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Abstract 

RNA editing is an important cellular process by which the nucleotides in a mature RNA transcript are altered to cause them 
to differ from the corresponding DNA sequence. While this process yields essential transcripts in humans and other 
organisms, it is believed to occur at a relatively small number of loci. The rarity of RNA editing has been challenged by a 
recent comparison of human RNA and DNA sequence data from 27 individuals, which revealed that over 10,000 human 
exonic sites appear to exhibit RNA-DNA differences (RDDs). Many of these differences could not have been caused by either 
of the two previously known human RNA editing mechanisms—ADAR-mediated ARG substitutions or APOBEC1-mediated 
CRU switches—suggesting that a previously unknown mechanism of RNA editing may be active in humans. Here, we 
reanalyze these data and demonstrate that genomic sequences exist in these same individuals or in the human genome 
that match the majority of RDDs. Our results suggest that the majority of these RDD events were observed due to accurate 
transcription of sequences paralogous to the apparently edited gene but differing at the edited site. In light of our results it 
seems prudent to conclude that if indeed an unknown mechanism is causing RDD events in humans, such events occur at a 
much lower frequency than originally proposed. 
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Introduction 

The accurate transcription of genomic DNA into RNA is 
essential for carrying out cellular processes, as RNA transcripts are 
either translated into functional proteins or perform functions 
directly. However, in humans [1], plant chloroplasts and 
mitochondria [2], and certain viruses (e.g., [3]), there are known 
cases of RNA transcripts differing from the transcribed DNA at 
specific positions. For example, in humans, adenosine deaminases 
acting on RNA (ADARs) replace certain adenosines (A) with 
inosines, which then act as guanosines (G) during translation [4,5]; 
furthermore, the protein APOBEC1 causes a small number of 
CRU changes [6,7,8]. Many of these RNA editing events result in 
alternative proteins that are useful to the organism, and alterations 
of the frequency of certain RNA editing events can negatively 
affect organismal function [9]. 

Despite the demonstrated benefits of RNA editing events, RNA 
editing is currently viewed as a relatively rare phenomenon, with 
one comprehensive study identifying only several hundred ARG 
changes in the human transcriptome [10]. However, a recent study 
comparing RNA and DNA sequences from 27 human individuals 
challenges this view [11]. In this study, Li et al. [11] discovered more 
than 10,000 human exonic sites where the RNA sequences 
appeared to differ from DNA sequences obtained from the same 
individual. Interestingly, the majority of these RNA-DNA differ-

ences (RDDs) produce changes other than the typical ARG or  

CRU changes expected by known mechanisms of RNA editing 
[6,7]. This surprising result implies that most RDDs are produced 
by some as yet unknown molecular mechanism. Perhaps even more 
strikingly, this study found a much larger number of modified sites 
in human mRNAs (10,210) than any study to date, suggesting that 
RDDs are an important contributor to transcriptomic diversity. 

Li et al. [11] experimentally confirmed that many of these 
modified RNA sequences do exist and sometimes result in altered 
proteins, and are therefore not artifacts of sequencing error. 
Furthermore, by restricting their analysis to mostly invariant sites, 
they minimized the likelihood that unsampled genetic variation at 
the RDD site could result in false positives; comparison with 
previous studies also ensured the accuracy of their genotype calls 
at each RDD site. However, the authors did not take adequate 
steps to ensure that the modified RNA could have resulted from 
accurate transcription of DNA somewhere else in the genome. 
Their only check of the DNA sequences present in each individual 
was to ensure that RNA-seq reads mapped uniquely to the 
annotated human GENCODE mRNA sequences [11]. Unfortu-

nately, this step is not enough to ensure the absence of genomic 
sequences matching the modified sequences. For example, 
spurious RDDs would be observed if a highly similar paralog 
absent from GENCODE and differing from the edited locus at the 
RDD site was transcribed and translated. In this case the RNA-seq 
reads supporting RDD events could be derived from sequences 
other than the seemingly modified gene. 
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Because Li et al. only searched their RNA-seq reads against the 
GENCODE sequences, there are actually three different potential 
sources of spurious RDDs. First, transcribed sequences paralogous 
to a GENCODE gene present in the reference genome but not 
included in the GENCODE predictions of protein-coding genes 
would be incorrectly inferred to be an RDD if nucleotides differed 
between the two sequences. Second, even ensuring that sequences 
are unique in the reference genome does not ensure that they are 
the result of RNA editing: paralogous sequences present in the 
reference genome that contain a single-nucleotide polymorphism 
in the sampled individual (such that the exact sequence is not 
present in the reference genome) would also appear to be RDDs. 
Finally, nucleotide differences in segregating copy number variants 
[12] that are absent from the reference assembly and contain a 
single nucleotide difference from their paralogous sequence in the 
reference genome would also be inferred to be RDDs. In any of 
these cases the paralogous sequence, if transcribed, has the 
potential to confound the analysis by producing evidence of post-

transcriptional modifications where none exist. We examined both 
the DNA and RNA sequences analyzed by Li et al [11], and found 
that the vast majority of apparent RDD sites identified in their 
study match genomic sequence and are therefore most likely the 
result of accurate transcription of paralogous sequence rather than 
some unknown RNA editing mechanism. 

Results 

In order to determine the extent to which RDD events could be 
erroneously called due to transcription of paralogous sequences 
matching RDD sites, we first asked whether RDD calls made by Li 
et al. [11] matched sequence elsewhere in the genome by 
searching their 10,210 RDD sites against the reference genome, 
a step not taken in the original paper. When extracting RDD sites 
and flanking sequences from the reference genome in order to 
perform this search, we noticed that at 39 of these RDD sites the 
reference genome exhibited the nucleotide reported by Li et al. to 
be present in the mRNA but not in the genome (which we will 
refer to as the ‘‘RDD nucleotide’’). This suggests that these 39 
RDD events were reported in error. We then searched the 
remaining 10,179 RDD sites against the reference genome (see 
Materials and Methods) and found that 890 of these RDD sites 
have a paralog in the reference genome that exhibits the RDD 
nucleotide. The observation of RNA-DNA sequence differences at 
these sites suggests that the inferred RDDs are more likely due to 
transcription of these paralogous sequences than RNA alterations. 
This explanation is supported by the fact that 674 (75.7%) of these 
paralogs are found in transcribed regions of the genome, and 640 
(71.9%) are located within an annotated gene (Materials and 
Methods). 

We also found that 1,316 additional RDD sites have at least one 
paralog in the reference genome not containing the RDD 
nucleotide. However, such paralogs could contain polymorphisms 
such that the transcription of these sequences would result in the 
appearance of RDDs, if the polymorphic allele not present in the 
reference genome matches the RDD nucleotide. Again, this 
possibility is supported by the large percentage of such paralogs 
found in genes (86.5%) or transcribed regions of the genome 
(86.2%). In total, RDD sites are much more likely to have a 
paralog than an average human gene (80.6% of RDD sites versus 
68.3% of all human genes; P,2.2610216; Fisher’s Exact Test 
using paralogy assignments from ref. [13]). In addition to paralogs 
present in the reference genome, duplication polymorphisms 
absent from the reference genome could also create the 
appearance of RNA-DNA differences. This possibility seems 

especially relevant given that 3,893 of the remaining RDD sites are 
either within a duplication listed in the Database of Genomic 
Variants [14] or have a paralog within such a duplication—a 1.5-

fold enrichment of RDD sites for copy number-variable regions of 
the genome (P,0.001; see Materials and Methods). 

For both of the above possibilities to explain the appearance of 
RDDs, there must be genomic DNA present in an individual (and 
not the reference genome) that matches the RDD nucleotide. We 
therefore asked whether Li et al.s’ RDD calls for each individual 
were matched by genomic reads from the same individual, again, a 
step not taken in the original paper. Because the list of individuals 
exhibiting each RDD site was not made available, we attempted to 
recapitulate Li et al.’s results by mapping their RNA-seq data to a 
database of transcripts containing the 10,210 RDD sites. We used 
the short-read mapping program BWA [15] to map all RNA-seq 
reads and applied Li et al.’s criteria for detecting RDD events and 
determining which events occur in which individuals (Materials 
and Methods). For most individuals, the number of RDD events 
we called closely matched the corresponding number of events 
found by Li et al. (compare our Supplementary Figure S1 with 
Figure 1B from Li et al.—the exact number of events originally 
found in each individual was not provided by the authors), 
suggesting that we fairly accurately recreated their set of RDDs. 
Next, we mapped genomic reads from these same individuals 
available through the 1000 Genomes project [16] to these RDD 
sites, and found that on average 30.5% of RDD events called in an 
individual are matched by at least one genomic read from that 
same individual containing the RDD nucleotide. This result 
suggests that a substantial proportion of RDD sites called by Li 
et al. may not be the result of some type of RNA editing event. 
Instead, there are likely paralogous sequences matching the RDD 
nucleotide in some or all of the 27 individuals, and these 
apparently edited transcripts could be the result of transcription 
of these sequences. 

Given the low genomic sequencing coverage of many of the 27 
individuals [16], we suspected that even more of Li et al.’s RDD 
sites could have been false positives. We reasoned that if an RDD 
site matched genomic sequence from any individual, whether that 
individual met the criteria for exhibiting the specific RDD event or 
not, the RDD site was likely not a true editing event. We therefore 
examined genomic reads from all individuals to determine how 
many RDD sites matched genomic sequences present in this 
sample. In total, we found that 74% of RDD sites have at least one 
genomic read matching the RDD nucleotide in at least one 
individual. Because some of these matches could be due to simple 
sequencing errors in genomic reads, we used more stringent 
criteria to identify a higher-confidence set of genomic sequences, 
and examined the numbers of reads not matching either the 
genomic nucleotide or the RDD nucleotide to verify that se-

quencing error had a minimal impact on this analysis (Materials 
and Methods). These methods found that the majority (5,666 or 
55%) of the 10,210 RDD sites match genomic sequence from at 
least one individual. In total, 5,900 (57.8%) of the 10,210 RDD 
sites match either sequence from one of the 27 individuals or from 
the human reference genome. Table S1 provides a list of the 
10,210 RDDs, and whether or not we find evidence for a genomic 
explanation for the event. 

If RNA editing is largely restricted to ARG substitutions, and if 
the 5,900 RDD sites matching genomic sequence data are truly 
spurious, then the remaining 4,310 RDD sites in Li et al.’s set 
should be enriched for ARG changes. This is indeed the case, as 
the percentage of all RDD sites that are ARG differences 
increases from 22.8% to 23.5% (P = 0.013; Fisher’s Exact Test) 
when RDDs matching genomic sequence are removed from the 
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set. When all RDDs matching at least one genomic read from any 
individual are removed, the percentage of ARG events grows to 
24.5%, though this increase is not statistically significant. While 
this strongly suggests that the RDDs matching genomic sequence 
are spurious, a substantial number of non-ARG events remain. 
This observation can be interpreted in two ways: either the 
remaining RDD sites are likely true RNA editing events, or they 
are also erroneous observations due to accurate transcription of 
genomic sequences missed because of the relatively low coverage 
of the sequences examined in our analysis. The latter interpreta-

tion is supported by Figure 1, which shows the growth in number 
of RDD sites matching genomic sequence according to our criteria 
when examining sequence data from additional individuals 
(Materials and Methods). Extrapolating from this curve reveals 
that over 90% of all 10,210 RDDs would be removed by our 
analysis using sequence data of comparable quality and coverage 
from 245 individuals. It therefore seems prudent to conclude that 
many of the 4,310 remaining RDDs could have been observed in 
error due to transcription of paralogous loci, and that the vast 
majority of the 10,210 RDD sites called by Li et al. can be 
explained by faithful transcription of genomic DNA. 

Discussion 

Our results suggest that by failing to consider the totality of 
genomic data from their sample population and paralogous loci 
present in the human reference genome, Li et al. [11] grossly 
overestimated the amount of RNA editing in the human genome. 
However, just as striking as the number of RNA-DNA differences 
described in their paper was the distribution of these changes—the 
vast majority of RDD sites they report are not ARG or  CRT 

substitutions, and therefore could not have been caused by any 
known editing mechanism. Notably, a recent study examined 
DNA and RNA sequences from a different sample of 15 
individuals and did not find either of these striking results [17]. 
Using a similar method but with more stringent criteria for 
detecting RNA-DNA differences, this study reports a much 
smaller number of RDD sites (1,809) with over 50% of these 
due to ARG events—a distribution far more in line with 
expectations based on current knowledge of RNA editing than 
the results reported by Li and colleagues. Indeed, the removal of 
apparently spurious RDD sites from Li et al.’s set of RDDs alters 
the distribution of editing events in this direction. 

Although we are not able to explain all 10,210 RDD sites using 
genomic sequence, this is in large part due to inadequate sequence 
coverage, as shown in Figure 1. Furthermore, a substantial fraction 
of RDDs that Li et al. attempted to validate experimentally were 
not confirmed. For example, of the experiments conducted to 
validate RDD events, the one that attempted to confirm by far the 
largest number, searching 120 RDD sites against the more than 8 
million human ESTs in GenBank, confirmed only 81 (67.5%) of 
these events [11]. While the failure to confirm some of the RDD 
events is probably due to the difficulty in sequencing mRNAs 
expressed at low levels, it is also likely that some unconfirmed 
RDDs were due to sequencing error in the original RNA-seq data. 
It is therefore unnecessary to invalidate each of the 10,210 RDD 
sites reported by Li et al. using data from genomic DNA in order 
to cast doubt on their conclusion that there is a novel and 
widespread mechanism of RNA editing, at least until stronger 
evidence is provided. Taken together, the results from Li et al. 
[11], Ju et al. [17], and ourselves are not inconsistent with some 
unknown mechanism of RNA editing acting on the human 

Figure 1. The number of RDD sites eliminated increases with number of individuals examined. This graph was generated by randomly 
adding an individual’s genomic sequence data to the total dataset and counting the number of RDD sites eliminated (i.e. found to match genomic 
sequence) once that individual was added. This was repeated 1,000 times and the average number of eliminated RDDs was calculated for each 
number of individuals. The value for zero individuals is 929 because this is the total number of RDDs that can be eliminated solely by examining the 
reference genome. 
doi:10.1371/journal.pone.0025842.g001 
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transcriptome at a much smaller number of sites. However, more 
work will be required to precisely determine the frequency of any 
such editing events, if they are indeed occurring, and the 
mechanism(s) responsible for these events. 

Materials and Methods 

Searching RDD sites against the reference genome 
We extracted each of Li et al.’s 10,210 RDD sites [11] as well as 

49 bp of flanking sequence on either side of the edited site from 
the NCBI 36 human reference genome. 39 of these were found to 
exhibit the same nucleotide in the reference genome as in the 
edited state as reported by Li et al., and were excluded from 
further analysis. We then used BLAT [18] to search the remain-

ing 10,171 against the reference genome using default re-

pMatch = 100000 and stepSize = 5. Only BLAT hits of greater than 
90% identity were considered. A hit was considered to be a 
paralog capable of producing a spurious signal of RNA-DNA 
sequence difference if it was at least 50 bp long (the length of the 
RNA-seq reads used by Li et al. [11]), and matched the nucleotide 
present in edited transcripts but not the genome at the RDD site. 
890 RDDs were found to have such a paralog. Hits at least 50 bp 
long but not matching the edited nucleotide were considered 
paralogs not exhibiting the RDD state in the reference genome. 
1,316 RDDs were found to have such a paralog. 

To determine whether a site paralogous to an RDD site was 
found within an annotated gene, we downloaded the coordinates 
of all annotated human genes from version 54 of Ensembl [19], 
and determined which sites paralogous to RDDs were found 
within these coordinates. Similarly, we downloaded mapping 
results of 296,734 mRNA sequences to the human genome from 
the UCSC genome browser [20], and determined which RDD 
paralogs were found within regions matching these sequences. 

Finding RDD sites or paralogous sequences in 
duplication polymorphisms 

To determine which RDD sites or paralogs of RDD sites were 
found within regions known to have duplication polymorphisms, 
we downloaded version 10 of the Database of Genomic Variants 
[14]. We then examined all copy number variants exhibiting gain 
alleles and found that 3893 of RDD sites or their paralogs were 
found in such regions. To determine whether RDDs and their 
paralogs were significantly overrepresented in copy number 
variants, we replaced each of the RDD sites or paralogous sites 
examined with a random position in the human genome, and 
checked whether this position was found within a duplication 
polymorphism. We repeated this process 1,000 times, and never 
found as many random positions in duplications as RDD or 
paralogous positions. Thus, RDD sites are significantly biased 
toward copy-number variable regions of the human genome 
exhibiting duplication alleles. 

Using RNA-seq to call RDD sites 
In order to determine which individuals exhibit each of the 

10,210 RDD sites reported by Li et al. [11], we downloaded their 
RNA-seq data and mapped these reads to a database of transcripts 
containing the 10,210 sites using BWA [15]. In the original paper, 
Bowtie [21] was used to map RNA reads to the GENCODE 
genes. However, BWA is more accurate and allows for indels [15], 
so we use it here. In any case, if RDDs are common, then their 
detection should be robust to changes in alignment software. 
Following Li et al. [11], we only examined reads mapping to a 
given RDD site with no more than two mismatches. We then used 
their criteria to determine which individuals exhibit each RDD 

site. Briefly, in order for a position in an individual to be 
categorized as an RDD event in which the genomic nucleotide A is 
replaced with nucleotide B in the messenger RNA, Li et al. require 
1) that at least 10 RNA-seq reads map to the site, 2) that at least 
90% of these reads match either A or B, 3) and that of the reads 
matching either A or B, at least 10% match nucleotide B. 

Finding genomic reads matching RDD sites 
Genomic reads from the same 27 individuals examined by Li 

et al. [11] were downloaded from the 1000 Genomes Project [16] 
website. These reads correspond to a mix of 454, Illumina, and 
SOLiD technologies. We constructed a database of all RDDs by 
extracting from the reference human genome (hg18) 49 nucleo-

tides on each side of all RDD sites, using the position and strand 
information in Table S10 from Li et al. This database was indexed 
for search with BWA [15], using the ‘is’ parameter for the 
algorithm (option –a is). A color-space version of this database was 
built for mapping of SOLiD reads. We used BWA to map the 
genomic reads to this database, initially allowing up to 5 
mismatches (option –n 5) and no gaps (option –o 0). Reads having 
more than one mismatch other than those corresponding to the 
edited nucleotide at RDD sites were eliminated from the 
remainder of the analysis. 

Controlling for sequencing error 
We initially found that 74% of RDD sites had at least one 

genomic read in at least one individual matching the edited 
nucleotide. However, nearly 54.6% of RDD sites had a genomic 
read matching neither the genomic nucleotide nor the edited 
nucleotide, which may be due to sequencing error. Therefore, to 
minimize the effect of sequencing error, we asked how many RDD 
sites had at least 90% of genomic reads from an individual 
matching either nucleotide A (the genomic nucleotide) or 
nucleotide B (the edited nucleotide) and at least 10% of these 
reads matching nucleotide B. Note that these requirements are 
similar to those used by Li et al. and ourselves to call RDD sites. 
(The only relevant requirement omitted for this step is that the 
total coverage at a site be greater than or equal to 10, which would 
greatly reduce our sensitivity given the lower coverage of the 
genomic sequence data.) We found 5,666 RDD sites (55.5%) 
meeting these criteria. To ensure that this approach had adequate 
specificity, we also checked how often these criteria were met by 
reads matching one of the other two nucleotides. In other words, 
when we randomly replaced the B nucleotide of an RDD site with 
one of the two nucleotides not equal to A or B and repeated our 
test, we found only ,910 RDD sites (8.9%) meeting these cri-

teria (mean after 10,000 iterations). Similarly, we verified that 
sequencing error was not responsible for the sizeable proportion of 
RDD sites present in a given individual that were also matched by 
at least one genomic read from that same individual. While on 
average 30.5% of RDD events found in a given individual were 
matched by a genomic read from that same individual containing 
the B nucleotide, only 8.2% of RDD events matched a genomic 
read having one of the other two nucleotides. It should be noted 
that some reads not matching either the A or the B nucleotide may 
be the result of additional polymorphisms or paralogs rather than 
sequencing error. Thus, we may be overestimating the impact of 
sequencing error. 

Supporting Information 

Figure S1 The number of RDD events found in each 
individual. We called RDD sites we found using RNA-seq data 
from each of the 27 individuals after performing our own mapping 
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and reapplying the original criteria used by Li et al. [11]. Since the 
number of RDD events originally called in each individual was not 
made available, the only way to compare the similarity of our 
RDD calls in each individual with the original calls is by 
comparing this figure to Figure 1B from Li et al [11]. 
(TIF) 

Table S1 Detailed list of the 10,210 RDD sites. 
(XLS) 
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