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Abstract.—Hundreds or thousands of loci are now routinely used in modern phylogenomic studies. Concatenation 
approaches to tree inference assume that there is a single topology for the entire dataset, but different loci may have 
different evolutionary histories due to incomplete lineage sorting (ILS), introgression, and/or horizontal gene transfer; even 
single loci may not be treelike due to recombination. To overcome this shortcoming, we introduce an implementation of a 
multi-tree mixture model that we call mixtures across sites and trees (MAST). This model extends a prior implementation 
by Boussau et al. (2009) by allowing users to estimate the weight of each of a set of pre-specified bifurcating trees in a 
single alignment. The MAST model allows each tree to have its own weight, topology, branch lengths, substitution model, 
nucleotide or amino acid frequencies, and model of rate heterogeneity across sites. We implemented the MAST model in a 
maximum-likelihood framework in the popular phylogenetic software, IQ-TREE. Simulations show that we can accurately 
recover the true model parameters, including branch lengths and tree weights for a given set of tree topologies, under a 
wide range of biologically realistic scenarios. We also show that we can use standard statistical inference approaches to 
reject a single-tree model when data are simulated under multiple trees (and vice versa). We applied the MAST model to 
multiple primate datasets and found that it can recover the signal of ILS in the Great Apes, as well as the asymmetry in 
minor trees caused by introgression among several macaque species. When applied to a dataset of 4 Platyrrhine species 
for which standard concatenated maximum likelihood (ML) and gene tree approaches disagree, we observe that MAST 
gives the highest weight (i.e., the largest proportion of sites) to the tree also supported by gene tree approaches. These 
results suggest that the MAST model is able to analyze a concatenated alignment using ML while avoiding some of the 
biases that come with assuming there is only a single tree. We discuss how the MAST model can be extended in the future. 
[Incomplete lineage sorting; introgression; mixture model; multitree model; phylogenetics.]

Molecular phylogenetics aims to infer phylogenetic 
trees, often from aligned DNA or amino acid (AA) 
sequencing data. Many popular phylogenetic tools are 
designed to infer a single tree from a multiple sequence 
alignment, using one of a number of approaches 
such as ML (e.g., RAxML (Stamatakis 2014), IQ-TREE 
(Kalyaanamoorthy et  al. 2017), and PhyML (Guindon 
et al. 2010)), Bayesian inference (e.g., MrBayes (Ronquist 
and Huelsenbeck 2003) and BEAST (Bouckaert et  al. 
2019)), maximum parsimony (e.g., MPBoot (Hoang 
et  al. 2018), matOptimize (Ye et  al. 2022), and TNT 
(Goloboff and Catalano 2016)), or distance methods 
(e.g., BioNJ (Gascuel 1997), FastME (Lefort et al. 2015), 
QuickTree (Howe et al. 2002), and RapidNJ (Simonsen 
and Pedersen 2011)). The assumption that the data can 
be represented as a single tree is appropriate when ana-
lyzing a single non-recombining locus. However, there 
are many situations where this “treelikeness” assump-
tion is violated. For example, an alignment of a single 
locus may contain one or more recombination events in 
its history, such that different regions of the alignment 
follow different trees. More generally, it is well known 
that different genomic loci may have evolved under 
different trees due to biological processes including 

incomplete lineage sorting (ILS), hybridization/intro-
gression, and horizontal gene transfer (Maddison 1997; 
Nichols 2001). Since modern phylogenomic datasets 
now routinely contain hundreds or thousands of loci, 
a great deal of work has focused on developing meth-
ods and software that relax the treelikeness assumption 
(Edwards 2009).

Most existing approaches that account for complex 
histories in large datasets focus on inferring either 
species trees or species networks, either from a sin-
gle concatenated alignment or from many individual 
locus alignments or individual locus trees. Many of the 
most popular approaches for inferring species trees are 
based on the multi-species coalescent model (MSC) or 
are consistent with the MSC, and can infer a species 
tree while accounting for ILS among loci (e.g., SNAPP 
(Bryant et  al. 2012), ASTRAL-III (Zhang et  al. 2018b), 
MP-EST (Liu et al. 2010), SVD-Quartets (Chifman and 
Kubatko 2015), *BEAST (Heled and Drummond 2010), 
and *BEAST2 (Ogilvie et al. 2017)). More recent work 
has extended the MSC to account for a broader range of 
processes that can cause reticulations in the underlying 
species tree. These methods use models referred to as 
the multi-species network coalescent (or MSNC) and 
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typically infer a species network that represents both the 
vertical inheritance and horizontal exchange of genetic 
material among evolving lineages (e.g., PhyloNet (Wen 
et  al. 2018), PhyloNetworks (Solís-Lemus et  al. 2017), 
SpeciesNetwork (Zhang et al. 2018a), and BPP (Flouri 
et al. 2018)). Other methods, like Relate (Speidel et al. 
2019) and tsinfer (Kelleher et  al. 2019), infer multiple 
tree topologies (as an approximation of an ancestral 
recombination graph) along genomes, although these 
methods are designed for within-species analyses.

In this study, we present a different solution to the 
problem of accounting for multiple histories in a sin-
gle sequence alignment: the mixtures across sites and 
trees (MAST) model. The MAST model is an exam-
ple of a multitree mixture model (Boussau et  al. 2009; 
Allman et al. 2012) because it uses mixtures of bifurcat-
ing trees to represent the multiple histories present in a 
dataset. In phylogenetic mixture models, a number of 
sub-models (known as classes) are estimated from the 
data, and the likelihood of each site in the alignment 
is calculated as the weighted sum of the likelihood for 
that site under each sub-model (Fig. 1). Mixture mod-
els have been widely used in phylogenetic inference, 
including in rate heterogeneity across site models (Yang 
1994), (Kalyaanamoorthy et  al. 2017), profile mixture 
models (e.g., the CAT model (Lartillot and Philippe 

2004)), mixtures of substitution rate matrices (e.g., the 
LG4M and LG4X models (Le et al. 2012)), and mixtures 
of branch lengths (e.g., the GHOST model (Crotty et al. 
2020)).

Multitree mixture models are best seen as a general-
ization of a standard concatenated phylogenetic analy-
sis. In a standard concatenated phylogenetic analysis, 
we assume that the history of the entire alignment is 
represented by a single bifurcating phylogenetic tree 
(i.e., we make the treelikeness assumption). Multitree 
mixture models relax this assumption and represent the 
history of the alignment with a mixture of any num-
ber of tree topologies. The MAST model is similar to a 
previous implementation of a multitree mixture model, 
PhyML-multi (Boussau et al. 2009). Crucially, though, it 
estimates the weights of the input trees from the data, 
while PhyML-multi assumes that all trees have equal 
weights. In addition, MAST implements the full range 
of models available in IQ-TREE2 and gives users flexi-
ble options for how to associate different aspects of the 
evolutionary models with the different trees. Given an 
alignment and a collection of tree topologies that con-
tain the same tip labels as that alignment, the MAST 
model estimates the likelihood of each site under each 
tree, the maximum-likelihood weights of each of the 
input trees, the branch lengths of the trees, and the 

Figure 1 An example illustrating the MAST model. Two regions (of length 45 bp and 35 bp) were simulated under 2 different topologies, 
each with 10 taxa. The curves at the top show the site likelihoods (on a log scale) computed under tree 1 (L1), tree 2 (L2), and the MAST 
model (LMAST). LMAST is calculated as the weighted sum of L1 and L2, where the weight parameters w1 and w2 will be estimated by the MAST 
model. This toy example shows that the LMAST curve matches the L1 curve for region 1 and the L2 curve for region 2 with high site likelihoods, 
demonstrating the ability of the MAST model to predict the true underlying evolution of this data. Note that due to the log scale of the y-axis, 
the log value of LMAST is much closer to the log value of the higher likelihood value between L1 and L2. 
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other free parameters of the substitution model. In this 
way, it has many of the advantages of concatenation 
approaches but can accommodate underlying discor-
dance in the alignment (Bryant and Hahn 2020).

The multitree mixture model implemented in MAST 
differs from species tree and species network models 
in a number of ways. As opposed to many MSC and 
MSNC approaches, the MAST model does not explic-
itly model biological processes such as ILS, introgres-
sion, or horizontal gene transfer. Instead, the MAST 
model is process-agnostic and simply seeks to calculate 
the relative weights of tree topologies from the input 
data. This is a limitation in the sense that the output of 
the MAST model does not contain direct estimates of 
many evolutionary parameters of interest, such as the 
number of hybridization events, their location on the 
species tree, or ancestral population sizes. Similarly, just 
as with standard single-tree concatenation approaches, 
the MAST model cannot represent distributions of 
branch lengths on a single tree topology, as expected 
under the coalescent. On the other hand, that MAST is 
process-agnostic may be seen as a strength because the 
MAST model can represent a wide range biological pro-
cesses (e.g., differences in tree topologies caused by the 
coalescent or by introgression) or technical errors (such 
as the accidental inclusion of paralogs) that can cause 
the treelikeness assumption to be violated. Moreover, 
the MAST model differs from previous approaches 
because it calculates the likelihood of every site under 
every tree in the mixture while estimating the weights 
of the input trees from the data. Although these weights 
are not equivalent to gene-tree frequencies, they may 
in practice be quite similar in value. Similarly to some 
implicit network models, MAST assumes that sites are 
independent of one another. In other words, the order 
of the sites in the alignment will not affect the param-
eter estimates from the MAST model. This means that 
MAST is agnostic with respect to the underlying rate at 
which tree topologies change along an alignment. As 
with other aspects of MAST, this makes it a relatively 
general model, but at the cost of ignoring the potentially 
useful information contained in many alignments that 
arises from the fact that neighboring sites often share 
the same tree topology. Our simulations demonstrate 
that the MAST model accurately recovers tree weights 
even when neighboring sites are highly correlated in 
their association with tree topologies (see below).

In this paper, we first describe the mathematical basis 
of the MAST model and its implementation in IQ-TREE. 
This implementation allows us to estimate tree weights, 
model parameters, and branch lengths for a given set of 
input tree topologies. We then perform extensive sim-
ulations to evaluate the accuracy and the limitations of 
the MAST model. Finally, we demonstrate the use of 
the MAST model on 4 empirical datasets of primates 
to show that it recapitulates results from well-studied 
clades. We also highlight the advantages of MAST over 
standard phylogenetic analysis methods when applied 
to these datasets.

Material and Methods

The MAST Model

In a standard concatenated maximum likelihood 
(ML) analysis (such as that performed by IQ-TREE 
(Nguyen et al. 2015) or RAxML (Stamatakis 2014)), it is 
assumed that every site in the concatenated alignment 
comes from a single phylogenetic tree, which consists 
of a topology and branch lengths. In this framework, 
ML approaches seek to find the model of sequence 
evolution, tree topology, and branch lengths that max-
imize the likelihood of the observed alignment. The 
MAST model generalizes this framework by assuming 
that each site in the alignment comes from a mixture 
of m trees. Each tree has its own weight, topology and 
branch lengths, and the trees may have independent 
or shared substitution models (e.g., the general time 
reversible (GTR) model (Tavaré 1986)), a set of nucle-
otide or amino-acid frequencies, and a rate heteroge-
neity across sites (RHAS) model (e.g., the +G or +I+G 
models). In what follows, we first describe the case 
in which each tree has an independent substitution 
model, set of nucleotide or AA frequencies, and RHAS 
model.

Model Description

The MAST model consists of m classes where each 
class j comprises a bifurcating tree topology Tj. For the 
jth class, λj is defined as the set of branch lengths on 
Tj, Rj as the relative substitution rate parameters, Fj as 
the set of nucleotide or amino-acid frequencies, Hj as 
the rate heterogeneity model, and wj  as the class weight 
(wj > 0, 

∑m
j=1 wj = 1). Given a multiple sequence align-

ment, A, we define Lij as the likelihood of the data 
observed at ith site in A under the jth class of the MAST 
model. Lij can be computed using Felsenstein’s pruning 
algorithm (Felsenstein 1981). The likelihood of the ith 
site, Li, is the weighted sum of the Lij over the m classes:

Li =
m∑
j=1

wjLij(Tj,λj,Rj,Hj, Fj).
(1)

The full log-likelihood l over all N  alignment sites, 
which are assumed to be independent and identically 
distributed (iid), is:

l =
N∑
i=1

log(Li) =
N∑
i=1

log

Ñ
m∑
j=1

wjLij
(
Tj,λj,Rj,Hj, Fj

)
é

.

This formula is very similar to the formulation of the 
GHOST model (Crotty et al. 2020) and the PhyML-multi 
(Boussau et al. 2009). The GHOST model allows for mix-
tures of branch lengths on a single topology and differs 
only insofar as the final sum here is across the m tree 
topologies and their associated branch lengths, versus 
the m sets of branch lengths on a single topology in the 
GHOST model. The PhyML-multi model assumes the 
same probability across all the trees, whereas the MAST 
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model generalizes this and allows different probabili-
ties by introducing the tree weight (wj) parameters.

In the implementation of the MAST model we 
describe here, we assume that we know the topologies 
of all of the m trees ahead of time, for example, the set 
of gene tree topologies observed among the genomes, 
or the set of possible trees that should appear under 
the MSC model. We then estimate the relative weights 
(i.e., proportions) of each topology, optimize the branch 
lengths of each topology, the parameters of the evolu-
tionary model, and the nucleotide or amino-acid fre-
quencies for each tree. We consider extensions of the 
model when the tree topologies are not given in the 
“Discussion” section.

Linked and Unlinked MAST Submodels

In standard phylogenetic analyses we estimate a sin-
gle tree with an associated set of branch lengths, along 
with the parameters of the substitution model, the base 

or AA frequencies, and the RHAS model. In the most 
general MAST model introduced above (submodel 1 in 
Fig. 2), the tree, the branch lengths of that tree, the substi-
tution model, the base or AA frequencies, and the RHAS 
model can all vary in each class, and the weight of that 
class pertains to the full set of free parameters associated 
with that class. We say that all parameters are unlinked 
across classes in this model. We also allow for 5 more- 
restrictive models in which the parameters of the sub-
stitution models, the vectors of base or AA frequencies, 
or the RHAS model can be linked across all m classes of 
trees. The most restricted model (submodel 6 in Fig. 2) 
links the parameters of all 3 of these components of the 
model across all m classes of trees. In this model, the esti-
mated weights, therefore, pertain only to the trees and 
their branch lengths in each of the m classes, because 
these are the only parameters allowed to differ among 
classes. This framework allows for the comparison of 
models with likelihood ratio tests or other information 
criteria (Burnham and Anderson 2002).

Figure 2 A hierarchy of 6 MAST submodels currently implemented in IQ-TREE. The term “unlinked” means the parameters can differ across 
mixture classes, while “linked” means the parameters are restricted to be equal across all classes. The last line in each box shows the name of the 
model that can be used directly as input in IQ-TREE via -m option, assuming two classes with a GTR substitution model and Gamma RHAS model 
for each class. The arrows indicate the nestedness between the submodels; for example, submodel 4 is nested within both submodels 2 and 3, while  
submodel 6 is nested within both submodels 4 and 5. Note that two submodels are missing (i.e., substitution rate: linked; DNA/AA frequencies: 
unlinked; RHAS: linked/unlinked) due to a non-trivial implementation. 
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Model Parameter Estimation for Fixed Topologies

Given a set of fixed topologies, T1, . . . ,Tm, the chal-
lenge is to optimize all of the parameters without 
getting stuck in local optima. We employ both the 
expectation-maximization (EM) algorithm (Dempster 
et al. 1977) and the Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) algorithm (Fletcher 2013) to estimate the MAST 
model parameters. Taking advantage of the existing 
parameter optimization algorithms implemented in 
IQ-TREE, our workflow (Fig. 3) operates as follows. 
To begin, for class j, the substitution model Rj and the 
nucleotide or amino-acid frequencies Fj are initialized 
as a Jukes–Cantor model (i.e., “Rj = 1 and uniform fre-
quencies Fj), and the branch lengths λj are initialized 
as the maximum parsimony (Fitch 1971) branch lengths 
of the tree Tj. To obtain some sensible initial values of 
the tree weights, we first compute the parsimony scores 
for each tree topology along all the sites. For each of 

the sites with different parsimony scores between the 
tree topologies, we then check which tree topology has 
the minimum parsimony score and assign the site to 
that tree. The tree weights are then initialized according 
to the proportion of these sites assigned to each of the 
trees. If all sites have the same parsimony scores across 
all the trees, then the tree weights are initialized to be 
equal.

Having established the starting values for all the 
parameters in the model, we then optimize them. The 
optimization of each class of model parameters is done 
sequentially. Figure 3 summarizes the workflow of the 
optimization. Our optimization workflow includes 
an outer loop, a middle loop, and an inner loop of 
iterations. The inner loop optimizes the substitution 
model, nucleotide frequencies, and branch length of 
the trees; the middle loop optimizes the rate heteroge-
neity model; the outer loop optimizes the tree weights. 

Figure 3 Optimization flow chart for the MAST model in IQ-TREE. The optimization workflow includes an outer loop, a middle loop, and 
an inner loop of iterations. The inner loop optimizes the substitution model, nucleotide frequencies, and branch length of the trees; the middle 
loop optimizes the rate heterogeneity model; the outer loop optimizes the tree weights. The EM algorithm is used to optimize the individual 
unlinked parameters of each tree and the BFGS algorithm is used to optimize the linked parameters. The iterations continue until the likelihood 
value converges. 
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This optimization continues to iterate until the result-
ing log-likelihood value converges, where convergence 
is defined as the increment of the log-likelihood value 
in the current iteration falling below some threshold 
ε (which we set to 0.0001). To optimize the unlinked 
parameters of each tree in the mixture model, we use an 
EM algorithm similar to that used in the GHOST model 
(Crotty et al. 2020).

In detail, our calculations are as follows. Define pi,j 
as the posterior probability of site Di evolving under a 
tree Tj. The value of pi,j is computed by the following 
equation:

pi,j =
wjLij(Tj,λj,Rj,Hj, Fj)∑m
j=1 wjLij(Tj,λj,Rj,Hj, Fj)

.

The expectation of the log-likelihood value (lj) of tree 
j over all the sites:

E
[
lj
]
=

N∑
i=1

pi,jlog(Lij(Tj,λj,Rj,Hj, Fj)).

In every iteration, by fixing the posterior proba-
bilities pi,j, we optimize the tree weights, the branch 
lengths, the unlinked substitution rate models, and the 
unlinked rate heterogeneity models of all trees one-by-
one to maximize the expected likelihood value. The tree 
weights are then updated by averaging the probabili-
ties over all the N  sites. That is, the new weight of class j 
is the mean posterior probability of each site belonging 
to class j:

wj =
1
N

N∑
i=1

pij.
(2)

For the linked models (submodels 2–6 in Fig. 2), the 
EM algorithm cannot be applied to the optimization of 
the linked parameters shared between the classes. Thus, 
we optimize the parameters of the linked substitution 
rate model R, the linked nucleotide or AA frequencies 
F, and the linked rate heterogeneity model H using the 
BFGS algorithm in IQ-TREE.

Simulations

Having implemented the MAST model in IQ-TREE, 
we next used simulated data to test the performance of 
the MAST model under a wide range of scenarios. The 
first and second simulation experiments test the accu-
racy of the unlinked and linked MAST models when 
the true model is specified. We also compared the per-
formance between the MAST model and the PhyML-
multi model when all trees have unlinked parameters. 
The third simulation experiment simulates data with 
varying levels of introgression to compare the perfor-
mance of standard (i.e., single-tree) concatenation meth-
ods to the performance of the MAST model. The fourth 
and fifth simulation experiments examine the perfor-
mance of the MAST model when an incorrect model is 

specified, by applying an unlinked and linked MAST 
model with different numbers of trees to an alignment 
simulated under a single tree. The sixth simulation 
experiment evaluates the performance of the MAST 
model when all possible tree topologies are provided 
for the input alignment.

Simulations 1 and 2: Parameter Estimation Under the True 
Model for Unlinked and Linked MAST Model (Submodel 1 

and Submodel 6)

These simulations are designed to ask whether our 
implementation of the MAST model in IQ-TREE is capa-
ble of estimating accurate tree weights, branch lengths, 
and other model parameters when the model used for 
inference matches the model used for simulation. We 
simulated alignments under the completely unlinked 
MAST model (submodel 1 in Fig. 2; simulation 1) and 
the completely linked MAST model (submodel 6 in 
Fig. 2; simulation 2), and provided IQ-TREE with the 
set of true tree topologies from the mixture, as well as 
the true model of molecular evolution (e.g., GTR + G), 
and the correct MAST model (i.e., submodel 1 or 6). We 
then measured the accuracy of our implementation by 
recording the estimated tree weights, branch lengths, 
substitution model parameters, and nucleotide fre-
quencies, and comparing them to the values used to 
simulate the data.

We simulated alignments from mixtures of m 
of trees with different numbers (t) of taxa, where 
m ∈ {1, 2, 3, 5, 10} and t ∈ {6, 7, 10, 20}. We performed 
100 replicate simulations for every combination of m and 
t, for a total of 2000 simulated datasets per experiment.

Different GTR model R, gamma rate H, and set of 
nucleotide frequencies F were simulated over the trees 
in the first simulation experiment, while the same R, H, 
and F were shared among the trees in the second simu-
lation experiment. The alignments were then simulated 
according to the tree, the GTR model, and the gamma 
rate using AliSim (Ly-Trong et al. 2022).

Each simulated dataset contained 100K bases, regard-
less of the number of trees m, with different proportions 
of the lengths of each of the m alignments. For clarity, 
details of how the model parameters were chosen are 
described in supplementary material.

To assess the accuracy of the parameter estimates, 
we calculated the root-mean-squared error (RMSE) of 
each estimated parameter when compared to its value 
in the simulation. For each dataset, we compared the 
statistical fit of the MAST model to that of a standard 
single-tree model by comparing the BIC value (BIC) of 
the MAST model to the BIC value (BIC0) of a standard 
single-tree model.

We did additional simulations to compare the perfor-
mance of MAST to that of PhyML-multi, and to assess 
the accuracy of MAST on smaller alignments. To do this 
we repeated Simulation 1 with alignments of 5K, 10K, 
and 50K bases, and analyzed them with both PhyML-
multi and MAST, both with unlinked parameters (i.e., 
each tree has its own GTR and +G models), as above. 
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We evaluated both the multitree mixture and the HMM 
models of PhyML-multi. To assess the accuracy of the 
PhyML-multi HMM models (which do not compute 
tree weights), we calculated the RMSE between the pro-
portion of sites assigned to each topology and the actual 
proportion of sites simulated from each topology.

Simulation 3: Introgression

To examine the performance of the MAST model in a 
biologically motivated setting, we simulated alignments 
on 4-taxon trees with different levels of introgression 
and then used both a single-tree model and the linked 
MAST model (i.e., submodel 6) to analyze them. Each 
dataset was simulated from a rooted 4-taxon tree shown 
in Supplementary Fig. 8A. Using this tree, we simulated 
1500 gene trees with introgression rate r from lineage 2 
to lineage 4 (Supplementary Fig. 8A) using the program 
ms (Hudson 2002), where r ∈ {0.0, 0.1, 0.2, ..., 0.9, 1.0}
. When the introgression rate is zero, the largest frac-
tion of the gene trees will match the species tree TE1 and 
the frequency of the two minor trees, TE2 and TE3, are 
expected to be equal. As the introgression rate increases, 
the frequency of the tree matching the introgression his-
tory, TE2, will increase, and the frequency of the other 
two trees will decrease. The MAST model should reflect 
these patterns in the tree weights calculated from a con-
catenated alignment of all 1500 genes, without the need 
to know the boundaries between the individual loci. 
The benefit of this approach when applied to an empir-
ical dataset is that it overcomes concerns about “con-
catalesence,” in which unaccounted-for recombination 
within loci can bias estimates of gene tree frequency 
calculated by building trees for each locus (Gatesy and 
Springer 2014). Since ms uses a coalescent model, we 
rescaled the branch lengths from coalescent units to 
units appropriate for simulating alignments (i.e., sub-
stitutions per site) by multiplying all branch lengths 
by 0.002, selected to result in branch lengths similar to 
those recovered from our analyses of empirical dataset 
4 (see below). For each simulated gene tree, we used 
AliSim (Ly-Trong et  al. 2022) to simulate a 1000 bp 
alignment using the GTR + G model with parameters 
equal to those reported by IQ-Tree for our analysis of 
empirical dataset 4 (see below). Concatenating all the 
single-locus alignments resulted in an alignment of 
1,500,000 bp. We performed 100 replicate simulations at 
every r, for a total of 1100 simulated datasets. We then 
applied the linked MAST model (submodel 6 in Fig. 2) 
to these data, with the input trees comprised of all 3 
possible unrooted trees of the 4 taxa in Supplementary 
Fig. 8B.

Simulations 4 and 5: Parameter Estimation Under 
Misspecified Models (Submodel 1 and Submodel 6)

We next sought to examine the performance of the 
MAST model when the underlying data were simulated 
under a single tree T , but the data were analyzed under 
a MAST model with m > 1

, that is, a misspecified model 
with more than one tree. To do this, we simulated data 

under a single tree topology, and then applied MAST 
submodel 1 (simulation 4) and MAST submodel 6 (sim-
ulation 5) where the m trees included the true tree T  
and also m− 1 additional tree topologies that differed 
from T . This simulation is designed to examine the case 
where a researcher includes the primary tree in a MAST 
model (e.g., a tree derived from a single-tree concate-
nated ML analysis, or an MSC analysis) but addition-
ally includes some hypothesized trees in the model that 
have no support in the underlying data.

In simulation 4, we simulated alignments of 5K, 10K, 
and 50K bases, on a single tree with different numbers 
(t) of taxa, where t ∈ {6, 7, 10, 20}. We performed 100 
replicate simulations at every length and every t, result-
ing 300 simulated datasets for each t. To simulate each 
of the additional m− 1 tree topologies in each MAST 
model, we sequentially performed k random subtree 
pruning and regrafting (SPR) moves on the true tree T
. The MAST submodel 1 was then applied by inputting 
the actual tree topology as well as the other m− 1 dif-
ferent tree topologies that all are k-SPR moves from that 
tree, where m ∈ {2, 3, 5, 10} and k ∈ {1, 2, 3}. Note that 
there are at most two SPR moves between any two 6-tip 
trees. Analyzing each of the 300 simulated datasets for 
6-tip trees under 8 combinations of m and k, and each of 
a total of 900 simulated datasets for 7/10/20-tip trees 
under 12 combinations of m and k, gives a total of 13,200 
analyses.

To understand the performance of the MAST model 
for submodel 6 under similar simulation conditions 
(simulation 5), we simulated data with the same set-
tings as above, except that we used alignments of 100K 
bases.

To evaluate the performance, among the 100 repli-
cates, we recorded how many times the true topology 
had the maximum tree weight. We also compared the 
BIC value (BIC) reported by the MAST model with the 
BIC value (BIC0) under the true model, that is, when 
the dataset was analyzed under the single true tree T .

Simulation 6: Parameter Estimation When all Tree 
Topologies are Provided

We next evaluated the performance of the MAST 
model when all possible tree topologies are provided 
by the user, but the data were simulated on a smaller 
number of trees. To do this, we simulated data sets 
under two random equally weighted 5-tip trees with 
MAST submodel 6. We then applied the same MAST 
submodel, but with all 15 potential topologies of 5 taxa, 
to the data sets. This simulation is designed to examine 
the case where a researcher includes all possible hypoth-
esized trees in the model, but that many of them in fact 
have no support in the underlying data. Each simu-
lated dataset comprised 100K base pairs, and 100 rep-
licate simulations were performed for each simulation 
setting. In order to further understand how BIC value 
of a MAST model depends on the input trees, after the 
above simulation we first fit a MAST submodel 6 with 
the two true trees, and we then fit a series of MAST 
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submodel 6 with additional trees added sequentially 
based on the descending order of tree weights from the 
previous analysis involving all 15 trees. We recorded 
the BIC value of every model.

Applications to empirical data

In addition to testing the MAST model on simulated 
data, we also applied it to four empirical datasets (Table 
1). All of these datasets are subsets of a single dataset 
comprising 1730 single-gene alignments from 26 pri-
mates (Vanderpool et  al. 2020). The first two empir-
ical datasets we used are simple 4-taxon datasets, in 
which it is trivial to supply the MAST model with all 
3 possible unrooted trees, and for which the expected 
tree weights have been estimated in previous research. 
In the other two empirical experiments, a standard 
 single-tree model was first used to infer a topology for 
every gene in the dataset. Then, the set (or subset) of 
most commonly inferred gene trees was used as the 
set of input topologies for the MAST model when ana-
lyzing a concatenated alignment of all the single-gene 
alignments. In order to find out whether the MAST 
model has a better fit to the data compared with the 
standard single-tree model, we analyzed multiple dif-
ferent submodels of MAST (Fig. 2). We compared the 
lowest BIC values from these models to the BIC value 
calculated using the standard single-tree model on the 
same alignments.

The first dataset (“A”) includes the well-studied 
4-taxon grouping of human, chimpanzee, gorilla, and 
orangutan. Previous studies have shown that all 3 pos-
sible unrooted gene trees of 4 taxa (Fig. 6; orangutan is 
considered an outgroup to the other three species) are 
recovered from these data. These studies have shown 
that the accepted species tree, uniting humans and 
chimps, is the most frequent gene tree, with the two 
minor trees occurring in very similar frequencies, con-
sistent with the action of only ILS during the divergence 
of these species (Ebersberger et al. 2007); however, dif-
ferent studies have reported different frequencies for 
the 3 possible gene trees. For example, an early study 
that analyzed 11,945 gene trees (Ebersberger et al. 2007) 
and a more recent study that analyzed 1730 gene trees 
(Vanderpool et  al. 2020) found that 77% and 62% of 
gene trees respectively grouped humans and chimps, 
12% and 20%, respectively, grouped chimps and goril-
las, and 11% and 18%, respectively, grouped humans 
and gorillas. The discrepancies in these numbers 
reflect both the different data types and data quality 

available to each study, as well as differences in the 
methods used to reconstruct gene trees. However, both 
studies made the single-tree assumption for each indi-
vidual gene locus; recombination within each locus 
violates this assumption. The MAST model avoids this 
assumption by using mixtures of trees. Although the 
tree weights reported by MAST pertain to the equa-
tions given above and are not designed to replace esti-
mates of gene tree frequencies, in practice we expect 
both values to be similar on large empirical datasets, 
because both values will usually be heavily influenced 
by the proportion of sites in the genome that are associ-
ated with each of the trees of interest. Since the MAST 
model will be unaffected by concatalescence, we expect 
that estimates of tree weights from the MAST model to 
be more accurate than estimates of gene tree frequen-
cies from previous studies where concatalescence has 
affected gene-tree frequency estimates. Regardless, 
we still expect the MAST model to report the highest 
weight for the tree grouping humans and chimps, and 
lower but approximately equal weights for the two 
minor trees.

The second empirical dataset (“B”) includes 3 spe-
cies from the genus Macaca (M. fascicularis, M. mulatta, 
M. nemestrina) and the mandrill (Colobus angolensis 
palliatus), a clade in which a previous analysis found 
substantial evidence for introgression between M. neme-
strina and M. fascicularis (Vanderpool et  al. 2020). Thus, 
for this dataset, we expect the MAST model to recover 
the highest weight for the accepted species tree uniting 
M. fascicularis and M. mulatta (TB3 in Fig. 7), the second 
highest weight for the minor tree affected most by intro-
gression (uniting M. nemestrina and M. fascicularis), and 
the lowest weight for the minor tree uniting M. mulatta 
and M. nemestrina.

The third empirical dataset (“C”) contains the 6 spe-
cies (human, chimp, gorilla, and the 3 Macaca species) 
that represent the ingroups from the first two data-
sets. Since we have a priori information that suggests 
that all 3 possible rooted trees are possible for each of 
these ingroups, we applied a MAST model with 9 trees 
(Supplementary Fig. 9), where all 3 resolutions of each 
ingroup clade are paired with all 3 resolutions of the 
other ingroup clade. In principle, one should be able to 
draw similar conclusions from these 6-taxon datasets 
as one could from the 2 independent analyses of the 
4-taxon datasets by summing the relevant tree weights 
(see below).

The fourth empirical dataset (“D”) focuses on the rela-
tionships among 4 Platyrrhine (“New World Monkey”) 
species: Callithrix jacchus, Aotus nancymaae, Saimiri 

Table 1 The 4 empirical datasets analyzed here

Empirical datasets Species # of genes Total length
A Homo sapiens, Pan troglodytes, Gorilla gorilla, Pongo abelii 1595 1,618,506
B Macaca fascicularis, Macaca mulatta, Macaca nemestrina, Colobus angolensis palliatus 1599 1,629,163
C Homo sapiens, Pan troglodytes, Gorilla gorilla,

Macaca fascicularis, Macaca mulatta, Macaca nemestrina
1556 1,576,852

D Callithrix jacchus, Aotus nancymaae, Saimiri boliviensis, Cebus capucinus imitator, Macaca mulatta 1557 1,610,755
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boliviensis, and Cebus capucinus imitator, including 
Maccaca mulatta as an outgroup. There is disagreement 
about the species tree among the 4 focal taxa. Gene-
tree-based analyses (Vanderpool et al. 2020) support a 
caterpillar tree in which Aotus is the sister group to a 
clade uniting Saimiri and Cebus (TD1 in Supplementary 
Fig. 10). However, concatenated ML analysis fails to 
recover this tree, instead returning a symmetrical tree 
likely caused by a known inconsistency in ML meth-
ods when the underlying gene trees are highly discor-
dant (Kubatko and Degnan 2007; Roch and Steel 2015; 
Mendes and Hahn 2018). The MAST model should in 
principle avoid statistical inconsistencies associated 
with the single-tree assumption because it explicitly 
accounts for the existence of multiple histories in an 
alignment. Thus, we sought to test the performance of 
the MAST model in this well-studied empirical test case. 
To do this, we applied a MAST model that included the 
3 ingroup topologies that were most commonly found 
from the gene trees in a previous study (Supplementary 
Fig. 10; Vanderpool et al. 2020).

We analyzed each empirical dataset using the same 
approach. First, we filtered the original 1730 locus data-
set to retain only those loci that were present in all of 
the selected species, which resulted in each dataset 
containing approximately 1600 loci and around 1.6 
million base pairs (Table 1). We analyzed each dataset 
using standard single-tree concatenated ML analyses 
(using default settings in IQ-TREE2), as well as the 6 
multitree mixture models described by the 6 submod-
els of the MAST model in Fig. 2, using the trees topol-
ogies described above as the input topologies for the 
MAST model. Finally, to facilitate comparisons with 
other quantities of interest, we calculated the follow-
ing quantities for each of the input topologies: (i) the 
number of single-locus trees that match each topology, 
where each single locus tree was estimated with default 
parameters in IQ-TREE2; and (ii) the total number of 
base pairs assigned to each topology (summing across 
single-locus trees), (iii) the total number of variable 
sites assigned to each topology (summing across single- 
locus trees), and (iv) the total number of parsimony 
informative sites assigned to each topology (summing 
across single-locus trees).

Results

Simulations 1–3: The MAST Model Performs Well 
When the Model is Correctly Specified, With or Without 

Introgression

Our extensive simulations demonstrate that the 
unlinked (Supplementary Figs. 1 and 2) and linked 
(Supplementary Fig. 3) MAST models perform well 
when the model used for analysis matches that used 
to simulate the data set for the data sets with lengths 
5K, 10K, 50K (for the unlinked MAST model), and 
length 100K (for both the unlinked and the linked 

MAST models). The error associated with all unlinked 
and linked models increases as the number of trees in 
the mixture increases, as the number of tips in the tree 
decreases, and as the sequence length decreases. This 
is expected because in our simulations we held the dis-
tribution of branch lengths constant. Thus, the amount 
of information available to estimate each parameter 
decreases (and thus the expected error increases) as the 
number of trees increases, as the number of tips in each 
tree decreases, and as the sequence length decreases. 
The key parameters of interest for the MAST models 
are the tree weights (top panel, Supplementary Figs. 1 
and 3; Supplementary Fig. 2A–C). In the best-case sce-
nario (comprised of 2 trees, each of which contains 20 
taxa, and an alignment of 100K bases), the RMSE of the 
tree weights was very low, at around 0.001 for both the 
unlinked and linked models, while in the worst-case 
scenario (comprised of 10 trees, each of which contains 
6 taxa, and alignments of 5K bases (for unlinked model) 
and 100K bases (for linked model) sites) the error was 
much higher, at around 0.05 for both the unlinked and 
linked models, although this is still acceptably low in 
absolute terms.

The simulation results (Fig. 4) comparing the per-
formance between the MAST model and the PhyML-
multi model illustrate that the MAST model performs 
better than the PhyML-multi model when the unlinked 
model used for analysis matches that used to simulate 
the data sets. On average, PhyML-multi reports RMSE 
exceeding 0.1, regardless of whether it uses the mixture 
model, HMM with the Viterbi algorithm, or HMM with 
the Forward–backward algorithm. In contrast, on aver-
age, our MAST model consistently reports RMSE well 
below 0.1. We were unable to compute model param-
eters with PhyML-multi on alignments longer than 
5K bases because it reported undefined negative val-
ues (i.e., -nan) for the log-likelihoods of the models on 
alignments of 10K bases or longer.

The MAST model fits the data much better than the 
misspecified single-tree model for both the unlinked 
and linked models (bottom panel, Supplementary Fig. 
1, Supplementary Fig. 3, and Supplementary Fig. 2D–F); 
the improvement in the fit of the true model increases 
(i.e., the difference in BIC becomes more negative) as 
the number of trees, the number of tips in each tree, and 
sequence length increases. This is expected because a 
single-tree model becomes an increasingly poor fit to 
data simulated under more trees.

We also simulated scenarios with introgression, 
such that the minor trees are not expected to be equal 
in frequency. In these simulations, TE1 is the species 
tree (Supplementary Fig. 8) and increasing intro-
gression makes topology TE2 increasingly frequent. 
When the introgression rate was between 0 and 0.6, 
TE1 is the optimal tree in the single-tree model (Fig. 
5B) and the tree with the highest weight in the MAST 
model (Fig. 5C). When the introgression rate is above 
0.6, in most datasets, the single-tree model and the 
MAST model reported TE2 as the optimal tree and the 
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topology with the highest tree weight, respectively. 
Importantly, estimated weights from the MAST 
model closely match the proportion of sites simu-
lated under each tree for different introgression rates 
(compare Fig. 5A to Fig. 5C). All these results are as 
expected from the simulations that were carried out 
(i.e., the topology matching the introgressed history 
does in fact become the most common). The MAST 
model is a much better fit when the tree topologies 
TE1 and TE2 are more equal in frequency, though it is a 
better fit across all of parameter space (because there 
is always ILS, even when there is no introgression, 
thus multiple trees are always a better fit to the data; 
Fig. 5D).

Simulation 4–6: The MAST Model is Robust to the 
Inclusion of Trees with No Support in the Underlying Data

To test the robustness of the MAST model to the inclu-
sion of incorrect additional topologies, we simulated 
data under a single topology but fit the data under a 
MAST submodel 1 (simulation 4) and MAST submodel 
6 (simulation 5) with up to 10 topologies. The results 
show that with both MAST submodel 1 (Supplementary 
Fig. 4A–C) and MAST submodel 6 (Supplementary Fig. 
5A), the true tree (which was always one of the trees 
included in the MAST model) had the highest weight 
among all of the trees included in the MAST model in 
the majority of simulations regardless of the simulation 
conditions when the sequences are long.

Figure 4 This figure illustrates the accuracy of tree weight estimates for the MAST model and the proportion of sites between the trees for the 
PhyML-multi software when the true topologies are provided, and the software was applied to 5K-length data sets simulated under the MAST 
model with unlinked parameters. Each tree has its own set of branch lengths, substitution matrices, nucleotide frequencies, and gamma parameters. 
The data sets were simulated with varying numbers of topologies (2, 3, 5, and 10) and numbers of sequences (6, 7, 10, and 20) in the alignments. 
Among the input trees, the first tree differed from the other trees by 1, 2, or 3 SPR moves. The root-mean-squared error (RMSE) distributions for 
these estimations are shown for (a) our MAST model, (b) PhyML-multi’s mixture model, (c) PhyML-multi’s HMM model with the Viterbi algorithm, 
and (d) PhyML-multi’s HMM model with the forward–backward algorithm. Note that PhyML-multi encountered errors when processing the 10K 
and 50K-length simulated data sets. On average, the RMSE reported by PhyML-multi, whether through the mixture or HMM model, exceed 0.1. In 
contrast, the RMSE for our MAST model remains below 0.1. 
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These simulations reveal some of the fundamental 
limitations of the MAST model to distinguish among 
very similar trees. When incorrect trees included in the 
MAST model were sufficiently different from the true 
tree (i.e., when the SPR distance of each incorrect tree in 
the MAST model was 2 or 3 SPR moves from the true 
tree), the percentage of simulations for which the true 
tree had the highest weight remained relatively high 
(i.e., over 80%) regardless of the other simulation con-
ditions. However, when the incorrect trees included in 
the MAST model were close to the true tree (i.e., when 
they differed from the true tree by a single SPR move), 
in the worst case, the percentage of simulations for 
which the true tree had the highest weight dropped 
to, for submodel 1, 31% for 5K sequence length; 36% 
for 10K; and 51% for 50K, and, for submodel 6, 67% for 

100K (Supplementary Fig. 4A–C; Supplementary Fig. 
5A). This general trend is expected, because more sim-
ilar trees will share more branches in common, making 
it more difficult for any model to distinguish between 
them. These results quantify some of the analytical 
limits of multitree mixture models as currently imple-
mented. On the other hand, importantly, the inclu-
sion of incorrect trees in the MAST model always led 
to large increases in the BIC score, such that research-
ers using this method to select the best model would 
reject the additional trees, and instead prefer the results 
from a single-tree model (Supplementary Fig. 4D–F; 
Supplementary Fig. 5B).

To evaluate the performance of the MAST submodel 
6 when all the possible trees are included, we applied 
it with all 15 potential topologies to 100K-bp data sets 

Figure 5 This figure compares the performance of the MAST model with the standard single-tree model using datasets simulated across 
introgression rates r ∈ {0.0, 0.1, ..., 1.0}. Specifically, it displays (a) the actual proportion of sites simulated under each tree for varying introgression 
rates. Mean values are represented by colored lines, while the gray regions indicate the standard deviation across the 100 datasets for each 
introgression rate; (b) Results from fitting the concatenated alignment to a single-tree model. At high introgression rates, the most probable tree 
topology shifts to TE2; (c) Tree weights estimated by the linked MAST model; (d) BIC–BIC0: the difference in BIC values between the linked MAST 
model (BIC) and the single-tree model (BIC0). A more negative difference between the BIC values of the MAST and single-tree models indicates 
 a stronger preference for the MAST model over the standard single-tree model. 
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simulated using two equally weighted 5-tip trees. On 
average, the MAST model reported that the weights of 
the true trees were 21.3% and 22.8%, while the weights 
of the other trees were at most 16.8 (Supplementary Fig. 
6). More precisely, in 46%, 61%, and 73% of the simula-
tions the two true trees were among the top 2, 3, and 4 
trees with the highest tree weights. Sequentially add-
ing trees to the MAST model shows that there is a big 
improvement (i.e., decrease) in the BIC value from the 
single-tree model to the MAST model with two true 
trees (Supplementary Fig. 7). After that, sequentially 
adding incorrect trees to the MAST model caused BIC 
values to worsen (i.e., increase; Supplementary Fig. 7). 
In 98% of the simulations, the MAST model with the 
two true trees was the optimal model according to the 
BIC value.

Empirical dataset A: ILS in the Great Apes

Figure 6 shows the 3 possible tree topologies TA1, TA2,  
and TA3 for empirical dataset A, which is made up of 
4 Great Apes (Table 1). We applied multiple methods 
to these alignments in order to estimate the frequency 
of the 3 tree topologies. Single-tree analyses applied to 
each gene separately reported 19.8%, 20.1%, and 60.1% 
of the genes with topologies TA1, TA2, and TA3, respec-
tively (Fig. 6; Supplementary Table 1). All MAST sub-
models reported similar tree weights of 17.9%, 17.4%, 
and 64.7% (Table 2). All methods find that the topology 
uniting human and chimpanzee has the highest weight, 
with the two minor topologies having approximately 
equal weights; these results are as expected from all 
previous analyses.

The proportions of different topologies estimated 
by MAST are closer to the proportions of individual 
nucleotide sites from the genes supporting the var-
ious topologies than the percentage of gene trees 
(Supplementary Table 1). This may be because the 
weights of the MAST model more closely approx-
imate the proportion of the sites in the alignment 
(instead of the percentage of loci) supporting differ-
ent topologies. The BIC score from MAST submodel 
2 was the best (Table 2), indicating that the MAST 
model with unlinked substitution model, unlinked 

frequencies, and linked RHAS was the best model 
among different MAST submodels for this dataset. 
Regardless, the BIC values of all MAST submodels 
were much lower than the BIC value reported by the 
single-tree model (Table 2), showing that a multitree 
mixture model had a much better fit to the data, and 
demonstrating the superiority of a multitree mixture 
model over a single-tree model when ILS causes gene 
tree discordance.

Empirical Dataset B: Introgression in Macaques

Figure 7 shows the 3 possible tree topologies TB1, 
TB2, and TB3 for empirical dataset B, which is made up 
of multiple macaque species. Analyses of the individ-
ual gene trees using single-tree models for each locus 
revealed a large asymmetry in minor topologies (31.2%, 
18.6%, and 50.2% for TB1, TB2, and TB3, respectively; 
Supplementary Table 2). However, both the propor-
tions of parsimony-informative sites (17.6%, 14.5%, and 
67.9% for TB1, TB2, and TB3, respectively; Supplementary 
Table 2) and the weights from the different MAST sub-
models (all around 17.3%, 14.2%, and 68.6% for TB1, TB2, 
and TB3, respectively; Fig. 7; Table 3) showed much more 
similar proportions and weights for the minor trees. 
Although the minor trees are still substantially differ-
ent in frequency using the MAST analysis—consistent 
with introgression in this clade—the difference between 
them is much lower. Consistent with empirical dataset 
A, this result indicates that the gene tree frequencies are 
different from the frequencies reported by the MAST 
analysis, as the gene tree frequencies represent the pro-
portions of genes supporting various topologies while 
the MAST tree weights are more closely related to the 
proportions of sites from the genes supporting different 
topologies.

Empirical Dataset C: Great Apes + Macaques

Supplementary Figure 9 shows 9 tree topologies 
for empirical dataset C. This dataset combines the 
ingroup taxa from empirical datasets A and B, allow-
ing us to test the accuracy of MAST when there are 
more possible topologies: the 9 topologies represent 

Figure 6 The 3 topologies for empirical dataset A. TA3 is the commonly accepted species tree. 
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every combination of the 3 topologies present in each 
of empirical datasets A and B. The frequencies of the 
9 tree topologies were similar across gene trees and 
sites in standard analysis (Supplementary Table 3) 
as well as largely similar to the results across MAST 
submodels (Table 4). MAST submodels 1 and 2 are 
the 2 best-fit models to the dataset according to the 
BIC values (Table 4), and both give tree weights that 
are relatively close to the corresponding tree weights 
for the respective analyses in empirical datasets A 
and B (Supplementary Tables 4 and 5). However, the 
results from the simpler submodel 2 (in which RHAS 
parameters are linked across classes) are closer to the 
expected values than those from submodel 1, which 
is likely due to the challenges of optimizing highly 
parameterized models.

Empirical Dataset D: Overcoming Known Biases in 
Concatenated ML

As mentioned, ML has a known bias toward sym-
metrical trees (Kubatko and Degnan 2007) when there 
is a large amount of underlying discordance and the 
true species tree is asymmetrical (i.e., TD1 or TD2 in 
Supplementary Fig. 10). Indeed, when analyzed under 
ML using a single-tree model, data from 4 Platyrrhine 
monkeys support a symmetrical tree (Table 5). In con-
trast, counts of genes trees and parsimony-informative 
sites support the asymmetrical tree TD1 as the species 
tree (Supplementary Table 6). Similarly, analyses using 
the MAST submodels also tended to return TD1 as the 
topology with the highest weight (Table 5). Among all 
the models, the MAST submodel 2 had the best BIC 
value, with reported tree weights 42.4%, 28.1%, and 
29.6% for the topologies TD1, TD2, TD3, respectively. The 
tree weights are similar to the proportions of parsimony- 
informative sites from the genes that were inferred to 
support each of these topologies (i.e., 36.7%, 32.2%, 
31.1%; Supplementary Table 6). It is notable that two 
MAST models estimated different trees with the highest 
weights (submodels 3 and 4; Table 5), though submodel 
2 has a much lower BIC value than either of these. 
Overall, these results suggest that the MAST model is 
able to analyze a concatenated alignment using ML, 

but without the biases that come with the single-tree 
assumption.

Discussion

We have introduced the MAST model, which assumes 
that sites in a concatenated alignment may have 
evolved from a mixture of trees. This flexible assump-
tion allows the method to be applied to the alignments 
that include multiple tree topologies, which is presum-
ably true of almost any large dataset from a recombin-
ing genome. The implementation of the method allows 
different combinations of linked and unlinked param-
eters when estimating the substitution matrix, nucleo-
tide, or AA frequencies, and the RHAS across different 
trees. This flexibility allows researchers to have many of 
the advantages of concatenated analyses—for example, 
a large amount of data and accurate estimate of com-
plex substitution processes—while still incorporating 
gene tree heterogeneity, but without the need to make 
assumptions about the existence and location of puta-
tively non-recombining loci. As such, the MAST model 
opens up the opportunity to study topological discor-
dance in deep time, past the point where information 
from small, non-recombining gene tree alignments can 
be informative about relationships (Bryant and Hahn 
2020).

Our simulations show that parameter estimates 
using the MAST model are reliable under a wide range 
of scenarios. In general, the ability of the MAST model 
to accurately estimate parameters depends on the bal-
ance between the amount of information in the data 
(e.g., the length, depth, and informativeness of the 
alignment), the number of parameters being estimated 
(e.g., the number of trees used in the model, and rep-
resented in the underlying alignment), and scale of 
the differences between the underlying tree topolo-
gies. Unsurprisingly, the MAST model performs best 
with long, informative alignments of many taxa, when 
the number of true trees is small, and when the differ-
ences between the underlying tree topologies is large. 
Nevertheless, our simulations show that the MAST 

Figure 7 The 3 topologies for empirical dataset B. TB3 is the commonly accepted species tree. 
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model usually estimates tree weights with acceptably 
low error rates, even when the simulation conditions 
are more challenging, and the model is misspecified. 
Indeed, we show that by using standard approaches 
like the BIC, it is usually possible to identify the true 
trees that represent the data, even when these are not 
known in advance. Of course, these results do not prove 
the general identifiability of the model. The identifi-
ability of parameters in complex models, like mixture 
models, has been addressed previously (Allman et al. 
2011, Rhodes and Sullivant 2012). Rhodes and Sullivant 
(2012) gave an upper bound on the number of classes 
that ensures the generic identifiability of trees in mod-
els with a multi-tree mixture. Their method was based 
on the mixtures from different trees, provided that all 
the topologies share a certain type of common substruc-
ture in which a tripartition A|B|C exists such that the 
splits A | B ∪ C and A ∪ C | B are compatible with all 
trees. Parameters in the multi-tree mixture model are 
generically identifiable provided m < k j−1 where m is 
the number of classes, k is the number of states (i.e., 4 
for nucleotides; 20 for AAs), and the number of taxa in 
the partition A and in the partition B is both greater than 
or equal to j. However, establishing the identifiability 
of model parameters when there is no commonality 
between the trees remains an open problem (Rhodes 
and Sullivant 2012).

In order to use the MAST model to perform an anal-
ysis, the user must input a set of pre-specified tree 
topologies. A rooted three-taxon tree has only 3 pos-
sible topologies, but the number of topologies grows 

super-exponentially with the number of tips (Table 3.1 
in Felsenstein 2003). This means that it will usually not 
be feasible to specify all possible topologies that exist 
in a moderate-sized dataset; for example, in empirical 
dataset D we only studied 3 of 15 possible topologies. 
This limits the model’s applicability. However, there 
are instances where researchers may want to focus on a 
narrower range of topologies of particular significance. 
For instance, even in a tree with 100 species, it may be 
the relationships among a smaller number of clades that 
are relevant: if ILS only occurs on one branch of the tree, 
then there are 3 relevant alternative topologies, no mat-
ter the number of total tips. In general, we recommend 
that users specify known alternative hypotheses—or 
carry out an exploratory analysis of individual gene 
trees—in order to choose a manageable set of topolo-
gies as input to the MAST model.

There are multiple known biases when carrying 
out concatenated analyses under the “treelikeness” 
assumption. As mentioned in the “Introduction” sec-
tion, single-tree concatenated ML is statistically incon-
sistent in the presence of large amounts of discordance: 
it will return the incorrect tree with increasing proba-
bility as more data are added (Kubatko and Degnan 
2007). Our analyses of Platyrrhine monkeys suggest 
that the MAST model can solve this problem, giving the 
highest weight to the topology favored by other (sta-
tistically consistent) methods. In addition to inferring 
the wrong tree topology, the branch lengths inferred 
from concatenated analyses are biased in the presence 
of discordance (Mendes and Hahn 2016; Ogilvie et al. 

Table 2 Results of the empirical dataset A when applying IQ-Tree with a standard single-tree model and different MAST submodels with 
GTR + G substitution model

Model Sub. matrix Freqs. RHAS TA1 TA2 TA3 BIC
Single-tree 100.00% 4,978,549.51
MAST 1 unlinked unlinked unlinked 17.86% 17.40% 64.74% 4,975,971.28
MAST 2 unlinked unlinked linked 17.85% 17.44% 64.70% 4,975,941.59
MAST 3 unlinked linked unlinked 17.84% 17.48% 64.68% 4,978,121.95
MAST 4 unlinked linked linked 17.84% 17.48% 64.68% 4,978,097.70
MAST 5 linked linked unlinked 17.84% 17.48% 64.68% 4,977,961.91
MAST 6 linked linked linked 17.84% 17.48% 64.68% 4,977,938.91

Notes: There are 6 submodels of MAST representing different combinations of linked or unlinked substitution matrix (second column), 
nucleotide frequencies (third column), and rate heterogeneity across sites (fourth column). The fifth to seventh columns are the weights of the 
trees TA1, TA2, and TA3. The eighth column lists the BIC values of different models. The bolded figure is the best BIC value which is from the 
MAST submodel 2.

Table 3 Results of the empirical dataset B when applying IQ-TREE with a standard single-tree model and different MAST submodels with 
GTR + G substitution model

Model Sub. matrix Freqs. RHAS TB1 TB2 TB3 BIC
single-tree 100.00%  4,906,941.36
MAST 1 unlinked unlinked unlinked 17.29% 14.15% 68.55%  4,905,832.06
MAST 2 unlinked unlinked linked 17.29% 14.19% 68.52%  4,905,808.79
MAST 3 unlinked linked unlinked 17.27% 14.24% 68.49%  4,906,632.17
MAST 4 unlinked linked linked 17.27% 14.25% 68.48%  4,906,605.01
MAST 5 linked linked unlinked 17.27% 14.24% 68.50%  4,906,651.67
MAST 6 linked linked linked 17.27% 14.23% 68.50%  4,906,633.71

Notes: There are 6 submodels of MAST, representing different combinations of linked or unlinked substitution matrix (second column), 
nucleotide frequencies (third column), and rate heterogeneity across sites (fourth column). The fifth to seventh columns are the weights of 
the trees TB1, TB2, and TB3. The eighth column lists the BIC values of different models. The bolded figure is the best BIC value, which is MAST 
submodel 2.
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2017). Such biases can lead to misestimation of diver-
gence times when using the entire concatenated align-
ment. The MAST model allows researchers to estimate 
the branch lengths of individual topologies—we, there-
fore, recommend estimating divergence times using 
branch lengths obtained from the topology matching 
the species tree. While these times still represent genic 
divergence (and not species divergence; Edwards and 
Beerli 2000), they will be free of the bias associated with 
single-tree concatenation.

The output of our method is a set of weights associ-
ated with each input tree topology. Although the MAST 
model is not based on a particular biological model of 
discordance (e.g., the MSC or MSNC), we expect that 
the estimated weights should correspond to biolog-
ically relevant features of the data. Both our analyses 
of simulated and empirical data revealed that MAST 
gives the highest weight among all input trees to the 
tree that occurs most frequently in the gene trees. This 
is expected since the MAST weight will be most heavily 
influenced by the proportion of sites that are associated 
with each input tree. We note, however, that the highest- 
weight tree from MAST may not be the species tree 
(just as the most frequent gene tree may not correspond 
to the species tree (Degnan and Rosenberg 2006)). 
Moreover, the reported weights in the MAST model are 
highly correlated with the proportion of phylogeneti-
cally informative sites that support each tree. This cor-
relation is expected because the likelihood of each site 
is calculated as the weighted sum of the likelihood of 
the site over all the trees (Equation (1)) and the overall 

likelihood value is the product of the likelihoods over 
all the sites. This result, together with the accurate esti-
mation of minor tree weights, means that we can use 
these estimates to infer introgression from MAST out-
put. Common tests for introgression are based on the 
expectation that the two minor trees are equal in fre-
quency (e.g., the “ABBA-BABA” test; Green et al. 2010). 
One post hoc approach to inferences of introgression 
using MAST would be to test for a significant difference 
in the weights supporting each of two minority trees. 
Alternatively, it should be possible to compare the like-
lihoods of models that either link or unlink the weights 
of the minority trees. Greater support for the unlinked 
model would indicate that the two trees are not equal in 
frequency, and would support an inference of introgres-
sion. Such an approach would be of great benefit to test-
ing for introgression deeper in time, where individual 
phylogenetically informative sites and individual gene 
trees may not be accurate enough to make strongly sup-
ported inferences about introgression (Vanderpool et al. 
2020).

The MAST model is a flexible phylogenetic approach 
that models situations in which the sites of an alignment 
have evolved under multiple bifurcating tree topolo-
gies. Each tree has its own topology, a separate set of 
branch lengths, a substitution model, a set of nucleo-
tide or amino-acid frequencies, and a rate heterogeneity 
model. However, there are still some limitations to the 
current implementation. In addition to the future direc-
tions mentioned above, we would like to extend the 
MAST model to (i) perform a tree topology search for 

Table 4 Results of the empirical dataset C when applying IQ-Tree with a standard single-tree model and different MAST submodels with 
GTR + G substitution model

Model TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 BIC
Single-tree 100.0% 5,187,194.8
MAST 1 0.4% 7.0% 8.4% 7.7% 2.9% 18.3% 13.0% 8.7% 33.6% 5,183,982.5
MAST 2 0.4% 10.4% 8.2% 2.1% 2.5% 14.0% 13.1% 8.4% 41.1% 5,183,988.4
MAST 3 0.2% 8.0% 5.2% 1.1% 0.2% 17.4% 15.2% 2.4% 50.4% 5,186,041.4
MAST 4 0.2% 0.2% 3.9% 0.6% 0.8% 29.3% 12.7% 19.8% 32.5% 5,185,924.7
MAST 5 0.0% 0.8% 9.8% 1.9% 0.4% 18.2% 17.1% 11.3% 40.4% 5,186,243.3
MAST 6 0.0% 0.7% 11.1% 1.9% 1.8% 20.7% 19.3% 8.4% 36.0% 5,186,194.1

Notes: Six submodels of MAST are for different combinations of linked or unlinked substitution matrix, nucleotide frequencies, and rate 
heterogeneity across sites. The second to tenth columns are the estimated tree weights between the topologies TC1, TC2, …, and TC9 for different 
MAST submodels. The bolded figure is the best BIC value among different submodels.

Table 5 Results of the empirical data D when applying IQ-Tree with a standard single-tree model and different MAST submodels with 
GTR + G substitution model

Model Sub.
matrix

Freq. RHAS TD1 TD2 TD3 BIC

Single-tree – – – 100.0%  6,185,094.0
  MAST 1 unlinked unlinked unlinked 40.3% 23.0% 36.8%  6,177,609.0
  MAST 2 unlinked unlinked linked 42.4% 28.1% 29.6%  6,177,535.7
  MAST 3 unlinked linked unlinked 3.5% 4.7% 91.8%  6,182,942.1
  MAST 4 unlinked linked linked 2.1% 81.3% 16.7%  6,182,954.3
  MAST 5 linked linked unlinked 42.4% 32.0% 25.6%  6,184,689.7
  MAST 6 linked linked linked 42.4% 32.0% 25.5%  6,184,618.7

Six submodels of MAST are for different combinations of linked or unlinked substitution matrix (second column), nucleotide frequencies 
(third column), and rate heterogeneity across sites (fourth column). The fifth, sixth, and seventh columns are the estimated tree weights between 
the topologies TD1, TD2, and TD3 for different MAST submodels, respectively. The bolded figure is the best BIC value among different submodels.
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an input number of trees, thus relaxing the requirement 
that the user must pre-specify topologies; (ii) be able to 
compute the optimal number of trees needed to repre-
sent the input dataset, relaxing the requirement that the 
user specifies the number of trees ahead of time; and 
(iii) find the best set of substitution models and RHAS 
models for each tree separately. These directions are 
challenging but will be useful in analyzing genome-
scale datasets at any evolutionary timescale.

supplementary material

Data available from the Dryad Digital Repository: 
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