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Abstract 

Errors in genotype calling can have perverse effects on genetic analyses, confounding association studies, and obscuring rare variants. 
Analyses now routinely incorporate error rates to control for spurious findings. However, reliable estimates of the error rate can be difficult 
to obtain because of their variance between studies. Most studies also report only a single estimate of the error rate even though geno-
types can be miscalled in more than one way. Here, we report a method for estimating the rates at which different types of genotyping 
errors occur at biallelic loci using pedigree information. Our method identifies potential genotyping errors by exploiting instances where 
the haplotypic phase has not been faithfully transmitted. The expected frequency of inconsistent phase depends on the combination of 
genotypes in a pedigree and the probability of miscalling each genotype. We develop a model that uses the differences in these frequen-
cies to estimate rates for different types of genotype error. Simulations show that our method accurately estimates these error rates in a 
variety of scenarios. We apply this method to a dataset from the whole-genome sequencing of owl monkeys (Aotus nancymaae) in three-
generation pedigrees. We find significant differences between estimates for different types of genotyping error, with the most common 
being homozygous reference sites miscalled as heterozygous and vice versa. The approach we describe is applicable to any set of geno-
types where haplotypic phase can reliably be called and should prove useful in helping to control for false discoveries. 
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Introduction 
When dealing with large sets of genotype data, such as those 
obtained from whole-genome sequencing, error rates that are 
low per site can still yield millions of miscalled genotypes. Errors 
can be introduced anywhere along the long process, from sam-
pling to genotyping. The frequency of error often depends on the 
sequencing technology employed. With next-generation se-
quencing (NGS), even reads that are perfectly mapped and free of 
base-calling errors can lead to miscalled diploid genotypes due to 
the random over-sampling of one allele during amplification. 
Genotyping errors can profoundly hinder genetic analyses, for in-
stance by reducing power in linkage and association studies 
(Abecasis et al. 2001; Gordon et al. 2002; Ahn et al. 2007). Studies 
interested in identifying rare variants are especially sensitive to 
these errors, in the context of either disease (Powers et al. 2011; 
Yan et al. 2016) or the rate of de novo mutation (Sé gurel et al. 2014; 
Carlson et al. 2018). The consequences of genotyping errors for bi-
ological conclusions can often be mitigated by explicitly includ-
ing the possibility of errors in genetic analyses (Sobel et al. 2002; 
Cartwright et al. 2007; Lebrec et al. 2008). 

Methods for attenuating the effects of error often require inves-
tigators to use an estimate of error rates (Pompanon et al. 2005). 
While error rates can broadly be classified by the type of 

sequencing or genotyping technology employed, each experiment 
will have a different error rate. Identical pipelines for generating ge-
notype data with NGS can lead to rates of error that vary between 
different samples and cohorts (Dohm et al. 2008; Huang et al. 2009). 
For example, the population frequency of each variant in a cohort 
can be used to improve the accuracy of genotype calls, as in the 
GenotypeGVCFs workflow (Poplin et al. 2017). While this approach 
increases the confidence in each genotype call, genotype error rates 
can become dependent on the rarity of variants at a locus. 

There are several different approaches for estimating genotyp-
ing error rates in a given experiment. The most straightforward is 
some form of replication, where sequencing or genotyping on one 
or more samples is repeated—or performed at higher read-
coverage with NGS—and compared to the original results (e.g., 
Wall et al. 2014; Pfeiffer et al. 2018; Ma et al. 2019). Aside from the 
potential to be cost-prohibitive, this approach generates a rate of 
discordance between replicates rather than a true estimate of the 
error rate. Robust approaches to identifying genotyping errors and 
estimating their rates typically leverage pedigree information. 
These approaches identify errors by finding discordance between 
the observed genotypes and those expected from the laws of 
Mendelian inheritance (Douglas et al. 2002; Hao et al. 2004; 
Saunders et al. 2007; The 1000 Genomes Project Consortium 2015). 
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In this study, we develop a method to estimate the rates at 
which different types of genotyping errors occur. Specifically, we 
estimate the error in genotype calling at sites that are identified 
to be variable in a population. We focus on errors at biallelic sites 
and distinguish between the errors that involve reference versus 
nonreference alleles. Our method is useful for establishing dis-
tinct nonreference discordance error rates for genetic analyses of 
rare variants, which are typically nonreference. We apply pedi-
gree information to track the transmission of haplotypes and to 
identify errors by looking for sites that have genotypes that can-
not be the result of a faithful transmission event. Loci that do not 
possess the expected phase within a haplotype block must be the 
result of either: a de novo mutation, a gene conversion event, or a 
genotyping error. Genotyping errors are by far the most common 
of these phenomena (Table 1). Detection of unlikely genotypes 
from haplotype phase has previously been used to successfully 
identify genotyping errors (Abecasis et al. 2002; Becker et al. 2006; 
O’Connell et al. 2014; Kothiyal et al. 2019). What we add here is an 
error model to explicitly determine the genotyping error rate, and 
the ability to distinguish rates for different types of errors. 

We apply our new method to a dataset of genotypes collected 
from the whole-genome sequencing of a set of owl monkey 
(Aotus nancymaae) pedigrees (Thomas et al. 2018). Among sites 
that could be phased with pedigree information, we found a sig-
nificant difference in the direction in which phase errors oc-
curred. This departure forms the signal for estimating the rate of 
genotyping error. Estimated error rates were significantly differ-
ent among the genotypes, with the most common error being a 
homozygous reference site miscalled as heterozygous. The prin-
ciples of our method can be applied to determine the rate of dif-
ferent types of genotyping error in any dataset where phase 
errors can be identified. 

Materials and methods 
We develop a method to estimate genotyping error rates from 
whole-genome data by examining autosomal sites that can be 
unambiguously phased from a three-generation pedigree. When 
the transmission of haplotypes can be determined according to 
the Mendelian laws of inheritance, we call the sites phase-
informative (described below). When the genotype of the child 
does not match the haplotypic combination transmitted by the 
parents, a genotyping error is the most likely cause. The fre-
quency of such phase violations depends on the rate of genotyp-
ing error and the relevant site frequency in the sample. The 
expected frequencies of different phase violations can thus be 
compared to the observed frequencies to estimate error rates. We 
focused on building an error model for three-generation pedi-
grees along a single line of descent (Figure 1A), though genotypes 
can be phased in two-generation pedigrees when there are more 
than two siblings (Coop et al. 2008; Fledel-Alon et al. 2009; Roach 
et al. 2011). We also restricted ourselves to biallelic sites, the most 
common form of variation across the genome. The six possible 
miscalls at a biallelic site are labeled in Table 2. 

Expected number of phase violations 
At phase-informative sites, the focal individual in a three-
generation pedigree produces gametes with traceable phase. 
Within a block without crossovers, the haplotype inherited from 
the focal individual can be identified as being derived from either 
the maternally or paternally inherited chromosome of the focal 
individual. With a three-generation pedigree (Figure 1A), phase 
can only be traced for sites where the focal individual is 

heterozygous and the parents do not both share the same, het-
erozygous, genotype. Furthermore, to unambiguously track the 
phase to the third generation, the breeding partner of the focal 
individual and the child cannot both be heterozygous. 

A genotyping error in any of the five individuals from the pedi-
gree can cause an informative site to appear out-of-phase with 
its neighbors. For example, for a set of genotypes as in Figure 1B, 
a child called as heterozygous at a site in a parent A haplotype 
block could be an e0 > 1 error, a miscalled homozygous child. 
Similarly, a homozygous child at a site in a parent B block could 
be an e1 > 0 error. A miscalled child genotype is the most straight-
forward cause of a phase violation, but errors in other individuals 
also create apparent phase violations. Using again the genotypic 
combination in Figure 1B—if parent A is miscalled as homozy-
gous alternate instead of homozygous reference (an e2 > 0 error; 
Table 2) a site in a parent A block would be expected to carry the 
alternate allele. When parent A is miscalled in this way, the child 
will be heterozygous for a site in a parent A block and would ap-
pear to be a phase violation. 

The expected number of violations is the sum of potential 
phase violations from miscalls in all individuals across the pedi-
gree. We estimate the number of violations for each miscall as a 
product of the respective genotypic combination frequencies 
across the genome and the corresponding error rate. We 

Table 1 Approximate per-site rates for phenomena leading to 
phase inconsistency 

NGS genotyping error 103 

Gene conversion 107 

Recombination 108 

De novo mutation 108 

References 
NGS error: Nielsen et al. (2011) and Wall et al. (2014); gene conversion: Jeffreys 
and May (2004) and Halldorsson et al. (2016); recombination: Jensen-Seaman 
et al. (2004) and Coop and Przeworski (2007); de novo mutation: Kong et al. 
(2012), Venn et al. (2014), and Wang et al. (2020). 

Parent A Parent B 

Focal Partner 

Child Out of phase 
Phase A 

0/0 

0/00/1 

0/0 0/1 

Phase B 

0/1 

A B 

Figure 1 Pedigree and phase in a three-generation pedigree along a single 
line of descent. (A) The pedigree of five individuals and a diagram of the 
haplotype traced along three generations. Sites transmitted to the child 
can be out of phase within a haplotype block. (B) Genotypes at an 
example phase-informative site. The phase of the child genotype can be 
traced to either Parent A or Parent B. 

Table 2 Genotyping errors at a biallelic site 

Error Truth Observed 

e0>1 0/0 0/1 
e1>0 0/1 0/0 
e2>0 1/1 0/0 
e0>2 0/0 1/1 
e1>2 0/1 1/1 
e2>1 1/1 0/1 

Reference allele represented by 0, nonreference represented by 1. 
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demonstrate this rationale below for the genotypic combination 
matching the example in Figure 1B, calculating the expected 
number of such phase-violating sites from phase A haplotype 
blocks. In this calculation, we assumed that out-of-phase-
informative sites were the result of no more than one genotyping 
error among the sampled individuals for a given site. 

Genotypic combinations are abbreviated as Gx, where x is 
composed of individual genotypes represented by a single digit: 0, 
1, and 2 for homozygous reference, heterozygous, and homozy-
gous alternate, respectively. These are ordered in the subscript as 
parent A, parent B, focal individual, partner of focal, and child. 

Let nx be the number of such genotypic combinations and ei>j 

be the genotyping error rate as in Table 2. The genotypic combi-
nations and possible miscalls leading to a phase violation for a 
site like the one depicted in Figure 1B are then: 

The expected number of phase violations for this genotypic 
combination can be written as: 

E A0110½  ¼ n01100  e0>1 þ 1=2 n11101 þ n01111ð Þ  e1>0þ 

n21101 þ n01121ð Þ  e2>0; 
(1) 

where Ay is a phase violation in the parent A haplotype block, 
with genotypic combination y and jAyj is the number of such vio-
lations across the genome. Such a violation occurs when the ob-
served genotype of the child does not match the expected 
genotype (see Table 3). Here, y is the abbreviated phase-
informative genotypic combination, listing abbreviated genotypes 
for the first four individuals as ordered in x for Gx (the fifth indi-
vidual in Gx is the child). 

In pedigrees with five individuals, there are 18 genotypic com-
binations that are phase-informative. Table 3 lists each of these 

combinations and the child genotypes that indicate a phase vio-
lation. Violations at sites with the haplotype from Parent A and 
Parent B are labeled as Ay and By, respectively. Each genotypic 
combination can be evaluated to determine the total number of 
expected phase violations. Several symmetries between geno-
typic combinations reduce the number of unique calculations. 
For example, each violation has a matching pair where the phase 
and the genotypes of Parent A and Parent B are swapped 
(Supplementary Figure S1A). The frequency of each of these two 
classes is assumed to be equal across the genome due to inde-
pendent assortment. The matching violation to A0110 in the ex-
ample above is B1010, and the expected frequency can be 
calculated by swapping the two parental genotypes in each term 
as: 

E B1010½  ¼ n10100  e0>1 þ 1=2 n11101 þ n01111ð Þ  e1>0þ 

n12101 þ n10121ð Þ  e2>0: 
(2) 

Similarly, each violation can be paired with a case in which 
homozygous reference and homozygous alternate genotypes are 
swapped. The expected frequency of violations has the same 
form once these genotypes and error rates are swapped. For 
A0110, the matching violation is A2112 (Supplementary Figure S1B) 
with expected frequency: 

E A2112½  ¼ n21122  e2>1 þ 1=2 n11121 þ n21111ð Þ  e1>2þ 

n01121 þ n21101ð Þ  e0>2: 
(3) 

Derivations of the expected frequencies for the remaining set 
of phase violations can be found in the Supplemental Material 
(Appendix S1). 

Estimating the error rates 
Taken together, the expected number of phase violations from 
the genotypic combinations in Table 3 forms a linear system of 
equations that can be represented by a matrix equation. Let VA 

be an 18  1 vector for the number of observed sites that violate 
haplotype block A across the genome, as ordered by row in 
Table 3; that is, VA ¼ A0110; A0111; A0112; . . . ; A1011; A1010h i. The 
number of observed sites that violate block B is represented by 
VB, again as ordered in Table 3. Let ê be a 6  1 vector of estima-
tors for each type of error rate, 
ê ¼ ê0 > 1; ̂e1 > 0; ̂e2 > 0; ̂e0 > 2; ̂e1 > 2; ̂e2 > 1h i. The error model can 
then be represented as: 

Mê ¼ 
VA 

VB 

  

; (4) 

where the matrix M contains the coefficients of the linear equa-
tions from the expected frequencies of genotyping errors for each 
violation class. We can divide M into two submatrices based on 
the coefficients for violations in phase A and phase B as: 

M ¼ 
MA 

MB 

  

: (5) 

Rows in MA and MB are identical for violations in phase A and 
phase B that share the same expected frequencies (e.g., A0110 and 
B1010, described in the previous section). The violations in Table 3 
are ordered so that MA and MB can be related by an exchange ma-
trix as: 

Expected: G01100 Observed: G01101 

Parent A Observed genotype: 0/0 
Possible miscall: 1/1 
Focal individual inherits alternate allele from Parent A and trans-
mits it to the child leading to apparent phase violation. 
Possible miscall: 0/1 
Focal individual inherits the alternate allele from Parent A, giving 
a 50% chance of transmission to child, leading to apparent phase 
violation. 
Frequency: 1=2n11101  e1>0 þ n21101  e2>0 

Parent B Observed genotype: 0/1 
Possible miscall: 0/0 
Implies more than one genotyping error across pedigree. 
Possible miscall: 1/1 
Not detectable as phase violation, as focal individual still inherits 
alternate allele from Parent B haplotype block. 

Focal Observed genotype: 0/1 
Any miscall would imply more than one genotyping error. 

Partner Observed genotype: 0/0 
Possible miscall: 1/1 
Child inherits alternate allele from the partner, which appears as 
a phase violation. 
Possible miscall: 0/1 
Child inherits alternate allele from the partner, giving a 50% 
chance of transmission to child, leading to apparent phase viola-
tion. 
Frequency: 1=2n01111  e1>0 þ n01121  e2>0 

Child Observed genotype: 0/1 
Possible miscall: 0/0 
True genotype 0 has been miscalled as 1. Each occurrence leads 
to this phase violation. 
Possible miscall: 1/1 
Implies more than one genotyping error across pedigree. 

Frequency: n01100  e0>1 

R. J. Wang, P. Radivojac, and M. W. Hahn | 3  

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/217/1/1/6029564 by guest on 17 M

arch 2021 

https://academic.oup.com/genetics/article/217/1/1/6029564


MB ¼ 

0 0 1 

0 . . 
.

0 
1 0 0 

2 

64 

3 

75 

n¼18 

MA: (6) 

Coefficients from equations for each of the respective 
expected phase A violations (see Supplementary Information) 
form the MA matrix: 

MA ¼ 

n01100 1=2ðn11101 

þ n01111Þ 

n21101 

þ n01121 

0 0 0 

0 1=2n11112 n21112 n01110 1=2n01111 0 

0 1=2n11122 n21122 0 n01121 0 

0 n21101 0 n01100 1=2n11100 0 

0 1=2n21111 n21112 n01110 1=2n11110 0 

0 0 0 n0112 

þ n21101 

1=2ðn21111 

þ n11121Þ 

n21122 

n02100 1=2n02111 n02121 0 0 0 

0 0 0 n02110 1=2n02111 0 

0 0 0 0 n02121 0 

0 0 0 n20101 1=2n20111 n20122 

0 1=2n20111 n20112 0 0 0 

0 n20101 0 0 0 0 

0 0 0 n10122 n12121 

þ 1=2n11122 

1=2n12222 

0 0 0 n12110 

þ n10112 

1=2ðn12111 

þ n11112Þ 

1=2n12212 

n12100 1=2n12111 n12121 n10101 1=2n11101 1=2n12201 

1=2n10021 1=2n11121 n12121 n10101 1=2n10111 n10122 

1=2n10010 1=2ðn11110 

þ n10111Þ 

n10112 

þ n12110 

0 0 0 

1=2n10000 n10101 

þ 1=2n11100 

n12100 0 0 0 

(7) 

Equation (4) is an overdetermined linear system—there 
are many more equations than rates to be estimated. We can fit 
the model using a linear least squares approach, solving for ê by 
taking: 

ê ¼ arg min 
e 

V  Me 2; 
    (8) 

where V is the column vector of VA and VB, the number of ob-
served sites violating their respective haplotype blocks as ordered 
in M. 

Our implementation takes as initial input genotypes in the 
Variant Call Format (vcf) and phases for haplotype blocks in 
Browser Extensible Data (BED) format. We fed these data in ab-
breviated form into R (v. 3.5.0) and solved for the error rate esti-
mators in Equation (8) with the linear optimization algorithm L-
BFGS-B as implemented in the base stats package. The Python 
(v. 3.6.1) script used to abbreviate the genotype-phase combina-
tions, and the R script applying the algorithm, is available on 
GitHub. 

Simulating phase violations 
We tested the performance of our method on simulated geno-
type combinations at biallelic sites from pedigrees as in 
Figure 1A with simulated errors. The phase at each site was 
assigned according to the rules of Mendelian inheritance and 
the simulated pattern of recombination. Genotypes in every in-
dividual each had a chance of being in error. To quickly simu-
late a large number of such genotypes and errors, we simulated 
genotypic combinations instead of individual genotypes. 
Our simulation approach divides the total number of 
simulated sites, S, into counts for each genotypic combination 
by progressively drawing counts from branching transmission 
outcomes. 

We begin by dividing the number of sites among the possible 
genotypic combinations for the three unrelated individuals in the 
pedigree. We assume a neutral site frequency spectrum for each 
site and that the parents and partner of the focal individual were 
all unrelated to each other. Assuming also that the three unre-
lated individuals in the pedigree are from a subset of N (mini-
mum N ¼ 3) unrelated genotyped individuals that have S 

segregating sites, the probability of a given unrelated genotypic 
combination, Ux, can be written as: 

Table 3 Detectable phase violations in a three-generation pedigree 

Parent A Parent B Focal Partner Phase 

violation 

Child 

(expected) 
Child 

(observed) 
Phase 

violation 

Child 

(expected) 
Child 

(observed) 

0/0 0/1 0/1 0/0 A0110 0/0 0/1 B0110 0/1 0/0 
0/0 0/1 0/1 0/1 A0111 0/0; 0/1 1/1 B0111 1/1; 0/1 0/0 
0/0 0/1 0/1 1/1 A0112 0/1 1/1 B0112 1/1 0/1 
1/1 0/1 0/1 0/0 A2110 0/1 0/0 B2110 0/0 0/1 
1/1 0/1 0/1 0/1 A2111 1/1; 0/1 0/0 B2111 0/0; 0/1 1/1 
1/1 0/1 0/1 1/1 A2112 1/1 0/1 B2112 0/1 1/1 
0/0 1/1 0/1 0/0 A0210 0/0 0/1 B0210 0/1 0/0 
0/0 1/1 0/1 0/1 A0211 0/0; 0/1 1/1 B0211 1/1; 0/1 0/0 
0/0 1/1 0/1 1/1 A0212 0/1 1/1 B0212 1/1 0/1 
1/1 0/0 0/1 1/1 A2012 1/1 0/1 B2012 0/1 1/1 
1/1 0/0 0/1 0/1 A2011 1/1; 0/1 0/0 B2011 0/0; 0/1 1/1 
1/1 0/0 0/1 0/0 A2010 0/1 0/0 B2010 0/0 0/1 
0/1 1/1 0/1 1/1 A1212 0/1 1/1 B1212 1/1 0/1 
0/1 1/1 0/1 0/1 A1211 0/0; 0/1 1/1 B1211 1/1; 0/1 0/0 
0/1 1/1 0/1 0/0 A1210 0/0 0/1 B1210 0/1 0/0 
0/1 0/0 0/1 1/1 A1012 1/1 0/1 B1012 0/1 1/1 
0/1 0/0 0/1 0/1 A1011 1/1; 0/1 0/0 B1011 0/0; 0/1 1/1 
0/1 0/0 0/1 0/0 A1010 0/1 0/0 B1010 0/0 0/1 

Reference allele represented by 0, nonreference allele represented by 1. Violations are mirrored in the second half of the table (Parent A and Parent B genotypes 
swapped, A and B violation swapped). 

4 | GENETICS, 2021, Vol. 217, No. 1 

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/217/1/1/6029564 by guest on 17 M

arch 2021 

https://academic.oup.com/genetics/article/217/1/1/6029564


PðUxÞ ¼  
XN 

i¼1 

i  1 
aN 

P g1ji 
  

 P g2ji 
  

 P g3ji
  

; (9) 

where i is the allele frequency in the sample, aN is the Watterson 
correction factor: 

aN ¼ 
XN1 

i¼1 

1 
i 
; (10) 

gn is the genotype of the nth-individual in the combination, and 
the conditional genotype frequency is given by: 

PðgnjiÞ ¼  

1 i 
N 

 2 
for gn ¼ homozygote reference 

2 
i 
N 

 

1 
i 
N 

 

for gn ¼ heterozygote 

i 
N 

 2 
for gn ¼ homozygote alternate 

: 

8 >>>>>>< 

>>>>>>: 

(11) 

We can then divide the sites among the 27 possible genotypic 
combinations (33 for a biallelic site in three individuals) by draw-
ing from a multinomial with probabilities P U1ð Þ; . . . ; P U27ð Þ 

 
. The 

counts for each of these genotypic combinations were then sub-
divided based on the possible genotypes inherited by the off-
spring (focal individual in Figure 1A) of the two parents. These 
counts were apportioned by drawing from a multinomial with an 
equal probability for each of the four possible gametic combina-
tions from the parents. Each of the branching outcomes from dif-
ferent genotypes in the focal individual was in turn subdivided by 
the possible gametic combinations transmitted to the child from 
the focal and partner genotypes. 

To simulate the effects of linkage and recombination, the total 
number of segregating sites, S, was divided into blocks each with 
a randomly transmitted phase, p  Bernoulli ð0:5Þ. That is, the 
above procedure for drawing genotype combinations was re-
peated for each set of sites in a phase block transmitted by the fo-
cal individual. The length of each block (in centiMorgans) was 
drawn from a gamma distribution, following a model for inter-
crossover distance in humans (Broman and Weber 2000). Blocks 
were drawn until their total length met the genetic map length of 
the genome in the simulation, Lm. Segregating sites were then 
assigned to each block in direct proportion to their map length 
relative to the total. In all simulations, we used parameters for re-
combination similar to those found in humans, Lm ¼ 3500 cM 
and a gamma model with parameter  ¼ 4.3 (Broman et al. 1998; 
Broman and Weber 2000). Finally, counts across all branching 
outcomes and all phase blocks were summed to give a total 
count, nx,p, for each unique genotype-phase combination, 
denoted by x and p, in the pedigree. 

We added errors to these counts by iterating over the geno-
types, x, in each combination and drawing errors for the nx,p sites. 
Let the genotype be a vector, g ¼ f 1; 0; 0h i; 0; 1; 0h i; 0; 0; 1h ig, for the 
homozygous reference, heterozygous, and homozygous alternate 
genotypes, respectively. Given a set of error probabilities, ei>j, for 
each type of error as listed in Table 2, the probability of a geno-
typic transition can be written as g  E, where 

E ¼
1  e0>1  e0>2 e0>1 e0>2 

e1>0 1  e1>0  e1>2 e1>2 

e2>0 e2>1 1  e2>1  e2>1 

2 

4 

3 

5: (12) 

For each genotype at each combination, the nx,p counts are di-
vided by drawing from a multinomial using the probability for 

genotypic transition while retaining the phase. Unique genotype 
and phase combinations across all branches are then summed 
for the final counts. 

Simulations following the above strategy were implemented 
in Python (v. 3.6.1) with the NumPy package (v. 1.13.3). 

Data availability 
Raw sequence data for the owl monkey dataset are available 
from NCBI BioProject: PRJNA451475. Abbreviated counts of 
genotype-phase combinations from the owl monkey dataset are 
available at FigShare. Code used in analyses and simulations is 
publicly available on GitHub (https://github.com/Wang-RJ/ 
genotypeErrors). Supplemental material available at figshare: 
https://doi.org/10.25386/genetics.13256432. 

Supplementary material is available at figshare DOI: https:// 
doi.org/10.25386/genetics.13256432. 

Results 
Accuracy of error estimators in simulations 
We simulated genotypes with varying error rates and numbers of 
segregating sites, maintaining the sample size of unrelated geno-
typed individuals, N ¼ 20, and with parameters for recombination 
similar to those found in humans (see Materials and Methods). 
Simulated error rates were drawn from two distributions, a log-
uniform distribution [range: (104, 102)] and a log-normal distri-
bution (l ¼ 103, r ¼ 0.5). We simulated 1000 genotyped pedi-
grees of five individuals for each combination of parameters 
tested. In the absence of genotyping errors, the frequency of pa-
rental phases at informative sites is assumed to be equal due to 
independent assortment. However, genotyping errors cause ap-
parent phase violations to occur at different frequencies based 
on the genotypic combination of individuals in the pedigree. 
Figure 2A shows an example of how the parental phase at detect-
able violations consistently varies from the balanced phases at 
informative sites. This departure is not because of different error 
rates in the parents, but because different errors have distinct 
effects on genotype-phase frequencies. The frequency of simu-
lated genotypic combinations also reflects the neutral site fre-
quency spectrum (see Materials and Methods). 

We assessed the accuracy of our error rate estimation in these 
simulations by calculating the normalized root mean square de-
viation (NRMSD). The deviation between the estimators and the 
simulated rate was normalized by the range of error rates as: 

NRMSD ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffi P 
ê  eð Þ 2 

q 

emax  emin 
; (13) 

where emax and emin are the maximum and minimum error rates 
in each simulation. 

There was little change to the estimators’ normalized devia-
tion with an increasing number of segregating sites for simulated 
error rates drawn from either the log-normal or log-uniform dis-
tribution. The mean NRMSD for simulated rates drawn from the 
log-normal distribution was slightly higher, ranging from 17.7% 
to 19.9%, than from rates drawn from the log-uniform distribu-
tion, from 9.7% to 10.3%, for simulations with between 10 and 70 
million segregating sites (Figure 2B). Our results indicate that this 
method of estimating error rates is robust across populations 
with different levels of nucleotide diversity and different num-
bers of sampled individuals (Supplementary Figure S2). 
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We also assessed our method’s accuracy for each estima-
tor, normalizing the RMSD to the median difference between 
maximum and minimum error rates across all simulations 
(Figure 2C). We found ê0 > 2 to be the most accurately esti-
mated, with a mean NRMSD of 8.5% and 4.6%, for simulated 
errors drawn from the log-normal and log-uniform, respec-
tively. The estimators ê1 > 2 and ê2 > 1 were the least accurate, 
with mean NRMSDs ranging from 17.1% to 34.8%. The accu-
racy of the estimator for error rates at the most frequent ge-
notype, ê0 > 1, was intermediate with a mean NRMSD of 15.9% 
and 9.6% for respective draws from the log-normal and log-
uniform distributions. 

This last error rate, ê0 > 1, can also be estimated in trios by 
considering the number of Mendelian inheritance violations 
where both parents are homozygous reference and the child is 
heterozygous. Under the assumption that each such Mendelian 
violation is a genotyping error, the estimated error rate is simply 
the number of such violations divided by the number of observed 
sites. We estimated this error rate in our simulations, taking the 
focal, partner, and child as a trio from each pedigree, and calcu-
lated an NRMSD for the estimator from this approach. We found 
this estimator for ê0 > 1 to be much less accurate, with a mean 
NRMSD of 34.4% (log-normal simulated) and 19.8% (log-uniform 
simulated). 

Application to phased owl monkey genotypes 
We applied the method developed here to a dataset of genotypes 
from the whole-genome sequencing of owl monkey (A. 

nancymaae). Individuals in this dataset were part of several three-
generation pedigrees, allowing us to unambiguously phase focal 
individuals (as in Figure 1). We selected four unrelated pedigrees 
with genotypes from 20 total individuals for our analysis. These 
samples were sequenced to approximately 35 coverage on an 
Illumina HiSeq-X with 150-bp paired-end reads. Single nucleotide 
polymorphisms (SNPs) in this dataset were called with Genome 
Analysis Toolkit (GATK) (version 3.3.0) following best practices 
(Van der Auwera et al. 2013; Poplin et al. 2017), and genotypes 
were phased with PhaseByTransmission (Francioli et al. 2017) and 
assembled into haplotype blocks under the assumption that 
there would be at most one recombination crossover per Mb in-
terval (Venn et al. 2014; Smeds et al. 2016). Complete details on 
the methods used to generate this dataset are available in 
Thomas et al. (2018). 

We selected genotypes from biallelic SNPs on autosomes for 
the subsequent analyses. Based on genotypic combinations, we 
were able to identify approximately 5.5 million phase-
informative sites in each of the pedigrees. These sites were on 
haplotype blocks that covered, on average, 2.46 Gb out of the 
2.86 Gb genome. Among the informative sites, an average of 
25,007 was out-of-phase in each family. Frequencies for the dif-
ferent genotypic combinations showed a similar pattern to 
those seen in simulations: a balanced set of phases among 
all informative sites and an unequal set of phases among the 
violations (Supplementary Figure S3). Note that an out-of-
phase site does not necessarily represent a miscall in the pedi-
gree. 
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Using the frequencies of different phase violations, we esti-
mated the genotyping error rates for each family with Equation 
(4). Estimates from each of the four pedigrees are depicted in 
Figure 3. The highest rates of error appear to be from distinguish-
ing between homozygous reference and heterozygous genotypes, 
with mean rates e0 > 1 ¼ 2.9  103 and e1 > 0 ¼ 2.9  103 per bp. 
The rate at which homozygotes for the alternate allele were mis-
called as heterozygotes were also appreciable, mean rate e2 > 1 ¼ 

2.1  103 per bp. In contrast, our estimate of the rate at which 
homozygous reference genotypes were mistaken as homozygous 
alternate was zero in all four pedigrees. 

We also estimated the e0 > 1 error rate from the number of 
Mendelian inheritance violations where both parents are homo-
zygous reference and the child is heterozygous. In the focal-
parent-child trios for each pedigree, we found between 59,000 
and 65,000 such violations and estimated a mean e0 > 1 rate for 
the four pedigrees at 2.7  103 per bp. 

We repeated the analysis of phase violations with genotypes 
that were filtered by genotype quality (GQ) as calculated in GATK 
and by sequencing depth (DP) in all individuals. The value of GQ 
is based on the difference between the probability of the called 
genotype and the next most likely genotype. Genotypes associ-
ated with higher GQ scores are typically interpreted as being 
more accurate. As expected, the estimated error rates decreased 
as we removed sites with more stringent GQ filters (Figure 3A; 
Supplementary Table S1). Filtering by GQ appears to be more ef-
fective at removing certain types of errors than others, with the 
most dramatic reduction in heterozygote false negatives, that is 
e1 > 0. Similarly, filtering based on DP reduced the error rate when 
compared to no filter (Figure 3, B and C). As we might expect, in-
creasingly greater depth at a site reduces the estimated error 
rate, up to a point. The reduction in error rate observed when us-
ing a maximum DP filter is likely due to the removal of poorly 
mapped repetitive elements in short-read sequencing (Li 2014). 

We also calculated an average error rate by weighting each es-
timator with the genome-wide frequency of the corresponding 
genotype [mean frequencies of sites across pedigrees (106), 0/0: 
29.6, 0/1: 11.7, 1/1: 5.03]. As with individual estimators, increasing 
stringency of the GQ filter reduced the overall error rate 
(Supplementary Table S1). We estimated an overall error rate of 

3.0  103 per bp, which was reduced to 1.1  103 per bp when 
genotypes were required to have a GQ > 60. Finally, we examined 
whether genotypes at rare variants had higher error rates by re-
peating the above analysis, but with sites filtered by minor allele 
frequency. Though we had reduced power with fewer sites, the 
average error rate appeared unaffected by lower allele frequen-
cies (Supplementary Table S2). 

Discussion 
We have developed a method to estimate genotyping error rates 
for different types of errors at biallelic loci. Leveraging pedigree 
information, our method directly estimates underlying error 
rates, rather than the discordance between experiments obtained 
by other approaches. Our method is more robust than those that 
consider only Mendelian violations in a trio of individuals be-
cause of additional transmission information, reliance on multi-
ple biological phenomena, and the ability to distinguish different 
types of errors. 

Our estimate of the overall genotyping error rate in the owl 
monkey samples is comparable to estimates calculated from dis-
cordance between replicate sequencing experiments. Wall et al. 
(2014) inferred a genotyping error rate of 1.18  103 per bp on the 
Illumina HiSeq platform at GQ  40, remarkably similar to our 
overall estimate of 1.3  103 per bp at the same level of filtering 
stringency (Supplementary Table S1). Though their resequencing 
approach does not distinguish between all types of miscalls, they 
report a false-positive rate for heterozygotes (e0 > 1) that is much 
higher than the false-negative rate (e1 > 0), consistent with our 
findings after the application of filters on GQ. 

Heterozygote false positives at homozygous reference sites oc-
cur at the highest rate among all errors, even after filtering. For a 
single individual in our dataset, our estimated rate at the GQ  40 
level of filtering stringency implies approximately 50,000 hetero-
zygote false-positive errors (e0 > 1) across the genome. As the 
most common type of site in the genome, they are also the most 
common genotyping error. Homozygous alternate sites miscalled 
as heterozygote (e2 > 1) are the next most numerous type of error 
at this level of filtering, with approximately 4000 such errors 
across an individual. The lowest error rates were for erroneously 
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called nonreference homozygotes (e0 > 2), which may have been 
expected. The relative rarity of the nonreference allele leads to 
caution in calling nonreference homozygotes by most genotyping 
methods. More surprising is the uneven effect of filtering across 
error types. Heterozygote false negatives, in particular, were dra-
matically reduced by both the GQ and minimum DP filters, 
though these filters are not independent as greater sequencing 
depth typically increases GQ. If the disparity between heterozy-
gote false-positive and false-negative rates is common across 
NGS experiments, studies that seek rare variants may not be cali-
brated appropriately when assuming a single error rate. While 
genotyping errors for low-frequency variants may have little ef-
fect for many analyses, studies looking to identify de novo muta-
tions in order to estimate mutation rates are very sensitive to 
miscalls of these variants. 

The effect of genotype filters on the false-negative rate can be 
difficult to quantify; false positives, on the other hand, can be 
detected by confirming candidate sites with, for example, 
Sanger sequencing. We demonstrated that our method allows for 
an analytic estimate of the false-negative rate with varying degrees 
of genotype filtering. At first glance, the order of magnitude differ-
ence in heterozygote false-negative rates when filtering might sug-
gest a corresponding difference in the number of false negatives in 
studies of de novo mutation. These studies, however, generally em-
ploy additional downstream filters to strictly control for the high 
number of false positives (Ramu et al. 2013; Wei et al. 2015). 
Estimates of additional filters’ effects on the de novo false-positive 
rate may be possible by applying our method to different filtered 
sets of genotypes, as we have done with GQ and DP. 

Simulations demonstrated the power of our approach to esti-
mate error rates even in samples with low levels of diversity. 
They also indicated differences in the accuracy of the error esti-
mators, but these were not pronounced for the most common 
types of sites. One caveat to our simulations is that we did not 
simulate inaccuracies in phase calling. Low levels of diversity 
and high rates of recombination can make accurate phasing 
more difficult, while low rates of recombination could result in 
an imbalance in the proportion of phases across the genome. The 
assumption of at most one genotyping error among samples per 
site may also slightly inflate our estimates of the error rate. The 
potential for two or more genotyping errors is small (on the order 
of 106), and had a negligible effect in our simulations, but may 
be higher at sites prone to sequencing or assembly errors. These 
issues likely cause error rates to vary dramatically across such 
sites. Similarly, we ignored the effects of gene conversion and de 

novo mutation, as they are expected to occur at negligible rates 
compared to genotyping error (Table 1). Furthermore, the signal 
from a genotyping error and a gene conversion event is nearly 
identical, though careful filtering and selection of sites have been 
successful in identifying gene conversion events (e.g., Williams 
et al. 2015; Miller et al. 2016). 

Finally, we note that the estimated error rates are for genotyp-
ing from a set of called variants. The heterozygote false-positive 
rate, e0 > 1, for example, does not apply to invariant reference 
sites. Variant discovery is an important step upstream of calling 
genotypes affected by reference and assembly quality (Li 2014). 
This is an important limitation for arriving at an overall error 
rate for a given site because we do not consider missed variants. 
Furthermore, the rarity of a variant affects its chance of being 
discovered. Our limited analysis of the relationship between al-
lele frequency and genotyping error rate (Supplementary Table 
S2) suggests homozygous alternate genotypes may be more likely 
to be erroneous at sites with rare variants. 

As genomic data continue to accumulate, the consideration of 
genotyping errors will remain an essential part of genetic analy-
ses. Though we have focused mainly on whole-genome sequence 
data, our approach is generally applicable to any collection of ge-
notype data (e.g., SNP-chips or exome sequencing) from pedi-
greed samples. Interest in sequencing individuals from families, 
as in studies seeking to identify de novo mutations (Goldmann 
et al. 2016; Thomas et al. 2018; Sasani et al. 2019), provides special 
opportunities for this method to be useful. Studies estimating de 

novo mutation rates may be particularly interested in distinguish-
ing the rates for different types of genotyping errors. Differences 
in error rates will directly affect estimates of the false-positive 
and false-negative rates, and subsequent calculations of the mu-
tation rate (Besenbacher et al. 2015; Kim et al. 2019). We have 
shown here that different types of errors indeed occur at different 
rates, necessitating their inclusion in such studies. 
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