the stability and processivity of the
polymerase and independent of the size of the plasmid. With only a single
priming site per molecule, the stoichiometry of the different rrns should be
maintained regardless of the length of the ITS region or PCR product.
Production of the final linear product was performed in five parallel
reactions to generate enough material for subsequent library production.
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Each reaction was performed in 50 ul at 30°C overnight with 2 pl of
circulated DNA with 25uL of 10uM (each) dNTPs (Catalog number:
N0446S Vendor: New England Biolabs Inc), 2.5 uL Rolling cycle primer
(10 uM), 37 pL ultrapure water, 5 yL of 10x Phi29 Buffer, and 1 uL of Phi29
(Catalog number: M0269L Vendor: New England Biolabs Inc). The
combined products were bead cleaned at a 0.5x bead ratio and eluted
in 10 ul of nuclease-free water.

RoC-ITS: nanopore library construction and sequencing

Oligos A (5'-GGCTTCTTCTTGCTCTTAGG-3') and B (5'-GTCGTGACTGGGAA
AACCCTGGCGCCTAAGAGCAAGAAGAAGCCA-3’) are designed to anneal
to the phi29 initiation primer (underlined; see Rolling Circle Linearization
step) and to each other (bold) to generate an A-overhang required for the
Nanopore library kit to function (Fig. 1). This configuration of primers was
used to dictate which strand of the library will be preferentially sequenced
by the Nanopore flow cell. The annealing buffer (10 mM Tris-HCI pH7.5,
50 mM NaCl) containing 1.4 uM each of oligoA and oligoB is heated to
95°C for 2min and allowed to slowly cool to room temperature. The
annealed oligoA/B product was then covalently linked to the rolling circle
linear product with a ligation reaction: 9.5l of cleaned rolling circle
product with 1 uL of annealed oligoA/B adaptor, 3.0 uL of NEBNext Quick
Ligation Reaction Buffer and 1.5uL of T4 DNA Ligase (NEBNext Quick
Ligation Module; Catalog number: E6056. Vendor: New England Biolabs
Inc) incubated at room temperature for 10 min. The oligoA/B adapters
were removed from the product with a 1x bead cleanup and eluted into
60 pL of nuclease-free water. After the A and B oligos had been annealed
and ligated to the linear single-stranded DNA, a Nanopore DNA library was
generated using the Nanopore-provided kit using the following protocol:
60 pL of cleaned adaptor-ligated DNA with 25 pL of ligation buffer (LNB),
10.0 uL of NEBNext Quick T4 DNA ligase and 5 puL of Adapter Mix (AMX)
(LNB and AMX are provided in Nanopore SQK-LSK109) and incubated at
room temperature for 10 min. The DNA library was purified with a 0.4x
bead cleanup and eluted in 15 pL of elution buffer (from Nanopore SQK-
LSK109 kit) and was designed to then run Nanopore SQK-LSK109 flow cell
R9.4.1 following the prescribed Nanopore protocol. For the data described
herein, we reused a previously used but cleaned flow cell of this type
(often referred to as a spent flow cell). Spent flow cells usually produce less
than 10% of the reads that a new flow cell would produce, however, the
data seem to be of comparable quality, so we used this strategy as a cost-
effective method for protocol development. Base calling was performed
using the Oxford Nanopore guppy_basecaller (version 5.0.7) using a
GP100GL video card (Tesla P100 PCle 16GB, rev a1; NVIDIA Corporation, CA,
USA) to generate the RoC-ITS reads. The length of pass quality Nanopore
reads is shown in Supplementary Fig. 1. The resulting fastq files were
converted to fasta files using vsearch (v2.14.2) [53].

Processing RoC-ITS reads into RoC-ITS sequences

Individual Nanopore reads have a higher error rate than lllumina reads,
with much more frequent insertions and deletions. To identify individual
16S-ITS products, we constructed a DNA HMM using the HMMer software
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(hmmsearch v3.2.1 with default parameters) to identify the splint DNA
(above) and neighboring PCR primer sites along with the molecular
barcodes [54]. This HMM was used to identify and remove the splint region
thus breaking the long RoC-ITS read into sub-reads; each sub-read should
contain a single instance of the 16S-ITS element including the 5 bp random
barcodes. Only sub-reads in the expected size range of 1500-3500 bps in
length were considered valid and used for further analysis (size distribution
of sub-reads is available in Supplementary Fig. 2). The process of extracting
the sub-reads was performed with custom python scripts using the output
of hmmsearch. Each joint sequence is flanked by a 5-nucleotide random
barcode; we required each barcode to be the same for each valid sub-read
extracted from the longer nanopore read. For both the 5’ and 3’ barcode,
MAFFT was used to build an alignment and biopython was used to
generate a gapped consensus with threshold of -barcode-consensus-
cutoff. Gapped positions were removed from the consensus and if the
resulting sequences were more than five bases, the read is discarded for
containing mixed barcodes. Once identified, the barcodes are clipped from
the sub-reads and excluded from any subsequent analysis steps.

The sub-reads were further refined with CONSENT-correct [55]. Each set
of sub-reads from a single nanopore read was then converted into a
multiple sequence alignment using the prank alignment software (http://
wasabiapp.org/software/prank/) resulting in a multiple sequence align-
ment (MSA) file. The MSA was then further refined using probcons (version
1.1) [56] to resolve small issues with consistency in the prank MSA (see the
supplemental document for additional details and an example). This
improved MSA was then used to generate a consensus sequence, hereafter
referred to as a RoC-ITS sequence, that can be analyzed further.
Investigating resulting alignments shows that occasionally a read will
have one or more sub-reads that differ considerably from the other sub-
reads, even after removing conflicting barcodes in an earlier step. To
identify these cases, a consensus was built for the alignment using the
most common character (base or gap) present in each column. Each sub-
read was then scored against this consensus, receiving 1 point for each
column where the sub-read matches the consensus, 0.5 points for each
column where there is a gap in the sub-read and there was a base called in
the consensus, and 0 points for each column that did not a match the
options already listed. If the score for a sub-read was less than 65% of the
alignment length, that sub-read was discarded. This process is repeated
iteratively until either no sub-reads are removed or three or fewer sub-
reads remain. Any gaps were removed to produce the final RoC-ITS
sequence. To ensure higher quality results, only RoC-ITS sequences derived
from five or more final sub-reads were used in subsequent analyses.

The number of sub-reads that contribute to the generation of a RoC-ITS
sequence is recorded in the definition line, with each additional sub-read
increasing our confidence in the resulting RoC-ITS sequence (lower error
rates). Unless otherwise stated, we relied on RoC-ITS sequences derived
from five or more sub-reads. This required the length of a good RoC-ITS
read to be 10 kb or larger given the typical size of the 16S-ITS region and
allowing for the length of the joint sequence. Given the length distribution
of the RoC-ITS sequences (Supplementary Fig. S1) this is the single leading
cause to sequences being filtered out of our analysis pipeline.

Construction of the artificial community

At our request, an artificial community was constructed from a set of one
to two dozen DNAs from distinct isolates and provided blindly to our team
for our method testing purposes. As per our request, the DNA from each
isolate was diluted such that the abundance of the different isolates was
spread over several orders of magnitude prior to being combined as might
be seen in naturally stratified microbial communities. This artificial
community was used for the amplification of the V4 region as well as
the 16S-ITS region targeted by the RoC-ITS primers.

Processing artificial community RoC-ITS sequences

RoC-ITS sequences derived from the artificial microbial community were
analyzed with a series of filtering and clustering steps before generating
phylogenetic trees to examine the rrn structure by genera. A set of high
confidence RoC-ITS sequences (N=583) derived from 15 or more sub-
reads were used to extract the 16 S gene defined as the bases between the
27F and 1492R [57] inclusive based on strict pattern matching to the
universal primers (N =235). These 16 S sequences were used as a blast
database to identify and extract the 16S sequences from all the RoC-ITS
reads (N = 3489; blastn parameters: blastall v2.2.26 -F F -X 150 -q -5 -r 4 -e
1e-120) [58]. The bioinformatic tool cd-hit-est was used to cluster the 16S
portion of the RoC-ITS sequences based on sequence similarity (95%
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cutoff) at roughly the genus level (v4.8.1; parameters: -T 20 -M 0 -n 12 ¢
0.95 -d 5000 -1 20 -g 1) [59]. Clusters with five or more of the 16S sequences
(N =3310; 95%) were used to generate clusters of the corresponding RoC-
ITS sequences; sequences in small clusters were excluded from further
analysis (N =179; 5%). Popular de novo methods for identifying chimera
did not prove to be effective on the RoC-ITS sequences and reference
sequences were not available for all the organisms in the artificial
community. In the absence of vetted reference RoC-ITS sequences, we
relied on an iterated clustering process to identify potential chimera under
the assumption that most chimera will be distinct and thus poorly
represented in a pool of sequences. Therefore, sequences that do not
cluster or form only small clusters would be suspect and excluded from the
ongoing analysis. Spot checks of these excluded RoC-ITS sequences
confirmed that they were chimera.

After removal of chimera, each batch of RoC-ITS sequences was
clustered into putative genera were assigned to a taxonomy, multiply
aligned, the resulting MSA was improved, corrected, and the ragged ends
trimmed. Taxonomic assignment was made by aligning the RoC-ITS
sequences to the reference V4 lllumina sequences (see below) using blastn
(blastall v2.2.26 -F F -X 150 -q -5 -r 4 -e 1e-120). The taxonomic assignment
of the cluster was based on the most abundant taxa assigned to the
constituent RoC-ITS sequences; the larger clusters had over 90% of the
reads belonging to the same genera. The multiple alignments were carried
out using the fast aligner muscle (v3.8.31) [60]. Muscle produced numerous
systematic errors including introducing variable gapping patterns in what
should be identical portions of the alignment. We developed a script to
identify problematic regions and to re-align these shorter segments with a
slower but consistent multiple sequence aligner, probcons (v1.1) [56]. The
resulting MSA was then iteratively corrected two times to identify and
remove infrequent or sporadic errors. The correction process can be
described as follows: a given column of the MSA was analyzed: if there was
one dominant base at that position (by default dominant meaning that
98% or more of the reads were the same) then the incorrect bases were
“corrected” to the dominant base. If there were two or more abundance
bases, any low abundance bases present at a frequency of less than 2%
were corrected to an N. RoC-ITS sequences with an excess of corrections
(N> 0.05% * length of the RoC-ITS sequence) were considered outliers and
excluded from the cluster and further analysis; manual inspection of these
RoC-ITS sequences with large numbers of errors revealed that they were
associated with large indels or were chimeric. In the first pass, the number
of potential corrections was determined and used to exclude high error
rate RoC-ITS sequences, but actual corrections were not made. Corrections
were only made during the second iteration thereby preventing the
outliers identified in the first round from influencing the final correction
step. Beyond identifying these highly erroneous RoC-ITS sequences,
correction did not significantly alter the relationship of the sequences,
rather resulting in cleaner, easier to interpret phylogenetic trees. Finally,
the MSA was trimmed to provide uniform ends and remove any remnants
of the RoC-ITS primers; if not removed the variable bases in the primers
can result in misleading phylogenetic trees and counts of potential rrns.
The precise amount of trimming performed was determined algorithmi-
cally to identify the first and last position where 98% or more of the bases
in a given column of the MSA were not gaps.

The second round of clustering was designed to remove subtle differences
due to chimera and to produce clusters corresponding to individual rrns. The
number of informative bases in the MSA that could differentiate between
two different rms was often quite low, so the precise parameters vary
depending on the organism involved. To facilitate separation of the distinct
rrs, we identified any column in the MSA where the majority base had a
frequency of less than 95%. Then sub-sequences involving these variable
columns as well as the four neighboring columns were extracted. These sub-
sequences were re-clustered with cd-hit-est at a given percent identity
between 90 and 99% identity. The resulting individual clusters of sub-
sequences containing less than 5% of the input sequences were excluded
from further processing as putative chimera; note that an exception was
made for the Pseudomonas genus where clusters with six or more members
were retained to minimize the chance that sequences belonging to the less
abundant isolates from this genus were excluded. The remaining clusters
were used to generate equivalent clusters using the full-length corrected
and trimmed RoC-ITS sequences. These clusters of the full-length RoC-ITS
sequences were used to generate consensus sequences which were
manually validated and could be used for direct chimera detection. At the
90 percent cutoff, the surviving cluster members were combined, re-aligned
with muscle, then the MSA was improved a final time. Following manual
inspection of the final MSA to ensure that the trimming and overall
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Table 2. Abundance of cd-hit clustered lllumina and RoC-ITS data at various taxonomic levels.
Phylum Class Genus # of lllumina V4 Reads # of RoC-ITS Sequences

1 Bacteroidetes Bacteroidia Flavobacterium 55,508 981
2 Actinobacteria Actinobacteria Micrococcus 38,772 299
3 Proteobacteria Gammaproteobacteria Pseudomonas 28,598 492
4 Proteobacteria Gammaproteobacteria Pseudomonas 26,951 330
5 Firmicutes Bacilli Bacillus 26,521 516
6 Proteobacteria Gammaproteobacteria Duganella 12,681 162
7 Proteobacteria Gammaproteobacteria Pseudomonas 12,313 143
8 Proteobacteria Gammaproteobacteria Pseudomonas 11,697 118
9 Bacteroidetes Bacteroidia Mucilaginibacter 9,373 175
10 Proteobacteria Alphaproteobacteria Bradyrhizobium 4,135 85
1 Actinobacteria Actinobacteria Micrococcus 3,570 11
12 Firmicutes Bacilli Bacillus 3,109 68
13 Firmicutes Bacilli Bacillus 2,784 62
14 Bacteroidetes Bacteroidia Pedobacter 1,723 104
15 Proteobacteria Gammaproteobacteria Pseudomonas 1,604 18
16 Proteobacteria Alphaproteobacteria Inquilinus 529 1

17 Actinobacteria Actinobacteria Rhodococcus 84 1

18 Actinobacteria Actinobacteria Mycobacterium 36 2

Total= 3568

alignment looked reasonable, bootstrapped (N=10) phylogenetic trees
were generated with RAXML (v8.2.12) [61] and visualized using the Tree of
Life (https://itol.embl.de) [62]. The number of distinct clades in the trees
could be used to determine whether the clustering percent identity was
producing the appropriate number of final clusters; if not, the clustering
identity was adjusted upwards until the minimum threshold to produce the
correct number of clusters arrived at.

Statistical tests
Chisq.Test were run as implemented in the Microsoft Excel. Pearson and
Spearman correlations were run as implemented in R (version 3.5.1).

Read error estimates

Error rates were estimated against E. coli K-12 reference 16S sequences.
RoC-ITS sub-reads were selected from RoC-ITS reads with 54 sub-reads
and where every sub-read was used. These sub-reads were aligned with
blastn (blastall v2.2.26 -F F -e 1e-120) to the 16S portions of the rrns. The
best match was assumed to be the correct match. The length of the
alignment was the length of the HSP (high scoring pair) plus any unaligned
bases from the reference 16S gene. Percent identity was defined as the
number of identities divided by the length of the alignment.

Chimera detection
Chimera detection with vetted reference sequences was performed with
the VSearch software package (v.2.14.2) with the vsearch algorithm [53].

Processing E. coli RoC-ITS consensus reads

RoC-ITS sequences derived from Escherichia coli K12 were processed just
like the artificial community RoC-ITS sequences except that they were not
processed through the first, genera-specific, clustering step. Instead, they
were pre-filtered to remove highly truncated or artifactual sequences. The
pre-filter consisted of a blast search (NCBI blastall v-2.2.26) against the 16S-
ITS E. coli rrn sequences. Reads that were less than 95 percent identical
over the full length of at least one of the 16S-ITS regions (global-identity)
were discarded. The remaining steps proceeded as described above for the
artificial community.

lllumina V4 16S libraries

The artificial community sample used here (Table 2) was sequenced both
with RoC-ITS and with lllumina sequencing-by-synthesis technology. A
barcoded lllumina library was generated via amplification of the V4
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hypervariable region of the 16S rRNA gene with the Earth Microbiome
modified F515/R806 primers [31] and run on the MiSeq platform along
with many other unrelated 16S samples using a MiSeq 600 cycle kit
(Illumina, San Diego, CA, USA). After demultiplexing, analysis of the V4
regions was carried out using QIIME2 [30]. Amplicon sequencing variants
(ASVs) were generated using the DADA2 subcommand [44] from within
QIIME2 release 2018.11 with the parameters “—p-trim-left-f 31 —p-trim-left-r
32 —p-trunc-len-f 220 —p-trunc-len-r 150”. A portion of the Mothur MiSeq
SOP [63] was then followed to align reads to the RDP training set v.9 [64]
and to remove reads identified as anything other than eubacteria or
archaea. Remaining reads were imported back into QIIME2 and chimeras
were removed using the “vsearch uchime-denovo” subcommand [53].
ASVs were classified using the “classify-sklearn” command in QIIME2
against release 132 off the Silva SSU database [65].

RESULTS

Escherichia coli K12

We tested the RoC-ITS approach on a clonal population of
Escherichia coli K-12. As one of six barcoded samples run on a
previously used and cleaned nanopore flow cell, we generated 8000
E. coli RoC-ITS reads before the run prematurely terminated. A total
of 708 reads were left after filtering and selecting E. coli-like reads
whose RoC-ITS sequences were derived from five or more iterations
around the circular template (i.e.,, containing 5 or more sub-reads).
These RoC-ITS sequences were then processed with the RoC-ITS
clustering pipeline at a 90% identity, which removes small clusters,
reads with high error rates, and singleton reads, resulting in 622
high-quality RoC-ITS sequences (88%). A phylogenetic tree of these
RoC-ITS sequences is organized into seven distinct clusters that
correspond to the 7 expected rrns found in the K-12 genome
(Fig. 2a). The error rate for sub-reads was calculated to be 98% with
a standard deviation of 1%. The error rate of the 708 RoC-ITS
sequences was 0.21%; among the 622 good sequences, the error
rate was 0.1%. Misalignment due to edge effects may have inflated
the error rate; restricting the error analysis to the 16 S portion of the
622 good sequences resulted in an error rate of 0.01%. The ability to
isolate clusters whose consensus corresponds to the expected rrns
depends on the clustering identity. When clustered at 90% identity,
two distinct clusters are resolved, distinguished by the presence
or absence of a tRNA in the ITS (Fig. 2a). For the clustering to
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Fig. 2 Phylogenetic trees from E. coli. The tree scale shows the number of edits per base per unit length. a After two rounds of clustering,
628 E. coli RoC-ITS sequences (out of 708 initial reads) were combined with the seven E. coli K12 reference 16S-ITS sequences, multiply aligned,
and converted into an unrooted phylogenetic tree. Bootstrap values are shown for the primary branches. Each of the seven highlighted clades
corresponds to one of the reference 165-ITS sequences, numbered based on their distance from the origin (closest to furthest), along with the
number of RoC-ITS sequences associated with each clade. b Consensus sequences after clustering RoC-ITS sequences at 99.5% identity. The
unrooted phylogenetic tree shows these consensus sequences along with the E. coli K12 reference 16S-ITS sequences.
recapitulate all seven individual rrns, clustering at 99.2% or greater
identity was required. The resulting consensus rrns are almost

identical to the expected rrns (Fig. 2b) with two of the consensus

sequences differing from expectation by a single base substitution.
Careful examination of the MSAs associated with these differences
reveal that the differences were not due to simple indels, often

a source of error in Nanopore reads and frequently associated

frequencies of 100% among the relevant RoC-ITS sequences. This
with polynucleotide stretches, but rather base substitutions with

either points to errors in the reference genome or, more likely, to

evolution within the sub-strain used for this experiment.
SPRINGER NATURE

We examined the number of RoC-ITS sequences associated
with each rrn cluster (Supplemental Table 3). Even with random
sampling, a statistical test rejected the null model where each

rrn cluster should be equally abundant (x* test, P = 2.64E-04).
The distribution of RoC-ITS sequences has no correlation with
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the length of the fragments nor is there any reason to think that
the primers would work differentially among rrns (all seven
should have the same primer annealing sequences). Our current
hypothesis is that the compounding effects of amplification and
sequencing added more variability to the count of sequences
than expected. In the next section, we further test this by
comparison with sequences obtained via the Illumina short-
read technology. To better understand the contribution of the
ITS region to the ability to discern the individual rrns, we
examined a tree constructed using the 16S gene alone. This tree
had six distinct clades versus the seven seen with the 16S-ITS.
By comparing the alignment for the 16S gene alone versus the
full 16S-ITS region, we found that 26 versus 301 bases were
informative.

Artificial community

A quantitatively stratified artificial community containing 17
different soil-associated eubacteria was used to test the RoC-ITS
approach on more complex samples. This community was
constructed from a collection of isolates, some of which represent
well-studied organisms, for example Bacillus subtilis str. 168, while
the majority have yet to be fully sequenced and do not have close
relatives with complete genomes in public databases. Some genera
in the artificial community were represented by a single isolate,
e.g., Duganella and Bacillus, while other genera had multiple
distinct isolates, e.g., Pseudomonas. We verified that the primers,
both the traditional V4 and the RoC-ITS primers, match the existing
reference genomes associated with these genera in the artificial
community; when these references have more than one ribosomal
operon, we did not find any differences in the primer regions
between operons. To establish the makeup of the community by
conventional means, we generated 239,988 lllumina 16S V4
amplicon reads on a MiSeq machine (see Methods). The reads
were run through the QIIME2 pipeline, which identified 18 different
Amplicon Sequence Variants (ASVs) belonging to 11 different
genera (Table 3). At the same time, the RoC-ITS library was
prepared from the artificial community and sequenced on a
previously used (spent) Nanopore flow cell to generate 31,215
Nanopore reads, of which 25,489 passed the initial Nanopore
quality filters. The Nanopore reads were then processed through
the RoC-ITS consensus pipeline to generate 3667 high-quality RoC-
ITS sequences (see Methods). Briefly, only Nanopore reads with
consistent barcodes, individual inserts of the expected length
between 1500 and 3500 bp, and with 5 or more sub-reads, were
kept and used to generate RoC-ITS sequences that were used for
comparison with the lllumina data and for independent phyloge-
netic analysis. Overall, the quantification is similar between the
V4 and RoC-ITS sequences (Table 3; Fig. 3) with significant
correlation (Pearson: r = 093, P=8209x10"% Spearman:
r=0929,P=2232x1073). Among the more abundant microbes,
the Microccaceae are less abundant in the RoC-ITS data than
expected. There are smaller discrepancies in the less abundant
organisms as well. While such differences are not unexpected in
PCR studies, it is also possible that these reflect subtle mismatches
in the amplification primers used to isolate one or more of the 165-
ITS regions. Given the absence of explicit reference genomes, it is
impossible to disregard the possibility at this time. The differences
do not seem to correlate with the size of the 16S-ITS region
suggesting length bias is not an important factor.

Phylogenetic analysis and classification of the artificial
community

To further characterize the artificial community, we developed an
approach for analyzing the RoC-ITS sequences that do not
depend on knowing the composition of the community in
advance. First, we organized the sequences roughly by genus. To
accomplish this, we excluded the poorly characterized ITS portion
of the RoC-ITS sequences by extracting the 16S portion of each

SPRINGER NATURE
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sequence using a combination of the established 16S primers and
sequence similarity (see methods). We were able to isolate the
intact 16S gene in 3628 of the 3667 RoC-ITS sequences. Of these,
3568 could be assigned to a particular genus based on BLAST
using the QIIME V4 consensus sequences (Table 2). These 16S
segments were then clustered with cd-hit-est at 95% identity and
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produced 44 clusters containing five or more 16S sequences per
cluster; these 44 clusters accounted for 3584 of the RoC-ITS reads.
These clusters were initially classified by the majority genus
present in the cluster. The full-length RoC-ITS sequences were
grouped into eight genera-specific clusters and then examined
individually in more detail (Table 3). Note that the least abundant
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b)

S

Fig. 4 Phylogenetic analysis of the Bacillus subtilis RoC-ITS sequences. The tree scale shows the number of edits per base per unit length.
a Phylogenetic tree of Bacillus RoC-ITS sequences along with the 10 reference Bacillus subtilus str 168 rrns (labeled CP052842.A-J with the
letters corresponding to their order in ascending base pair coordinates on the reference genome). The RoC-ITS reads are found in eight
distinct clades in accordance with the reference rrns. The single largest clade containing three reference rrns (F, G, and |) and consists of the
two identical rrns plus a third rrn that differs by only two deleted bases. b A phylogenetic tree of the reference rrns and the consensus
sequences derived from the nine clusters produced after clustering the Bacillus RoC-ITS sequences at 99.55% identity.

genera in the artificial community (Inquilinus, Rhodococcus, and
Mycobacterium) were all intentionally excluded by this process and
did not have sufficient read counts to provide for a robust analysis.

Bacillus subtilis

The best-characterized member of the artificial community was
Bacillus subtilis str. 168. The reference genome contains ten rrns,
two of which are identical. Several of the distinct rrns differ from
each other by only one or two base pairs. A total of 585 RoC-ITS
sequences were identified as related to Bacillus. Processing of the
RoC-ITS sequences with a 90% clustering threshold removed low
quality and suspected chimeric sequences leaving 425 high
quality RoC-ITS sequences. A phylogenetic tree derived from the
resulting sequences and the analogous 16S-ITS sequences
extracted from the Bacillus subtilis str. 168 reference genome
shows that RoC-ITS sequences matched a priori expectations, with
eight major clades clearly identifiable (Fig. 4a). Clustering at much
higher identity (99.55%) is required to isolate clusters that
correspond to the 9 distinct rrns known to occur though also
reducing the total number of usable RoC-ITS sequences to 336.
The reason that there were eight distinct clades in the tree but
that nine distinct clusters of sequences could be isolated was due
to the nature of the tree construction algorithm. One of the
clusters differs only due to the deletion of a single base pair and
gapped positions were ignored during tree construction. The
consensus sequences derived from multiple alignment of these
RoC-ITS sequence clusters faithfully recapitulated the reference
sequences from Bacillus subtilis str. 168 rrns (Fig. 4b). The number
of reads associated with each cluster varied between 23 and 41
(Supplementary Table 4). Unlike the E. coli example reported
earlier, the variability in reads per rrn observed here was
consistent with random sampling ()(2 test, P=0.14). When
constructed from the 16S gene alone, the resulting tree had
seven distinct clades versus the eight seen with the 16S-ITS. By
examining the alignment for the 16S gene alone versus the full
16S-ITS region, we found that 9 versus 200 bases were
informative. In the context of the artificial community, where
Bacillus subtilis was represented by a single well-characterized
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strain, our results, therefore, demonstrate that we can both
qualitatively and quantitatively assess the abundance of a genome
and its individual rrns.

Duganella

Analysis of the Duganella RoC-ITS sequences indicated that the
isolate present in the artificial community is not a close match to
any of the published Duganella complete or draft genomes, with
the best 16S matches having ~97% identity. The complete
Duganella genomes that we examined all had seven distinct
rrns. Clustering and analysis of the Duganella RoC-ITS reads also
produced seven distinct clades at both 90% (Fig. 5) and 99%
clustering cutoffs. Our tests indicate that the number of reads
per rrn are not significantly different from a random distribution
(x> test, P=0.09; Supplemental Table 5). The 16S portion by
itself has sufficient information to recreate this tree structure,
but only 8 bases provide informative sites (versus 108 in the full
16S-ITS region).

Other genera

We analyzed all the genera found in the artificial community by
processing the RoC-ITS sequences through our analysis pipeline
and generating trees from the resulting MSAs. While these data
were consistent with existing reference genome data, the absence
of closely related reference genomes, and variability (or lack
thereof) in the number of rrns associated with these genera made
statistical analysis of little value. For example, both the Bradyrho-
zobium and Mucilinobacter genera are thought to have one or at
most two identical rrns. Our results are consistent with there being
a single distinct rrn sequence (Supplemental Figs. 3 and 4). The
Pseudomonas genera were comprised of four distinct isolates but
there is considerable variability in the number of rrns in related
reference genomes. The Pseudomonas RoC-ITS sequences, when
used to construct a phylogenetic tree, roughly clustered into
clades that corresponded to the four most abundant lllumina ASVs
identified by QIME (Supplementary Fig. 5) with the same
corresponding rank abundances. The Flavobacterium, Micrococcus,
and Pedobacter genera indicate that they possess 6, 5, and 3

SPRINGER NATURE
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Fig. 5 Duganella phylogenetic tree based on clustering at 90% identity. The 99 Duganella RoC-ITS sequences form 7 distinct clades
consistent with the number of rrns in other related Duganella strains with complete genomes. Note that because many of the differences were
associated with gapped regions, for this tree all dashes in the MSA were replaced with A’s thereby better capturing the relationship between
the distinct rrns. The tree scale shows the number of edits per base per unit length.

distinct rrns though the Flavobacterium data suggests that one of
the rrns is highly duplicated (n =4) bringing its total number of
predicted rrns to 9 (Supplemental Figs. 6-8). All these values are
reasonable predictions given available reference genomes but the
specific values are currently unverifiable.

Furthermore, having identified all the prospective clusters of RoC-
ITS sequences, we produced prospective consensus sequences that
were then used to perform chimera detection using vsearch toolkit.
Using these vetted reference sequences, we were able to identify
and remove 98% of the suspected chimera in a fraction of the time
than that required by the clustering-based approach that we relied
on in the absence of good references.

DISCUSSION

As demonstrated here, increased resolution through the
inclusion of the less-constrained ITS region can greatly enhance
compositional analysis of microbial communities. This allows for
strain-level identification, which could be used to correlate
subtle shifts in community composition with environmental
factors or experimental outcomes. By examining the utility of
long-read data to identify individual rrns, this method extends
work by other researchers who have used long-read sequencing
strategies to examine the entire ribosomal RNA to obtain strain
level identifications [32, 66]. The UMI-PCR-based approach
advocated in these papers has the advantage of simplicity, but
it does require a bottlenecking step such that the population of
starting molecules is considerably smaller than the sequencing
depth. While reducing the effective depth of sequencing, this
results in each UMI being sequenced multiple times resulting in
a consensus sequence with a low potential for error. While RoC-
ITS can be enhanced with bottlenecking, this approach was not
employed here and is not essential as each sufficiently long read
confirms itself and provides actionable information. Instead, the
UMIs were used to identify and avoid double-counting potential
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PCR-induced over-amplification; however, this did not appear to
be a serious issue in these circumstances with only a limited
depth of sequencing. Furthermore, the ability to discern
individual rrns within organisms means that for many species,
multiple independent markers can be used to assess and
correlate quantification between the markers, thereby providing
increased accuracy and sensitivity. Note that this increased
sensitivity comes at the price of increased complexity, especially
when the number of rrns is not known in advance and the tools
to make use of this information do not exist.

Analysis of the 16S gene alone shows that individual rrns can,
generally, be identified but that there is a much greater
information content (roughly tenfold more) in the ITS region.
Note that some of these differences, for example in Bacillus and
Escherichia, are due to the insertion of entire tRNA genes which
could be viewed as a singular event. While the full rrn can be
sequenced [32] and doubtless contains additional markers for
distinguishing individual rrns and strains of microbes, it is not
clear whether this would provide sufficient benefit to justify the
potential noise introduced with long PCR especially when
applied to complex and potentially poorly characterized micro-
bial communities.

The work outlined here only demonstrates that such an
approach would be feasible, as real-world cases would likely be
far more complex, possibly with more subtle strain-level
variation. Fortunately, existing tools, such as dbOTU3 [67], are
well suited to this role of “grouping” sequences that are highly
correlated across large numbers of different samples. The
explicit knowledge of these markers could be used to target
particular strains for isolation and genome sequencing to better
understand the specific genomic differences that underly these
population shifts. In turn, this could lead to better functional
characterization of the underlying genes and their roles in
a community. Ultimately, a holistic approach may produce
more robust models describing how microbial communities

ISME Communications



function and respond to other microbes and to changes in the
environment.

We demonstrated that the inclusion of the ITS region can
provide valuable resolving power to interrogate microbial
communities; however, many technical challenges remain. The
stringent criteria used here to retain reads for analysis meant
that 80-90% of the Nanopore reads were left unused. The
majority of these reads were abandoned because they were too
short and therefore did not generate the minimum number of
sub-reads (N=5) that we required, so improvements to the
production of longer rolling-circle products would be a boon.
There are already products that select longer DNA fragments,
10kb or larger, that might work with minor changes to the
protocols described herein. Furthermore, improvements to the
Nanopore flow cells and base-calling software could also
improve the reliability of the read data, allowing the shorter
reads to be useful. For example, multiple sequence alignment is
key to organizing and structuring RoC-ITS sequences into
clusters. Integrating the depth of coverage supporting any
given RoC-ITS sequence to provide a quality score could, with
the development of new software, be used to produce better
error correction and consensus calling. Alternative sequencing
approaches, such as the PacBio platform, can automatically
iterate over the template to produce higher-quality reads
[32, 68]. Clever Illumina library construction strategies (such as
that used by LoopSeq) can allow sequencing of the entire 16 S
gene and may be amenable to sequencing of the ITS and 16S
gene [44]. Given the relatively high cost of single-molecule
sequencing technologies, it may be more cost-effective to invest
in cataloging the ITS diversity so that in the future, given a
sufficiently rich database of ITS sequences with clear taxonomic
assignments, reliance on the 16S may be pared down or
eliminated altogether allowing high-resolution taxonomic
assignment through the use of lllumina-based protocols focused
on the ITS region alone.

A significant number of reads were also lost due to template
swapping that likely occurred during the PCR steps, resulting in
chimeric reads. It is unclear if this problem is exasperated by the
length of the template, the high conservation of the template, or is
just more apparent due to specifics of the experiment performed
with discrete isolates. Many of the chimera are easily detected
because they were the result of template jumping to or from the
most abundant organisms, Flavobacteria and Pseudomonades, and
the fact these jumps do not seem to be restricted to the conserved
16S portion of the reads. Undoubtedly some of the noise associated
with the sequence analysis was also due to the formation of within-
genus chimera, which can be much harder to detect. Fine-tuning
the molecular biology may be able to minimize this effect, but
it will likely remain a problem. Developing a much more
comprehensive database of rrns in the future would allow the use
of existing fast tools for identifying and excluding chimeras, even
within genera.

While there are large databases of 16S and 16S variable
regions already available, these are relatively low-resolution
databases that do not come close to capturing the full richness
of the microbial world. Increasing resolution using highly
variable segments like the eubacterial ITS region makes it
feasible to start to track strains even in complex communities.
High-throughput single-molecule techniques make this a
possibility, and our work highlights the power of applying such
techniques to microbial populations. Further software develop-
ment will likely be needed to deal with larger volumes of data
and to organize it into distinct taxonomic groups in the absence
of prior information. Our current approach relies on the strategic
use of computationally expensive approaches like MSA to ensure
a high confidence consensus RoC-ITS sequence. In particular, we
use MSA to generate consensus sequences either during the
production of a RoC-ITS sequence from its underlying sub-reads
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or when we generate a consensus from a set of RoC-ITS
sequences representing a distinct 16S-ITS operon. In the first
case, the number of sub-reads that contributes to a RoC-ITS
sequence is inherently limited by the technology and all the
sequences should be nearly identical limiting the computational
burden. In the second instance, the number of sequences is
somewhat unbounded and given a larger dataset this could
prove computationally problematic. In these cases, as these are
already highly similar sequences, we would recommend capping
the number of sequences used to generate the RoC-ITS
consensus sequence to limit the computational complexity of
the alignment. The overall clustering steps rely on much faster k-
mer-based techniques such as those implemented in the cd-hit
package. However, with more comprehensive 16S-ITS databases,
even more rapid approaches relying on k-mers may be able to
assign sub-reads to known reference sequences and establish a
probability that the sub-reads all are derived from a known 16S-
ITS reference. Then, the more expensive MSA-based steps would
only be needed when no 16S-ITS reference could be discovered.
There are other refinements or improvements that might follow
directly from this work; we did not check whether the primers
used here would work universally in Archaea, but since universal
16S primers already exist, it's likely that similarly universal
primers can be identified in the 23S gene. By using a wholly
different pair of primers, this technique could be applied to the
ITS regions from fungal organisms or used to characterize large
loci from any organism. Overall, there is much promise for high-
throughput, high-resolution approaches that can elucidate
microbial composition and correlate composition with func-
tional and environmental variables.

CODE AVAILABILITY
Code, walk-throughs, example data, and the MSA for the genera discussed in the
paper are available on GitHub at: https://github.com/mondegreen/RoC-ITS2.

DATA AVAILABILITY

The raw Nanopore sequencing data in fastq format as well as the V4 lllumina MiSeq
paired-end reads have been submitted to the NCBI Sequence Read Archive under
project PRINA669399.
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