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Highlights 
Despite the increased availability of 
whole genome sequences, the data 
available for phylogenetic studies are 
extremely limited. This is because only 
single-copy genes present in most sam-
pled species are used to infer phyloge-
nies. In this review, we discuss several 
approaches for increasing the amount 
of data that can be used in phylogenetic 
inference. 
The availability of whole genome sequences was expected to supply essentially 
unlimited data for phylogenetics. However, strict reliance on single-copy genes 
for this purpose has drastically limited the amount of data that can be used. 
Here, we review several approaches for increasing the amount of data used for 
phylogenetic inference, focusing on methods that allow for the inclusion of dupli-
cated genes (paralogs). Recently developed methods that are robust to high 
levels of incomplete lineage sorting also appear to be robust to the inclusion of 
paralogs, suggesting a promising way to take full advantage of genomic data. 
We discuss the pitfalls of these approaches, as well as further avenues for 
research. 
Recent work suggests that the inclusion 
of loci missing data for some taxa should 
not mislead phylogenetic inference with 
several popular methods. 

Even if  orthologs are required, re-
searchers need not limit themselves 
to single-copy orthologs, as paralogs 
specific to a single lineage or to a pair 
of sister lineages should not lead to 
topological errors in any approach to 
phylogeny inference. 

Several recent methods for species-tree 
inference that are robust to high levels 
of incomplete lineage sorting also appear 
to be robust to the inclusion of paralogs. 
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The Search for Orthologs 
The business of phylogeny-building has been transformed by the availability of whole genome 
sequences (reviewed in [1]). Indeed, the promise of ‘phylogenomics’ was access to many 
thousands of loci [2]. However, the data requirements of most phylogenetic inference methods – 
single-copy genes present in almost all species sampled (Figure 1A, Key Figure) – have meant 
that a growing number of phylogenomic studies have actually used very small amounts of data. 
For instance, in their dataset of 76 arthropod genomes, Thomas et al. [3] found no genes that 
were single-copy and present in all species. This study is not unique: even with whole-genome 
data, as the number of species sampled goes up, the number of single-copy genes found in all 
taxa goes down [4]. 

Phylogeny estimation has long relied on the identification of single-copy orthologous genes, 
filtering out paralogous genes found in multiple copies in one or more species (Box 1). Indeed, 
when Fitch [5] introduced the terms orthologs and paralogs (see Glossary), it was in the context 
of species phylogeny estimation: ‘Phylogenies require orthologous, not paralogous, genes.’ This 
sentiment is echoed repeatedly in the literature [6,7], based on the belief that, since orthologous 
genes are related by speciation events alone, their relationships should more accurately reflect 
the species phylogeny. Similar claims are made about the privileged use of orthologs in protein 
function prediction [8–10]. 

However, algorithms that enable species trees inference using both orthologs and paralogs were 
proposed more than 40 years ago [11], and efficient software implementing these approaches 
has been around for at least 20 years [12]. Methods using orthologs and paralogs work because 
gene trees containing duplication events also include all of the speciation events that follow 
(Figure 1B). While each duplication event does add a branch not found in the species tree, it 
also doubles the amount of information contained about subsequent speciation events (in the 
absence of subsequent losses). Most significantly, recent methods developed for phylogeny 
inference using orthologs [13,14] turn out to be highly accurate and extremely efficient when 
applied to datasets including paralogs [15,16]. Although the application of these approaches to 
such datasets is just beginning, their promise for phylogenomics is clear. 
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Glossary 
Bayesian inference: in phylogenetic 
inference, an approach to estimate the 
posterior distribution of tree topologies 
and branch lengths. 
Gene duplication and loss (GDL): the 
process by which genes are duplicated 
and lost. Loss can occur with or without 
a previous duplication. 
Gene tree heterogeneity: a mismatch  
between the topology of a single region 
and the topology of a species, or 
between different genomic regions. 
Homologs: genes that share a 
common ancestor. 
Incomplete lineage sorting (ILS): the 
failure of two lineages to coalesce within 
a population, which may lead to gene 
trees that disagree with the species tree. 
Introgression: gene flow between 
divergent lineages, referred to as 
horizontal gene transfer in asexual 
species. 
Orthologs: homologous genes that 
share a common ancestor owing to 
speciation. 
Paralogs: homologous genes that 
share a common ancestor owing to 
duplication. 
Pseudo-orthologs (or hidden 
paralogs): regions with a history of 
duplication for which only a single copy 
is retained per species owing to 
differential loss of duplicate copies 
across species. 
Quartet-based methods: algorithms 
for inferring species trees from a 
collection of unrooted four-taxon (or 
rooted three-taxon) trees. 
Statistically consistent: A method is 
statistically consistent under a particular 
model if, when given an unlimited 
amount of data, it would arrive at the 
correct answer under the model. 
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Figure 1. There are several potential sampling strategies in phylogenetic inference. Here, we illustrate a few of these, 
although these categories are not mutually exclusive. (A) Phylogenies can be constructed from complete sampling of 
single-copy orthologs. (B) Phylogenies can be reconstructed from sets of paralogs. The tree shown has a single 
duplication event in the ancestor of all species. (C) Phylogenies can be constructed from genes with missing data, either 
owing  to incomplete  sampling or to gene loss.  (D) Phylogenies can be constructed from loci with lineage-specific 
duplications. Duplications in lineages ‘a’ and ‘e’ result in two copies in each of these species in the tree shown. Sampling 
a single copy from each species should not affect phylogenetic inference. 

Trends in Genetics 
In this review, we discuss ways to combat the limitation of single-copy orthologs by increasing the 
amount of data that can be used in phylogenomics, while still maintaining a high degree of accuracy. 
We first discuss the problem of gene tree heterogeneity, and how it affects the accuracy of spe-
cies trees. Next, we review two broad approaches for increasing the amount of data used in 
phylogenomic inference: one that still includes only orthologs and one that includes both orthologs 
and paralogs. We also describe the newly developed phylogenetic methods that make both of 
these approaches possible. Finally, we identify some key topics to consider when inferring phylog-
enies in the presence of paralogs, including promising future areas of research on this topic. 

Gene Tree Heterogeneity and the Problem of ‘Hidden Paralogy’ 
Gene tree heterogeneity is now recognized as common in phylogenetics [17]. Topological hetero-
geneity may be due to a number of biological factors, including incomplete lineage sorting 
(ILS), introgression, and gene duplication and loss (GDL) [18], in addition to technical factors 
such as error in gene tree reconstruction. This heterogeneity has important consequences for 
species tree inference, as if it is not accounted for it can lead to an incorrect phylogeny. Methods 
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Box 1. Types of Homologous Relationships and Implications for Phylogenetic Inference 

Homologous loci share a common ancestor. Orthologous loci share a common ancestor owing to speciation (e.g., a1 and 
b1 in Figure I), while paralogous loci share a common ancestor owing to duplication (e.g., a1 and a3; [5]). Orthology rela-
tionships can be classified as ‘one-to-one’, ‘one-to-many’, and  ‘many-to-many’ based on whether speciation was 
followed by duplication in neither, either, or both lineages [115]. For example, b1 and c1, are ‘one-to-one’ orthologs. These 
are the orthologs that are typically used in phylogenetic inference. Specifically, researchers target single-copy orthologs, 
which exist in only a single copy in all species considered. However, ‘many-to-one’ or ‘many-to-many’ orthologs may also 
be useful. Since the duplication event leading to paralogs a1 and a3 occurred after the speciation event with b1, they have 
a ‘many-to-one’ orthologous relationship. Such lineage-specific duplications should not affect phylogenetic inference 
because a1 and a3 are ‘co-orthologous’ to b1 and c1, meaning that either copy has an orthologous relationship 
with b1 and c1. Similarly, a2 and a4 have a ‘many-to-one’ orthologous relation to c2. The large numbers of complex 
‘many-to-many’ relationships that can arise (for instance, the relationship between a1, a2, e1, and e2 in Figure 1D in main 
text) make ortholog group delimitation a difficult task, although these loci can still be used in many types of phylogenetic 
inference. 
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Figure I. Types of Homologous Relationships. 
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developed to deal with multiple causes of heterogeneity can also help us to infer phylogenies from 
a broader set of loci. 

In particular, high levels of ILS can mislead many species tree methods, whether they apply max-
imum likelihood methods to concatenated alignments of all loci [19,20] or use the most common 
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gene tree topology as an estimate of the species phylogeny [21]. Partly because of these issues, 
methods that account for ILS when estimating species phylogenies have proliferated 
[13,14,22–27]. Several of these methods require that gene trees be estimated separately for 
each locus and then combine these in a principled way to infer a species tree [13,14,22,24,27], 
while others either bypass gene tree reconstruction [23,26] or jointly infer gene and species trees 
[25]. As with most phylogenetic approaches, these methods were initially designed to use datasets 
consisting of only single-copy orthologs, as they were intended to account only for ILS as a source 
of gene tree heterogeneity. Importantly, however, many of these methods also deal naturally with 
missing data; this will be key for several of the new approaches described below. 

Gene duplication and loss leads to gene tree heterogeneity by adding duplication events to gene 
trees (Box 1). Such events are not expected in histories that follow only the species tree, so trees 
that contain more than one copy of a gene are generally removed from phylogenetic datasets. 
More insidiously, ‘hidden paralogs’ [28], or ‘pseudo-orthologs’ [29], contain only a single 
copy per species owing to differential loss of duplicate copies across species (Figure 2) and
can be mistaken for single-copy orthologs. The topologies inferred from pseudo-orthologs can 
differ from the species tree via a process that is rarely modeled by phylogenetic methods. 

Although they are much feared, few studies have actually evaluated the effects of including 
pseudo-orthologs on phylogenetic inference, and these found mixed results. Brown and 
Thomson [30] suggested that outlier loci supporting a contentious placement of turtles were 
paralogs, and that these had an extreme effect on Bayesian inference applied to a 
concatenated dataset. Many other studies have shown differences in the species tree inferred 
from datasets assembled using different orthology detection tools, differences that are possibly 
due to the inclusion of pseudo-orthologs (reviewed in [6]). Some of these studies found substan-
tial differences in the inferred trees [31], while others found minimal effects [32,33]. 

What is clear from the work briefly summarized here is that there are many causes of gene tree 
heterogeneity that have the capacity to mislead phylogenetic inference. With respect to increas-
ing the types of loci that can be used in phylogenomics, we would like any approaches using 
these loci to be robust to the known problems caused by both ILS and hidden paralogy. 

Increasing Data Availability Without Including Paralogs 
If only orthologous genes are required, there are multiple ways to increase the total number of loci 
used in phylogenetic inference. Here we discuss two such approaches that can increase the 
amount of available data: relaxing filters for missing data (Figure 1C) and sampling lineage-
specific duplicates (Figure 1D). 

Sampling Single-Copy Orthologs with Missing Data 
Often, researchers require that all or most of their taxa are sampled for a locus to be included in 
phylogenetic inference. However, the actual effects of including missing data – that is loci for 
Figure 2. Orthologs, Pseudo-orthologs, and Quartet Frequencies. (A) The full history of a locus in three species and an outgroup, including one duplication event 
and two speciation events (which are shown separately for each set of orthologs). (B) Scenarios where only a single gene copy is sampled per species; the outgroup is 
assumed to be sampled in each, but is not shown for clarity. The single copies may be present because of gene losses (shown here as Xs), or simply because a single 
copy is randomly chosen per species. The latter case is also what would happen if there were no missing copies but quartets were sampled from the full gene tree as 
input to ASTRAL [15,16]. There are four quartets that match the species tree: the two orthologs and the two left-most pseudo-orthologs (‘hidden paralogs’). The 
remaining pseudo-orthologs either place lineages ‘b’ and ‘c’ sister to one another (center) or ‘a’ and ‘c’ sister to one another (right). Therefore, quartet methods should 
perform well even when paralogs are included, because the most common set of relationships should still match the species tree. Note that if genes are single-copy 
because of gene losses, the species tree relationship is likely to become even more common: the orthologs require only one loss in their history and the matching 
pseudo-orthologs require two losses. Pseudo-orthologs not matching the species tree can only be generated when there are three separate loss events. 
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which no sequences exist in one or more species – remain unclear. In concatenated analyses, 
simulation studies have demonstrated that there are limited negative effects of missing data 
[34]. Other studies have argued that the issue is a lack of informative data rather than missing 
data per se [35,36]. Many empirical studies show little effect of including missing data [37,38], 
and often the positive effects of including a larger number of loci or sites seem to outweigh the 
negative effects of missing data [39,40]. 

There has been a lot of recent work on the effects of missing data on gene-tree-based methods 
that can account for ILS [14,22,24,27]. Because these methods combine individual gene trees 
from each locus, they can naturally accommodate missing taxa in a subset of trees. Studies 
have shown that ILS methods can be robust to substantial levels of missing data, whether 
these are randomly or nonrandomly distributed [41–43]. Note, however, that these results may 
break down in cases of extreme branch lengths [44,45]. 

Based on these considerations, one simple way to drastically increase the amount of data 
that can be used for phylogenetic inference is to relax missing data thresholds. For 
quartet-based methods such as ASTRAL [13], the minimum number of taxa required 
from each locus is four (Figure 1C), as a four-taxon unrooted tree is all that is needed to 
specify phylogenetic relationships. Empirically, results of relaxing these thresholds can be 
dramatic. For example, Eaton and Ree [46] found that requiring a minimum of four taxa in-
creased the number of loci available in a group of flowering plants nearly ninefold compared 
with requiring that all  taxa be sampled. The relative advantage gained by using these 
methods can only go up as more taxa are included in a dataset, although researchers 
should try to ensure that species are represented approximately evenly across loci to 
avoid cases where most of the signal for some branches comes from a small number of 
genes (e.g., [47]). 

Sampling Orthologs that Have Lineage-Specific Duplication Events 
The requirement that only orthologs be sampled for phylogenetic inference does not mean that 
we must only include single-copy orthologs. Notably, there is no theoretical reason to exclude 
loci that have undergone lineage-specific duplications, as they can have many-to-one 
orthologous relationships with single-copy genes (Box 1). For example, in Figure 1D, species-
specific duplications have occurred in lineages a and e. Since the two copies in each species 
are both orthologous  to  the gene copies in all  other lineages, if we chose a single gene from 
each species the resulting gene tree would include only speciation events. There can be no 
gene tree heterogeneity induced by such a sampling scheme, even when there are more than 
two copies in each species. 

Surprisingly, this approach has rarely been used in phylogenetics research. The number of loci 
that could be included would greatly increase, but the computational burden would increase 
slightly, as well (Box 2). These numbers could be increased even further, too: there should be 
no negative effect on the inferred topology of including duplications specific to  a  pair  of  sister
species. In other words, if one or more duplication events occur in the ancestor of a pair of 
species, sampling a single copy from each of these species cannot induce gene tree heterogeneity. 
This occurs because there is only a single way this pair can be related, while such gene tree invari-
ance cannot be ensured for duplicates ancestral to three or more species. Although the inclusion of 
duplicates specific to a pair of sister species should not affect the inferred topology, it could affect 
estimates of terminal branch lengths (see section on Branch Lengths later). Broadening sampling 
to include these genes would lead to a further increase in the number of loci available for phyloge-
netic inference. 
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Box 2. Identifying Orthologous Genes and Sampling Lineage-Specific Paralogs 

Owing to interest in identifying orthologs both for phylogeny reconstruction and for functional prediction, several methods 
for ortholog detection have been developed (reviewed in [115]). The most commonly used approaches for ortholog 
detection are graph-based approaches, which rely on the identification of reciprocal best hits (RBHs). These methods 
are based on the assumption that the two most closely related homologs between a pair of species should be orthologs. 
After RBHs are identified, some approach must be used to construct groups of orthologous sequences. One such 
approach, implemented in the software OrthoMCL [116], uses a Markov clustering algorithm to identify orthogroups 
consisting of orthologs and recent paralogs. Typically, for downstream phylogenomic inference, single-copy orthologs 
present in most species are extracted from these results. While lineage-specific duplicates need not be excluded from 
datasets for phylogenetic inference (see main text), it is not straightforward to extract these automatically from the output 
of most graph-based approaches. Instead, the most obvious way to identify and include these genes is by reconstructing 
gene trees for all orthogroups, identifying lineage-specific duplicates, and selecting one copy per species for downstream 
inference. Some recently introduced branch-cutting methods can also sample such genes from orthogroups containing 
duplicates. Yang and Smith [117] consider several different branch-cutting algorithms to extract orthologs appropriate 
for phylogeny estimation, showing that these methods considerably increase the number of genes available for phyloge-
netic inference. For example, in a Hymenoptera dataset analyzed by these authors, the number of orthologs present in at 
least eight taxa increased from 4937 using only single-copy-orthologs to 9128 under one branch-cutting technique [117]. 
Thus, even when including paralogs is not desirable, orthologs can be extracted from many datasets not traditionally 
considered in phylogenetic inference. 

Trends in Genetics 
Estimating Species Trees in the Presence of Paralogs 
In the methods described thus far we have still limited ourselves to analyses involving only orthologous 
loci. If we relax this restriction even more, we can again greatly increase the number of loci to be used. 
We review five general approaches for reconstructing species trees in the presence of paralogs. We 
largely go through these methods in the chronological order in which they appeared in the literature, 
spending the most time at the end on promising new methods. 

Gene Tree Parsimony 
The earliest methods to infer species trees in the presence of gene duplication and loss used gene 
tree parsimony (GTP) [11,12,48,49]. In these approaches the aim is to find the species tree with 
the minimum ‘reconciliation’ cost [50] to a collection of input gene trees; that is the species tree 
that minimizes the distance to all gene trees. Reconciliation costs are calculated based on explicit bi-
ological causes of gene tree heterogeneity, including, but not limited to, GDL. Some algorithms calcu-
late reconciliation costs based on minimizing duplications and losses [11,49,51,52], while others 
focus completely on minimizing the number of differences induced by ILS [53,54], or allow users to 
choose among these reconciliation costs [55]. Recognizing that these processes do not act in isola-
tion, recent approaches consider both GDL and ILS [56] or GDL and introgression [57], with some 
incorporating all three processes [58,59]. Although these approaches appear to deal with ILS, they 
do not completely account for very high levels of ILS when inferring the species tree [60], and therefore 
may give misleading results in such cases. 

Robinson-Foulds-Based Methods 
The Robinson-Foulds (RF) distance between two trees measures the number of branches that must 
be removed, and the number of subsequent branches that must be added, to make them have the 
same topology [61]. RF species tree methods try to find the species tree that minimizes the RF dis-
tance to a collection of input gene trees [62]. Although this is a similar approach to gene tree parsi-
mony, RF-based approaches make no assumptions about the biological processes leading to 
heterogeneity between the gene trees and the species tree, and there are therefore no options to 
apply different costs to different processes. 

Although RF-based methods as originally described were applicable only to input trees with no 
duplicates, interest in applying these methods to multicopy gene trees  (i.e.,  those with both
orthologs and paralogs) led to several advancements that permitted the calculation of RF 
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distances between them [63,64]. Chaudhary et al. [65,66] then introduced an approach for find-
ing a species tree using multicopy gene trees as input. Their method, MulRF, compares favorably 
with GTP approaches [67], and has recently been improved by Molloy and Warnow [68]. RF 
methods appear to perform well under general conditions [67,68], although, like GTP methods, 
they are not accurate under high levels of ILS [69]. 

Probabilistic Methods 
Several stochastic models of duplication and loss have been described (e.g., [70–74], reviewed in 
[75]), as well as stochastic models that together consider duplication and loss and ILS [76,77] or  
introgression [78,79]. These models pave the way for probabilistic methods to infer a species 
tree. However, while they have often been used to infer gene trees (e.g., [80,81]), the develop-
ment of methods to infer species trees based on these models has been much slower (but see 
[71,79]). One possible reason for this is that probabilistic approaches are more computationally 
intensive than GTP and RF methods. PHYLDOG is one such method that jointly estimates 
gene trees, species trees, and the number of duplications and losses under a model of GDL by 
maximizing their likelihood given a set of alignments [82]. However, PHYLDOG does not consider 
other sources of gene tree incongruence (e.g., ILS) and the computational costs are high, 
preventing its application to large genomic datasets [67]. 

De Oliveira Martins et al. [83] introduced ‘guenomu’, a probabilistic supertree approach to infer 
species trees in the presence of both ILS and GDL. Guenomu implements a hierarchical Bayesian 
model: it takes as input a posterior distribution of gene trees and uses a multivariate distance 
metric based on ILS and GDL to infer a posterior distribution of species trees. However, like 
PHYLDOG, guenomu is computationally intensive, and therefore neither approach truly expands 
the number of loci one could use in phylogenomics. 

Methods Based on Neighbor Joining (and Other Clustering Approaches) 
Neighbor Joining (NJ; [84]) and other distance-based approaches are popular methods for spe-
cies tree inference using orthologs. Newer application of these approaches can accommodate 
ILS by calculating a distance matrix from a collection of gene trees inferred from separate loci, 
and then using NJ or another clustering algorithm to estimate a species tree from this distance 
matrix. Distance methods applicable to gene trees can broadly be divided into two classes: 
those that construct distance matrices based on sequence distances and those that construct 
distance matrices based on internode distances. The former approach includes the methods 
implemented in STEAC [85] and  METAL [86]. Methods based on internode distances include 
STAR [85], NJst [14], and ASTRID [24]. Distance-based approaches are statistically consistent 
under the multispecies coalescent model, meaning that, given enough data, they should return 
the correct species tree when ILS is the only source of discordance [86–88]. 

Extending distance methods to cases including paralogs is straightforward, because distance 
matrices can be calculated as averages over multiple samples from a species. Application to 
datasets containing orthologs and paralogs has already been done using NJst [15,67] and
ASTRID [16]. STAG [4] is another distance method introduced specifically to estimate species 
trees from multicopy gene trees, though it requires that loci have no missing species. Testing 
the accuracy of distance methods using orthologs and paralogs, Chaudhary et al. [67] found
that NJst was outperformed by methods based on GTP, RF distances, and probabilistic models. 
By contrast, Yan et al. [15] found that NJst performed comparably with quartet-based methods, 
and Legried et al. [16] found that ASTRID had similar or higher accuracy than all other methods 
evaluated. Overall, distance-based methods appear to be generally accurate and efficient for 
inferring species trees using paralogs. 
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Quartet-Based Methods 

Methods to build species trees from quartet sub-trees have been around for some time [89–93], 
but have found renewed popularity owing to the introduction of more accurate, more efficient 
algorithms. These methods scale well to genomic datasets and are robust to both high levels 
of ILS [94,95], and, as mentioned earlier, large amounts of missing data. ASTRAL [13,22,94] is  
among the most popular of these methods: it infers a species tree from a set of input gene 
trees, extracting quartets from them automatically, and finding the phylogeny that maximizes 
the number of shared quartet trees. ASTRAL was designed for use with single-copy orthologs, 
but can accommodate multiple haplotypes sampled within species (ASTRAL-multi [96]). In 
these cases, ASTRAL-multi effectively averages over haplotypes by sampling quartets with at 
most one sequence per species. 

Gene trees with paralogs in them take advantage of the same sampling scheme used by 
ASTRAL-multi, and perform very well because the most common quartet in multicopy gene 
trees is still the quartet that matches the species tree (Figure 2; [15,16]). ASTRAL-multi is statis-
tically consistent under the multispecies coalescent model [96] and a model of duplication and 
loss [16], and simulation studies have also demonstrated its accuracy [15,16]. Most recently, a 
version of the software explicitly built for the inclusion of paralogs, ASTRAL-Pro, outperformed 
ASTRAL-multi, MulRF, and GTP methods [69]. 

Quartet-based methods appear to be robust to the hidden paralog problem, as can be illustrated 
by an extreme example. Yan et al. [15] suggested that such methods should be accurate even 
if a single gene is randomly selected from each species for each gene tree and used as input 
to ASTRAL (a sampling scheme that has been referred to as ‘ASTRAL-ONE’ [15,16]). In such a 
scenario, there are more combinations of sampled genes that result in pseudo-orthologs 
than in true orthologs (Figure 2B). However, one-third of the pseudo-ortholog combinations 
match the species tree topology, and the other two-thirds are split evenly between the two 
alternative topologies. Because of the orthologs and the pseudo-orthologs that match the 
species tree, it appears that the quartet matching the species tree will be the most common 
[16,97]. Legried et al. [16] demonstrated that ASTRAL-ONE is statistically consistent under a 
model of duplication and loss, and Markin and Eulenstein [97] demonstrated consistency 
of this approach under the DLCoal model, which incorporates both ILS and duplication 
and loss. While statements of consistency deal with the unrealistic scenario of unlimited 
data, simulations show that with even a few hundred loci accurate species trees can be 
recovered using this approach [15]. Although the numbers of tree topologies given here 
only involve four species (including the outgroup) and one duplication event, they would likely 
hold for all larger trees since these can be deconstructed into quartets (cf., [98]). In biological 
scenarios involving similarly extreme gene loss, both orthologs and pseudo-orthologs 
matching the species tree should be more likely to be sampled because they require fewer 
losses to produce them than the pseudo-ortholog trees that do not match (Figure 2B). This 
suggests that the species tree may be even more likely to be accurately inferred using quartet 
methods. 

Because of their relative simplicity, ease-of-use, speed, accuracy, and robustness to multi-
ple issues that confound other phylogenetic methods, quartet methods have become a 
mainstay of standard phylogenetic inference using single-copy orthologs. For all  of the 
same reasons, they are likely to become widely used when sampling both orthologs and 
paralogs. We also suspect that other quartet-based methods that have not yet been eval-
uated under the inclusion of paralogs (e.g., [23]) will  perform equally well under these 
conditions. 
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Considerations When Inferring Phylogenies with Paralogs 
Although many of the methods discussed here ensure accurate inference of species tree topol-
ogies when paralogs are used, there are important caveats and implications that merit specific 
consideration. In the following sections, we discuss several of these. 

Branch Lengths 

Although topology estimates should not be biased by the inclusion of paralogs, the same is not 
true for branch lengths. When branch lengths are estimated as substitutions per site 
(e.g., [99,100]), the inclusion of pseudo-orthologs will force branches to be longer than they 
actually are (e.g., Figure 2; [98]). Conversely, when branch lengths are estimated in coalescent 
units (e.g., [13,27]), the additional gene tree heterogeneity introduced by paralogs (hidden or 
not) will result in the underestimation of branch lengths. No matter what type of branch lengths 
are to be estimated, we recommend that the dataset used be restricted to orthologs. Thus, a 
reasonable approach would be to estimate a species tree topology using all genes, and then to 
estimate branch lengths on this topology with a dataset including only orthologs (allowing for 
sampling among species-specific paralogs; Figure 1D). 

Alignment 

One of the most error-prone, but underappreciated, steps in phylogenomics is alignment 
[101,102]. Automated alignment of thousands of loci means that many errors can creep in, espe-
cially when nonhomologous (alternative) exons are sampled from different species. Fortunately, 
there are good methods for identifying regions with low alignment quality (e.g., GUIDANCE2; 
[102]). A related problem involves deciding how to choose among lineage-specific paralogs 
(Figure 1D) in order to maximize alignment length while minimizing alignment error. One promising 
approach would be to co-opt methods designed to choose among alternative isoforms at a 
single locus: some of these try to pick the set of genes that are most similar in length across 
species to avoid the inclusion of nonhomologous exons [103]. Combining such methods with 
tools that identify and filter unreliable portions of alignments [102,104–107] should minimize error. 

Polyploidy 

Polyploidy is a special case of gene duplication and loss in which the whole genome is duplicated, and 
offers a particular challenge both to methods for identifying orthologs and to species tree inference. In 
autopolyploidy both sets of chromosomes come from the same species, and gene copies are 
paralogs that behave in much the same manner as the smaller duplication events described earlier. 
Therefore, the gene tree methods discussed here should not be misled by autopolyploidy. 

Allopolyploidy occurs when the chromosome number doubles via hybridization between species; the 
resulting gene copies are referred to as homeologs [108].  Since gene copies found  in  the same allo-
polyploid genome are related through speciation between the parental species, homeologs are not 
paralogs  in  the traditional  sense.  Similarly,  there is not  a single bifurcating  species tree that describes  
relationships involving allopolyploids. While this makes it difficult to evaluate the effect of including 
homeologs on traditional species tree inference, gene-tree-based methods should usually identify 
one of the two potentially correct species tree topologies (e.g., [109]). 

Detecting Introgression 

Much less consideration has been given to the effect of including paralogs when attempting to detect 
introgression. The most commonly used phylogenetic methods for detecting introgression are based 
on the expectation that, for any quartet of species, the two minor topologies (i.e., the topologies that 
do not match the species tree) should occur at the same frequency; therefore, asymmetries between 
topologies can provide evidence for introgression [110–113]. We suggest here that, for methods that 
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Outstanding Questions 
What are the relative advantages and 
disadvantages of different approaches 
for inferring species trees in the 
presence of paralogs? 

Can we use paralogs to estimate branch 
lengths accurately under models of 
duplication and loss? 

How does the inclusion of paralogs 
in phylogenomic datasets impact the 
alignment process, and how well do 
existing filtering techniques both remove 
problematic regions and optimize the 
amount of information used? 

How do various methods for detecting 
introgression behave when paralogs  
are included? 

How does the inclusion of paralogs 
affect concatenation-based approaches 
to phylogeny inference? Is it necessary 
to filter outlier regions that may have an 
undue effect on inference? Do differ-
ences in gene length affect which 
paralogs are outliers? 

Can information about gene order 
(synteny) be used in combination 
with sequences from paralogous and 
orthologous genes to infer species 
trees? 
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depend on the frequencies of minor topologies to detect introgression, the inclusion of paralogs 
should not bias inference (see Outstanding Questions). Consider the example shown in Figure 2: 
as discussed earlier, the most common topology matches the species tree. However, four topol-
ogies do not match the species tree. These four potential trees all require three lineage-specific 
losses (one in each taxon), and should occur at equal frequency under a model of GDL in the 
absence of introgression, similarly to under cases without duplication. Thus, methods for de-
tecting introgression based on asymmetry in minor topologies should perform well in the pres-
ence of paralogs. This proposal merits additional consideration, however, as does the effect of 
paralogs on additional methods for detecting introgression not discussed here. 

Concatenation 
To carry out a concatenated analysis, one gene copy must be sampled per species per locus and 
put into a single alignment. If the intention is to include only orthologs (whether single-copy or not), a 
small number of pseudo-orthologs can have an extreme, negative influence on phylogenetic 
relationships [30,114]. This occurs because pseudo-orthologs – some of which have topologies 
that do not match the species tree – have internal branches that are longer than those of true 
orthologs (Figure 2B), giving them more phylogenetically informative changes. To minimize these 
potential problems, it may in fact help to instead include all of the data, rather than attempting to in-
clude only orthologs. We imagine a sampling scheme similar to the approach taken in [15], where a 
single copy is randomly sampled per species (i.e., ‘ASTRAL-ONE’). Not only are more underlying 
tree topologies guaranteed to match the species tree topology, but also the pseudo-orthologs 
matching the species tree have longer internal branches than those matching alternate topologies 
(Figure 2B). Thus, with enough data, the topology matching the species tree should be favored by 
concatenated analyses, even in the presence of pseudo-orthologs. While certainly not a standard 
phylogenetic analysis, we suggest that this may be a fruitful way forward in the future. 

Concluding Remarks 
Despite the massive amount of genomic data being collected across the tree of life, phylogeny 
inference is often restricted to a small portion of this data owing to filtering for single-copy 
orthologs and minimal missing data. Recent work has demonstrated that several leading 
methods for species tree inference perform well in the presence of paralogs, suggesting a source 
of additional data for phylogenomic inference. Additionally, recent work has shown that missing 
data may not be as much of an issue as feared. Thus, the amount of data available for 
phylogenomic inference may be much larger than previously thought. Future work should 
consider branch length estimation when paralogs are present, as well as the potential effects of 
paralog inclusion on inferences of introgression (see Outstanding Questions). 
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