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Abstract.—Many recent phylogenetic methods have focused on accurately inferring species trees when there is gene tree 
discordance due to incomplete lineage sorting (ILS). For almost all of these methods, and for phylogenetic methods in 
general, the data for each locus are assumed to consist of orthologous, single-copy sequences. Loci that are present in more 
than a single copy in any of the studied genomes are excluded from the data. These steps greatly reduce the number of loci 
available for analysis. The question we seek to answer in this study is: what happens if one runs such species tree inference 
methods on data where paralogy is present, in addition to or without ILS being present? Through simulation studies and 
analyses of two large biological data sets, we show that running such methods on data with paralogs can still provide 
accurate results. We use multiple different methods, some of which are based directly on the multispecies coalescent model, 
and some of which have been proven to be statistically consistent under it. We also treat the paralogous loci in multiple ways: 
from explicitly denoting them as paralogs, to randomly selecting one copy per species. In all cases, the inferred species trees 
are as accurate as equivalent analyses using single-copy orthologs. Our results have significant implications for the use of 
ILS-aware phylogenomic analyses, demonstrating that they do not have to be restricted to single-copy loci. This will greatly 
increase the amount of data that can be used for phylogenetic inference.[Gene duplication and loss; incomplete lineage 
sorting; multispecies coalescent; orthology; paralogy.] 

Species tree inference often requires us to account for the 
fact that the evolutionary histories of different loci can 
disagree with each other, as well as with the phylogeny 
of the species. The reasons for this incongruence include 
biological causes such as incomplete lineage sorting 
(ILS) and introgression (broadly interpreted to include 
all biological processes involving genetic exchange), as 
well as technical causes such as the misidentification of 
paralogs as orthologs (“hidden paralogy”; Doolittle and 
Brown 1994). 

The inference of phylogenies can be carried out by 
concatenating all loci together or by treating each locus 
separately (reviewed in Bryant and Hahn 2020). While 
concatenation ignores incongruence, gene tree-based 
methods allow each locus to take on its own topology. 
Some gene tree-based methods rely on a model for 
how these trees evolve within the species phylogeny (in 
addition to probabilistic models of sequence evolution 
on the gene trees). The multispecies coalescent (MSC) 
(Hudson 1983; Takahata 1989; Rannala and Yang 2003; 
Degnan and Rosenberg 2009) has emerged as the most 
commonly employed model of such gene genealogies. 
Indeed, in the last two decades a wide array of methods 
and computer programs have been developed for species 
tree inference under the MSC; see Liu et al. (2009), 
Knowles and Kubatko (2011), Nakhleh (2013), and Liu 
et al. (2015) for recent reviews and surveys of these 
methods. Other gene tree-based methods are inspired 
by the MSC, but do not rely explicitly on this model 

(e.g., Mirarab et al. 2014). In either case, the goal is for 
the methods to be robust to incongruence caused by ILS. 

Regardless of the method being employed, the 
inference of species trees usually assumes that the 
data consist of only orthologous sequences. Indeed, 
most phylogenetic methods require the identification of 
orthologs; see Smith and Hahn (2021b) for a review of  
methods that do not require orthologs. As a result of the 
common requirement of orthologous loci, before such 
inference methods are applied to a phylogenomic data 
set paralogs must be identified and removed from the 
data. One common approach for removing paralogs is to 
use graph-based methods to identify homologous gene 
families, and then to use those gene families present 
in exactly a single copy in each sampled genome for 
phylogenetic inference (e.g., Li et al. 2003). Another 
approach is to use branch-cutting methods to extract 
orthologs from larger gene families (e.g., Yang and 
Smith 2014). Neither of these two approaches guarantees 
that the resulting data set includes only orthologous 
sequences (Koonin 2005). Furthermore, restricting the 
data to single-copy genes—which is by far the most 
common practice in the community—means that much 
of the data must be excluded from the analysis. In 
particular, as more species are sampled, the frequency 
of genes that are present in single-copy across all species 
will decrease (Emms and Kelly 2018). 

Paralogous sequences are often modeled by a process 
of gene duplication and loss (GDL) (Boussau et al. 2013). 
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This process can also produce incongruence, as every 
duplication event adds a single branch not found in 
the species tree (losses cannot generate incongruence). 
Although the MSC generates a distribution of gene 
trees due to ILS, it is likely that GDL models induce 
a distribution that differs from this. An obvious way 
to handle data sets where ILS and GDL could have 
simultaneously acted on gene families is to employ 
models of gene evolution that go beyond the MSC in 
order to incorporate GDL as well. Indeed, such models 
are beginning to emerge (Rasmussen and Kellis 2012; 
Li et al. 2021). However, the more complex the models 
of gene family evolution, the more computationally 
prohibitive statistical inference under these models 
becomes (Du and Nakhleh 2018), rendering their 
applicability infeasible except for very small data sets 
in terms of the number of species and gene families. 

Given that much progress in terms of accuracy and 
computational efficiency has been made on gene tree-
based, ILS-aware species tree inference methods, we ask 
in this paper the following question: are these inference 
methods robust to the presence of paralogs in the data? 
If they are, then the reach of gene tree-based inference 
methods is significantly extended and the exclusion 
of paralogous loci from phylogenomic data sets is 
deemed unnecessary, thus providing more signal for the 
inference task. To answer this question, we study the 
performance of five species tree inference methods, all 
of which use gene trees as the input data: The maximum 
pseudolikelihood method of Yu and Nakhleh (2015) as  
implemented by the function InferNetwork_MPL in 
PhyloNet (Wen et al. 2018), ASTRAL-III (Zhang et al. 
2018), NJst (Liu and Yu 2011), ASTRAL-Pro (Zhang et al. 
2020), and FastMulRFS (Molloy and Warnow 2020). 
The latter two methods were developed with paralogs 
in mind, and so should serve as a good baseline for 
comparison to the MSC-inspired methods. In particular, 
ASTRAL-Pro makes use of counts of quartets from 
speciation, but not duplication, events. Thus, there is 
a connection between the ASTRAL-Pro method and 
orthology detection. 

To test these methods, we use both simulated and real 
data. We simulate across a wide range of GDL rates 
and levels of ILS, and use two genome-scale empirical 
data sets with thousands of loci that contain branches 
with very different levels of discordance. We also sample 
the gene family data in multiple ways, in all cases 
finding that the inferences made by all methods are 
quite accurate and are mostly identical to the accuracy 
of the inferences when using only single-copy orthologs. 
Particularly striking is the finding that these methods 
infer very accurate species trees when all gene tree 
incongruence is due to GDL, and ILS is not a factor. We 
find that gene tree estimation error affects the methods’ 
performances at a similar, or even higher, level than 
ILS. We also find that methods designed specifically 
to take GDL into account, namely ASTRAL-Pro and 
FastMulRFS, do not generally have higher accuracy than 
the other methods. Overall, our results support the use 

of approaches that account for gene tree incongruence, 
regardless of its causes. 

METHODS 

Species Tree Inference Methods 

For species tree inference, we use five different 
methods. The first three assume that the input data come 
from single-copy genes: 

• The maximum pseudolikelihood inference 
function InferNetwork_MPL in PhyloNet, 
which implements the method of Yu and Nakhleh 
(2015). This method amounts to running MP-EST 
(Liu et al. 2010) when restricted to trees with no 
reticulations. 

• ASTRAL-III (Zhang et al. 2018; Rabiee et al. 2019), 
Version 5.6.3. 

• NJst (Liu and Yu 2011). 

While the maximum likelihood method of Yu et al. (2014) 
as implemented by the InferNetwork_ML function 
in PhyloNet (Wen et al. 2018) is relevant here, it is 
much more computationally demanding than maximum 
pseudolikelihood, so we chose not to run it. 

For comparison, we also use two methods that were 
designed specifically with paralogs in mind: 

• ASTRAL-Pro (Zhang et al. 2020). 

• FastMulRFS (Molloy and Warnow 2020). 

For the sake of conclusions that we draw from this 
study, it may be helpful to highlight the differences 
between these methods. InferNetwork_MPL 
optimizes a pseudolikelihood function that is derived 
based on the assumptions of the MSC. This function is 
very different, for example, from a likelihood function 
based on a model of gene duplication and loss (Arvestad 
et al. 2009). Therefore, its accuracy in inferring species 
trees from data with paralogs reflects directly on the 
performance of MSC-based methods on such data. 
None of the other four methods make direct use of 
the MSC, though ASTRAL, ASTRAL-Pro, and NJst 
have all been shown to be statistically consistent under 
the MSC, at least when both gene lengths and the 
number of genes go to infinity. Their accuracy on data 
with paralogs therefore reflects the suitability of these 
methods, rather than the MSC itself, for analyzing such 
data. Legried et al. (2021) proved that ASTRAL-ONE 
and ASTRAL-multi are statistically consistent under 
the GDL model of Arvestad et al. (2009), whereas 
Markin and Eulenstein (2021) and Hill et al. (2020) 
proved that ASTRAL-ONE and ASTRAL-multi are 
statistically consistent under the unified GDL/ILS 
model (the DLCoal model) of Rasmussen and Kellis 
(2012). ASTRAL-Pro is conjectured to be statistically 
consistent under the DLCoal model (Zhang et al. 2020). 
FastMulRFS has been proven to be statistically consistent 

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/71/2/367/6318793 by Indiana U

niversity Libraries - Bloom
ington user on 29 M

arch 2022 

https://academic.oup.com/sysbio/article/71/2/367/6318793


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[10:05 22/1/2022 Sysbio-OP-SYSB210056.tex] Page: 369 367–381

2022 YAN ET AL.—SPECIES TREE INFERENCE ON DATA WITH PARALOGS 369 

a) 

Spar 
Scer 
Smik 
Sbay 
Cgla 
Scas 
Klac 
Agos 
Kwal 
Lelo 
Cpar 
Ctro 
Calb 
Dhan 
Cgui 
Clus 

090180 

b) 

Dsim 
Dsec 
Dmel 
Dyak 
Dere 
Dana 
Dper 
Dpse 
Dwil 
Dvir 
Dmoj 
Dgri 

03264 

FIGURE 1. The species trees reported in Rasmussen and Kellis (2012), which we use as the topologies in the simulations and in the empirical 
data analysis. a) The species tree of 16 fungal species. b) The species tree of 12 fly species. The species tree topologies and their branch lengths 
in units of million years are taken from http://compbio.mit.edu/dlcoal/. 

under a model of either only duplication or only loss 
(Molloy and Warnow 2020). 

Given a collection of trees corresponding to gene 
families (one tree per gene family), we generated four 
types of input to each of the methods: 

• ONLY: The input consists of trees of only gene 
families that are present in exactly one copy in each 
of the species. 

• ONLY-NoDup: The input consists of trees of 
ONLY gene families that have no history of 
gene duplication. These are canonical single-copy 
orthologs. 

• ONE: The input consists of trees of all gene families, 
but where a single copy per species per gene 
family is selected at random and the remaining 
copies are removed. If a gene family has no copies 
at all for some species, then the resulting tree 
of that gene family also has no copies for that 
species. 

• ALL: The input consists of trees of all gene families, 
but where all copies of a gene in a species 
are treated as multiple alleles from different 
individuals within the species. Similar to ONE, if 
a gene family has no copies at all for some species, 
then the resulting tree of that gene family also has 
no copies for that species. 

ONLY corresponds to the practice that is followed 
in many phylogenomic studies, though it does not 
necessarily guarantee that the included genes are 
orthologs. Instead, “hidden paralogs” (Doolittle and 
Brown 1994) or “pseudoorthologs” (Koonin 2005) may  
occur: these are cases in which complementary losses 
result in single-copy paralogs present in different 
species. ONLY-NoDup corresponds to a scenario where 

researchers know which genes have a history of 
duplication and can exclude them from their analysis. 
ONE is likely to have some hidden paralogs in the input, 
unless GDL does not occur. By construction, ALL has all 
orthologs and paralogs as input, but these are effectively 
labeled as orthologs with multiple individuals sampled 
per species, since InferNetwork_MPL, ASTRAL-III, and 
NJst were not originally developed with paralogs in 
mind. 

Simulation Setup 

For model species trees, we used the trees of 16 fungal 
species and 12 fly species reported in Rasmussen and 
Kellis (2012) and shown in Figure 1. The 16 fungal species 
are: Candida albicans (Calb), Candida tropicalis (Ctro), 
Candida parapsilosis (Cpar), Lodderomyces elongisporus 
(Lelo), Candida guilliermondii (Cgui), Debaryomyces 
hansenii (Dhan), Candida lusitaniae (Clus), Saccharomyces 
cerevisiae (Scer), Saccharomyces paradoxus (Spar), 
Saccharomyces mikatae (Smik), Saccharomyces bayanus 
(Sbay), Candida glabrata (Cgla), Saccharomyces castellii 
(Scas), Kluyveromyces lactis (Klac), Ashbya gossypii (Agos), 
and Kluyveromyces waltii (Kwal). Note that Saccharomyces 
castellii has since been renamed Naumovozyma 
castellii (https://www.uniprot.org/taxonomy/27288), 
Kluyveromyces waltii has since been renamed Lachancea 
waltii (https://www.uniprot.org/taxonomy/1089441), 
and Ashbya gossypii has been renamed Eremothecium 
gossypii (https://www.uniprot.org/taxonomy/33169). 

The 12 fly species are: Drosophila melanogaster (Dmel), 
Drosophila simulans (Dsim), Drosophila sechellia (Dsec), 
Drosophila erecta (Dere), Drosophila yakuba (Dyak), 
Drosophila ananassae (Dana), Drosophila pseudoobscura 
(Dpse), Drosophila persimilis (Dper), Drosophila willistoni 
(Dwil), Drosophila mojavensis (Dmoj), Drosophila virilis 
(Dvir), and Drosophila grimshawi (Dgri). 
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To generate gene trees while allowing for ILS and 
GDL, we used SimPhy (Mallo et al. 2015) with the 
parameters specified below (assuming all species are 
diploid). SimPhy uses the three-tree model developed 
in Rasmussen and Kellis (2012) to simulate data. In this 
model, a locus tree is simulated within the branches of 
the species tree. All incongruence between the locus tree 
and the species tree is due to GDL. Then, a gene tree is 
simulated within the branches of the locus tree, where 
all incongruence between the locus tree and the gene 
tree is due to ILS. The resulting gene tree differs from 
the species tree due to a combination of ILS and GDL. 
Using the locus trees as input to an inference method 
amounts to using data where all incongruence is solely 
due to GDL (but not ILS). Setting the rates of GDL to 0 
amounts to generating gene trees where all incongruence 
is solely due to ILS. Note that SimPhy makes two further 
assumptions relevant to the results presented here: first, 
it assumes no hemiplasy of new duplication mutations. 
That is, all new duplicates immediately fix before they 
can be lost during a polymorphic phase. Rasmussen 
and Kellis (2012) found that this assumption affected 
5% of gene families simulated under similar conditions. 
Furthermore, hemiplasy results in an excess of apparent 
gene losses, which should not affect inferences of species 
trees. The second assumption is that all gene families are 
independent: no events duplicate or delete more than 
a single gene at a time. In real data, large-scale events 
(including whole-genome duplications) can affect many 
genes at a time. 

For the fungal tree simulated data sets, we used 
five different duplication and loss rates (assuming 
duplication and loss rates are equal): 0 (to investigate 
the performance when ILS, but not GDL, acted on 
the gene families), 1×10−10, 2×10−10, 5×10−10 , and 
10×10−10 per generation. We take the case where the 
rate is 1×10−10 to be similar similar to the duplication 
rate of 7.32×10−11 and loss rate of 8.59×10−11 used by 
Rasmussen and Kellis (2011), and denote this rate as 
“1×”. We used two effective population sizes: 107 and 
5×107 , where the former was also used by Rasmussen 
and Kellis (2012) as the true population size. We assumed 
0.9 years per generation as in Rasmussen and Kellis 
(2012) and used 4×10−10 as the nucleotide mutation rate 
per site per generation, similar to the rates of 3.3×10−10 

and 3.8×10−10 used by Zhang and Wu (2017) and Lang 
and Murray (2008), respectively. 

For the fly tree simulated data sets, we used 
five different duplication and loss rates (assuming 
duplication and loss rates are equal): 0, 1×10−10, 2× 
10−10, 5×10−10 , and 10×10−10 per generation. A GDL 
rate of 1.2×10−10 was used in Rasmussen and Kellis 
(2012); Zhang and Wu (2017) and reported by Hahn 
et al. (2007); we again denote this rate as “1×”. We used 
two effective population sizes: 106 and 5×106 , similar 
to the values used in Rasmussen and Kellis (2012) and 
the estimated value of 1.15×106 reported in Sawyer and 

Hartl (1992) and Pollard et al. (2006). We assumed 10 
generations per year as in Rasmussen and Kellis (2012) 
and Zhang and Wu (2017) and used 3×10−9 as the 
mutation rate per site per generation, similar to the rate 
of 5×10−9 found in Schrider et al. (2013). 

For each combination of GDL rate and population size, 
10,000 gene families (each containing a locus tree and its 
corresponding gene tree) were simulated in this fashion 
as one data set. Ten such data sets, each with 10,000 gene 
families, were generated for each condition. To study the 
effect of using data sets of varying sizes, for each of the 
10 data sets we randomly sampled 10, 50, 100, and 250 
gene families from the 10,000 gene families under the 
ALL, ONE, ONLY, and ONLY-NoDup scenarios. In case 
the number of available gene families that fits ONLY 
or ONLY-NoDup is smaller than the desired size, that 
number of gene families was used (e.g., when only 6 
gene family trees are available when data sets of size 10 
are desired, the 6 trees are used as input). 

To study the effect of GDL and ILS on species tree 
estimates, for each data set of trees (true gene trees or true 
locus trees; i.e., trees without estimation error) of a given 
size, we fed the data set as input to InferNetwork_MPL, 
ASTRAL, NJst, ASTRAL-Pro, and FastMulRFS and 
computed the Robinson–Foulds distance (Robinson and 
Foulds 1981), normalized by the number of internal 
branches in the (unrooted) species tree to obtain a value 
between 0 and 1. This is the normalized distance between 
the true and inferred species trees. To study the further 
effect of error in the gene tree estimates on species tree 
estimates, we simulated the evolution of sequences of 
length 500 nucleotides on all gene trees under the HKY 
model, using Seq-gen (Rambaut and Grassly 1997). We 
then inferred gene trees from the simulated sequence 
data using IQ-TREE (Nguyen et al. 2014). Furthermore, 
to study the effect of error in the locus tree estimates, we 
treated the true locus tree as a gene tree and simulated 
the evolution of sequences of length 500 nucleotides 
on all locus trees under the HKY model, again using 
Seq-gen, and inferred locus trees from the simulated 
sequence data using IQ-TREE. It is important to note 
that in practice only gene trees, but not locus trees, 
are inferrable, as the locus tree is an artifact of the 
three-tree model and not a biological entity (Rasmussen 
and Kellis 2012). However, conducting analysis using 
inferred locus trees gives a picture of the performance 
when all incongruence is due to GDL and gene tree 
error only. Finally, InferNetwork_MPL assumes that 
the input gene trees are rooted. In this study, we rooted 
the gene tree estimates by minimizing deep coalescences 
(Maddison 1997; Than and Nakhleh 2009); that is, we 
rooted each gene tree in a way that minimizes the 
number of extra lineages when reconciled with the true 
species tree. 

Biological Data 

For the fungal data set, we used 2932 gene 
trees reported in http://compbio.mit.edu/dlcoal/ and 
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estimated with PhyML (Guindon and Gascuel 2003), 
where 1867 gene trees fit the ONLY setting. For the fly 
data set, we used 9233 gene trees from Hahn et al. (2007) 
reconstructed using the neighbor-joining algorithm, 
where 6698 gene trees fit the ONLY setting. For the 
fly data set, we removed any gene trees containing 
polytomies prior to running NJst. In neither data set did 
we attempt to identify single-copy orthologs. We again 
rooted each gene tree in the empirical data with respect 
to the species trees of Figure 1 so as to minimize deep 
coalescences (Maddison 1997; Than and Nakhleh 2009) 
using the method of Yu et al. (2011), as implemented by 
the function ProcessGT in PhyloNet (Wen et al. 2018). We 
estimated species trees using ASTRAL, NJst, maximum 
pseudolikelihood, ASTRAL-Pro, and FastMulRFS with 
these gene trees as input. 

RESULTS 

Characteristics of the Simulated Data 

Before we describe the inference results, we 
discuss the characteristics of the simulated data. 
First, we investigated the effects of gene duplication 
and loss on the number of gene copies per 
species in each gene family. Figure 2a,b and 
Supplementary Figure S1a,b available on Dryad at 
http://dx.doi.org/10.5061/dryad.t76hdr81d show data 
on the sizes (numbers of copies) of gene families in 
the 16-taxon and 12-taxon data sets, respectively, under 
the various settings of effective population sizes and 
duplication and loss rates. 

Clearly, the higher the GDL rates, the larger the 
variance in size of gene families. The figure also shows 

a) b) 

c) d) 

e) f) 

FIGURE 2. Characteristics of the simulated data under different settings of the duplication/loss rates and tree topologies. The duplication/loss 
rates are denoted by the rate multiplier (0×, 1×, 2×, 5×, and 10×), where 1× is the rate found in nature for the clade represented by each species 
tree topology (see Methods section). a,b) Distribution of the total number of gene copies in individual gene families in the 16-taxon and 12-
taxon data sets, respectively. Note that the two tree topologies also have different simulated effective population sizes in these figures (see 
Supplementary Fig. S1a,b available on Dryad for more conditions). c,d) Scatter plots of XL (Species tree, Locus tree), the number of extra lineages 
when reconciling the true locus trees with the true species tree, for the 16-taxon and 12-taxon data sets, respectively. These plots therefore 
represent the effects of GDL alone. e,f) Scatter plots of XL (Locus tree, Gene tree), the number of extra lineages when reconciling the true gene 
trees with the true locus tree, for the 16-taxon and 12-taxon data sets, respectively. These plots therefore represent the effects of ILS alone, though 
note that higher rates of GDL allow there to be more gene tree branches on which ILS can act. 
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TABLE 1. The average number of gene families that fit the 
ONLY/ONLY-NoDup settings out of the 10,000 gene families. 

16-taxon data 12-taxon data 

Ne 107 5×107 106 5×106 

GDL rate 
1×10−10 7619/7616 7585/7583 4591/4554 4584/4550 
2×10−10 5794/5782 5787/5775 2197/2131 2176/2111 
5×10−10 2554/2521 2538/2508 268/226 266/222 
1×10−9 689/659 688/657 12/6 13/7 

that the average size of a gene family is roughly equal 
to the number of species, with the largest gene families 
having 65 copies for the 16-taxon data sets, and 94 copies 
for the 12-taxon data sets (recall that these trees use 
different rates of GDL). We then counted the average 
(over the 10 data sets per setting) number of gene families 
for each setting that have ONLY one copy per species and 
the average number of gene families with no history of 
duplication (i.e., ONLY-NoDup). The results are shown 
in Table 1. The table shows that as the GDL rates 
increase, the number of single-copy orthologs decreases. 
However, as predicted by theory (Smith and Hahn 
2021a), there appear to be very few pseudoortholog in 
the ONLY data set. 

We then set out to assess the extent of incongruence 
in the gene trees due to GDL and ILS. For every pair 
of true species tree and true locus tree, we computed 
the number of extra lineages (Maddison 1997) using the 
DeepCoalCount_tree command in PhyloNet (Than and 
Nakhleh 2009; Wen et al. 2018) as a proxy for the amount 
of incongruence in the data. Here, we treated all gene 
copies from the same species as different individuals. 
Zero extra lineages mean there is no incongruence 
between the two trees, and the higher the value, the more 
incongruence there is. In particular, no incongruence 
means that all gene copies from the same species are 
monophyletic in the locus tree, and when restricted to 
a single arbitrary copy per species, the locus tree and 
species tree have identical topologies. 

Figure 2c,d and Supplementary Figure S1c,d available 
on Dryad show data on the number of extra lineages 
in the simulated 16-taxon and 12-taxon data sets, 
respectively, under the various settings of effective 
population sizes and duplication and loss rates. It is 
important to note that all incongruence in this case 
is exclusively due to GDL (ILS is not a factor in the 
results in these two panels). The panels do not have 
results for the GDL rate of 0×, because in such cases 
there is no incongruence at all between the locus tree 
and the species tree, and thus there are zero extra 
lineages. The results show that, unsurprisingly, there 
is much more incongruence for the ALL scenario than 
the ONE scenario. For the ONLY scenario, there is very 
little incongruence in either data set. The incongruence 
in ONLY would indicate the phenomenon of hidden 
paralogy: single-copy genes are paralogs, so that their 
gene trees do not always agree with the species tree. 
Given the small number of hidden paralogs (Table 1), 
these results are unsurprising. The ONLY-NoDup data 

sets are not plotted, because the number of extra lineages 
in those locus trees is always zero, as expected. 

We also computed the number of extra lineages when 
reconciling the true gene trees with the true locus trees. 
Here, incongruence is exclusively due to ILS (GDL is not 
a factor). Figure 2e,f and Supplementary Figure S1e,f 
available on Dryad show data on the number of extra 
lineages in the simulated 16-taxon and 12-taxon data 
sets, respectively, under the various settings of effective 
population sizes and duplication and loss rates. When 
the gene tree topology is identical to the locus tree 
topology, the number of extra lineages is zero, and the 
larger the number of extra lineages, the more ILS has an 
effect on the data. The figure shows that, as expected, 
the amount of ILS is larger for larger population sizes, 
and consequently there is much more ILS in the 16-
taxon data set than in the 12-taxon data set. One other 
trend to observe is that, on average, the amount of 
incongruence due to ILS increases with the increase in 
the GDL rate. This is a reflection of the fact that for higher 
GDL rates, the locus trees are larger (more leaves and 
internal branches), and this naturally results in more 
branches that can be affected by ILS. Finally, the amount 
of incongruence due to ILS is generally far lower than the 
amount due to GDL in the 12-taxon data set, while the 
levels of incongruence due to GDL and ILS are similar 
in the 16-taxon data set, especially when the rates of 
duplication and loss are high. 

Results on Simulated Data 

We are now in position to describe the inference 
results. We show figures for the 16-taxon data sets in the 
main text, while figures for the 12-taxon data sets are all 
in the Supplementary Figs. S8–S11 available on Dryad. 
The results for the 12-taxon data sets are consistently 
better in terms of accuracy, so we chose to focus here on 
the less-optimal results. 

We first ran the inference methods ASTRAL, 
InferNetwork_MPL, NJst, ASTRAL-Pro, and 
FastMulRFS on the true gene trees for all four input 
scenarios: ALL, ONE, ONLY, and ONLY-NoDup. In this 
case, gene tree estimation error is not a cause of gene 
tree incongruence. Instead, all incongruence is due to a 
combination of ILS and GDL. Results on the full 16-taxon 
tree are shown in Figure 3 and Supplementary Figure S4 
available on Dryad. Note that, in all cases, using input 
data with GDL levels of 0 amounts to inferring a species 
tree from gene trees whose incongruence is solely due 
to ILS. 

There are several observations based on these results. 
First, the accuracy of the inferred 16-taxon trees is 
much lower in general than that of the inferred 12-
taxon trees. In particular, for the 12-taxon data sets, the 
species trees are perfectly estimated in almost all cases 
(Supplementary Fig. S3 available on Dryad), whereas 
the species tree estimation error is high, especially for 
the larger population sizes, for the 16-taxon data sets. 
As shown in Figure 2 and Supplementary Figure S1 
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FIGURE 3. Species tree estimation error for data simulated from the 16-taxon fungal tree with a population size of 5.0×107 and varying 
GDL rates; note that simulations include the effects of both ILS and GDL (but no gene tree estimation error). Species tree estimation error was 
measured as the normalized RF distance between the true species tree and the ones inferred from true gene trees. The five inference methods 
used are ASTRAL, InferNetwork_MPL, NJst , ASTRAL-Pro (“A-pro”), and FastMulRFS. The duplication/loss rates are denoted by the rate 
multiplier (0×, 1×, 2×, 5×, and 10×), where 1× is the rate estimated in nature for fungi. Each row corresponds to a combination of population 
size and GDL rates. The X-axis in each panel represents the number of gene families used and the Y-axis represents the normalized RF distance. 

available on Dryad, both data sets have similar gene 
family sizes but differ significantly in terms of the 
amount of ILS in the data, with the 12-taxon data sets 
having very little ILS. Therefore, the straightforward 
explanation for the observed differences species tree 
inference accuracy between the 16- and 12-taxon data 
sets is the higher level of ILS in the former. Given 
that the level of incongruence due to GDL is similar 
between the 16-taxon and 12-taxon data sets (Fig. 2c,d 
and Supplementary Fig. S1c,d available on Dryad), these 
results point to the larger role that ILS plays in the 
methods’ performance than GDL does. 

Second, in the case of the 16-taxon data, the 
performance of all methods improves as the number of 
gene families used as input to the method increases. 
Note also that the largest data set used here consists 
of only 250 gene trees, which is much smaller than 
the number available in most phylogenomic data sets. 
While there is very little difference observed in the 
performance among the methods on the 16-taxon data, 
ASTRAL, ASTRAL-Pro, and NJst are more similar to 
each other in terms of performance than either of them 

is to inference under maximum pseudolikelihood or 
FastMulRFS. This makes sense as ASTRAL, ASTRAL-
Pro, and NJst are summary methods that make inference 
based on statistics derived from the input gene trees, 
whereas maximum pseudolikelihood uses calculations 
based on the multispecies coalescent directly. The 
performance of FastMulRFS is similar to that of other 
methods, but its error rates remain higher than the other 
methods when more gene families are used. Although 
ASTRAL-Pro and FastMulRFS were developed with 
gene duplication and loss in mind, they do not appear 
to outperform the other summary methods. 

Third, the level of ILS for a population size of 50M 
is higher than for a population size of 10M, and this 
results in lower accuracy of inferred species trees by 
all methods in the former case (Supplementary Fig. S4 
available on Dryad). This behavior is expected for any 
method, regardless of whether GDL is acting. Notably, 
FastMulRFS was not developed to deal correctly with 
ILS and seems to have an inflated error rate with larger 
population sizes, but not with smaller population sizes 
(Supplementary Fig. S4 available on Dryad), suggesting 
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FIGURE 4. Species tree estimation error for data simulated from the 16-taxon fungal tree with a population size of 5.0×107 and varying GDL 
rates; note that simulations include the effects of GDL only (no ILS or gene tree estimation error). Species tree estimation error was measured 
as the normalized RF distance between the true species tree and the ones inferred from true locus trees. The five inference methods used are 
ASTRAL, InferNetwork_MPL, NJst , ASTRAL-Pro (“A-pro”), and FastMulRFS. The duplication/loss rates are denoted by the rate multiplier 
(0×, 1×, 2×, 5×, and 10×), where 1× is the rate estimated in nature for fungi. Each row corresponds to a combination of population size and 
GDL rates. The X-axis in each panel represents the number of gene families used and the Y-axis represents the normalized RF distance. 

that ILS may be the cause of higher error rates in this 
method. 

Lastly, we observe very little difference in the accuracy 
of inferred species trees across the four input scenarios: 
ALL, ONE, ONLY, and ONLY-NoDup. The only case 
in which there is a noticeable difference is in the 12-
taxon data sets with the duplication rate 10× that found 
in nature, when only ten genes are used for inference 
(Supplementary Figs. S8 and S9 available on Dryad). 
These results imply that the presence of paralogs in the 
data, no matter how they are treated, does not have much 
of an effect on the performance of the five methods, 
unless very few genes are used. 

The results thus far raise the important question: does 
GDL have any effect on the performance of these five 
methods? To answer this question, we ran all of them 
on the locus trees as input to infer species trees. By the 
three-tree model, this amounts to feeding these methods 
“gene trees” whose incongruence is solely due to GDL; 
that is, ILS plays no role in incongruence here. It is 
important to point out that locus trees are mathematical 
constructs of the three-tree model; in practice, inferring 
a locus tree is not possible, unless the data has no 

ILS at all. We conducted this experiment to study the 
performance of methods when GDL, but not ILS, causes 
all incongruence. Results on the full 16-taxon data sets 
are shown in Figure 4 and Supplementary Figure S5 
available on Dryad. As the results show, all methods 
infer the species tree perfectly accurately on almost all 
data sets, regardless of the parameter settings and the 
input scenario. In other words, when these methods— 
some of which have been developed based on the 
multispecies coalescent directly (InferNetwork_MPL), 
some of which were inspired by the MSC (ASTRAL, 
ASTRAL-Pro, and NJst ), and one that does not deal with 
ILS at all (FastMulRFS)—are applied to data that have 
no ILS but do have paralogs in them, they have almost 
perfect accuracy in terms of the species tree topology 
they infer, under the conditions of our simulations. 
Combined with the results summarized in Figure 3 
and Supplementary Figure S4 available on Dryad, 
these results show, perhaps surprisingly, that methods 
developed to handle ILS but not GDL do much better 
in handling GDL than they do in handling ILS. Perhaps 
unsurprisingly, ASTRAL-Pro and FastMulRFS, methods 
designed to handle GDL, also perform well on the true 
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FIGURE 5. Species tree estimation error for data simulated from the 16-taxon fungal tree with a population size of 5.0×107 and varying 
GDL rates; note that simulations include the effects of ILS, GDL and gene tree estimation error. Species tree estimation error was measured as 
the normalized RF distance between the true species tree and the ones inferred from estimated gene trees. The five inference methods used are 
ASTRAL, InferNetwork_MPL, NJst , ASTRAL-Pro (“A-pro”), and FastMulRFS. The duplication/loss rates are denoted by the rate multiplier 
(0×, 1×, 2×, 5×, and 10×), where 1× is the rate estimated in nature for fungi. Each row corresponds to a combination of population size and 
GDL rates. The X-axis in each panel represents the number of gene families used and the Y-axis represents the normalized RF distance. 

locus trees. The inflated errors seen with FastMulRFS 
under some settings with gene trees are absent when true 
locus trees are used as input, suggesting that, indeed, 
these errors were due to ILS. ASTRAL-Pro was designed 
to deal with both ILS and GDL and performs well on both 
true gene trees and true locus trees. 

In practice, gene trees are unknown and are inferred 
from sequence data. Therefore, to simulate more realistic 
scenarios, we inferred gene trees and locus trees 
from simulated sequence data and fed these tree 
estimates as input to the five methods. In this case, 
gene tree estimation error is a factor in the observed 
incongruences. We show the extent of error in the 
estimated gene and locus trees for the 16-taxon data in 
Supplementary Figure S2 available on Dryad. 

Gene tree estimation error is measured by the 
normalized RF distance between the true gene tree 
and the reconstructed gene tree. For the 12-taxon data 
set, the average gene tree estimation error ranges from 
0.456 to 0.648, whereas the average locus tree estimation 
error is slightly lower, ranging from 0.414 to 0.627 

(Supplementary Fig. S3 available on Dryad). For the 16-
taxon data set, the average gene tree estimation error 
ranges between 0.073 to 0.130 while the average locus 
tree estimation error ranges from 0.065 to 0.099. In other 
words, there is much less gene tree estimation error in 
the 16-taxon data sets than in the 12-taxon data sets. 
Moreover, for the 12-taxon data sets under the ALL and 
ONLY settings, with increased GDL rate, a decline in 
error was observed (the average error dropping from 
0.614 to 0.477 and 0.615 to 0.489 under ALL and ONE, 
respectively). Such a pattern, however, was not detected 
for the 16-taxon data sets. 

Results of species tree inference using the full 16-
taxon data set based on estimated gene trees are shown 
in Figure 5 and Supplementary Figure S6 available on 
Dryad; those based on the locus tree estimates are shown 
in Figure 6 and Supplementary Figure S7 available 
on Dryad. These results should be contrasted with 
Figure 3, Supplementary Figure S4 available on Dryad, 
Figure 4 and Supplementary Figure S5 available on 
Dryad, respectively, to understand the effect of gene tree 
estimation error on the accuracy of species tree inference. 
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FIGURE 6. Species tree estimation error for data simulated from the 16-taxon fungal tree with a population size of 5.0×107 and varying GDL 
rates; note that simulations include the effects of GDL and gene tree estimation error (no ILS). Species tree estimation error was measured as 
the normalized RF distance between the true species tree and the ones inferred from estimated locus trees. The five inference methods used are 
ASTRAL, InferNetwork_MPL, NJst , ASTRAL-Pro (“A-pro”), and FastMulRFS. The duplication/loss rates are denoted by the rate multiplier 
(0×, 1×, 2×, 5×, and 10×), where 1× is the rate estimated in nature for fungi. Each row corresponds to a combination of population size and 
GDL rates. The X-axis in each panel represents the number of gene families used and the Y-axis represents the normalized RF distance. 

In the case of species tree inferences using data where 
ILS, GDL, and gene tree estimation error are involved, 
the error rates of all five species tree inference methods 
went up, as expected (Fig. 5 and Supplementary Fig. S6 
available on Dryad), but only slightly. The accuracy of the 
species trees improves as the number of gene families 
increases. As discussed above, the error in gene tree 
estimates in the 16-taxon data sets is very low. Since 
gene tree estimation error in the 12-taxon data sets is 
much higher (because the higher substitution rates result 
in noisier sequence data), we observe a larger impact 
of this error on the performance of methods on the 
12-taxon data sets (Supplementary Fig. S10 available 
on Dryad). While the methods had an almost perfect 
accuracy on true gene trees, species tree estimates now 
have as high as 50% error when 10 gene family trees 
are used, and close to 25% error when 250 gene family 
trees are used (Supplementary Fig. S10 available on 
Dryad). These results illustrate the large impact gene tree 
estimation error has on these methods. In the case of the 
12-taxon data sets, the impact of gene tree estimation 
error significantly outweighs that of ILS or GDL. 

Figure 6 and Supplementary Figure S7 available on 
Dryad demonstrate how GDL and gene tree estimation 
error (but no ILS) impact species tree inference. As 
with Figure 4 and Supplementary Figure S5 available 
on Dryad, which show almost perfect performance of 
species tree inference from true locus trees (i.e., GDL and 
no ILS), we observe little reduction in performance here 
due to error in the estimates of gene trees. The results 
demonstrate that in the absence of ILS, all methods are 
robust to gene tree estimation error, except when the 
number of gene families is very small. In the case of the 
12-taxon data sets, where locus tree estimation error is 
much higher, the five species tree inference methods also 
have comparable, but lower, accuracies (Supplementary 
Fig. S11 available on Dryad). 

All of these results combined point to a very small 
impact of GDL on the performance of the five studied 
species tree inference methods and given the simulation 
parameters used here, regardless of how the paralogs are 
handled. On the other hand, across all data sets it was 
evident that gene tree estimation error has a noticeable 
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FIGURE 7. Inferred fungal species trees. a) The fungal species tree inferred by InferNetwork_MPL(ALL). b) The fungal species tree inferred by 
InferNetwork_MPL(ONLY) c) The fungal species tree inferred by ASTRAL, NJst , ASTRAL-Pro, FastMulRFS, and InferNetwork_MPL(ONE). 
Differences between the inferred species trees and the tree in Figure 1 are highlighted in red. 

impact on the methods’ performance, and that ILS often 
had a substantial impact on accuracy. 

Results on Biological Data 

We ran all five methods used above on two empirical 
data sets, each consisting of thousands of gene trees. As 
the two data sets were the basis for the simulated data 
presented above, they share many of the same properties 
as these data. 

For the 16 fungal genomes, the inferred species 
trees from all five methods differ from the tree 
shown in Figure 1a. ASTRAL, NJst , ASTRAL-Pro, 
and FastMulRFS inferred the same topology depicted 
in Figure 7c under all three input scenarios (recall 
that ONLY-NoDup is not used here, since true 
orthologs are not known). The same phylogeny 
is also inferred by InferNetwork_MPL(ONE). 
This inferred tree is topologically different from 
the tree shown in Figure 1a: in particular, the 
positions of Kluyveromyces waltii and Kluyveromyces 
lactis have been switched, as have the positions of 
Candida glabrata and Saccharomyces castellii (Fig. 7c). 
The trees inferred by InferNetwork_MPL(ALL) 
and InferNetwork_MPL(ONLY) differ from the 
reference tree of Figure 1a in terms of the placement 
of Candida glabrata and Saccharomyces castellii, as  
shown in Figure 7a,b. InferNetwork_MPL(ALL) 
additionally grouped Saccharomyces cerevisiae and 
Saccharomyces mikatae as sisters, and switched the 
position of Kluyveromyces waltii and Kluyveromyces lactis. 
Interestingly, the position of Candida glabrata is not a 
settled issue: Shen et al. (2016) label the relevant branch 
as “unresolved” in their analysis of 1233 single-copy 
orthologs. Similarly, their results support the same 
placement of Kluyveromyces lactis as in Figure 7a,c here. 

The placement of these species shown in Figure 1a 
originally comes from a concatenated analysis of 706 
single-copy genes (Butler et al. 2009). 

For the 12 fly genomes, all three sampling schemes 
and all five methods inferred the exact same tree as the 
species tree shown in Figure 1b. 

DISCUSSION 

As phylogenomic data sets grow, our ability to 
use them within the bounds of current analysis 
paradigms shrinks. One of the main problems is the 
decreasing number of gene families that are single-copy 
as the number of sampled species increases (Emms 
and Kelly 2018). Because most current phylogenetic 
methods assume that only single-copy orthologs are 
being used, this restriction means that such methods 
cannot be used for data sets with even several dozen 
taxa without severe downsampling or other ad hoc 
solutions (e.g., Thomas et al. 2020). Here, we set out to 
ask whether phylogenomic methods intended to deal 
with incongruence due to ILS can be applied to data 
containing both orthologs and paralogs, which contain 
incongruence due to GDL. 

On simulated data sets where only ILS acted, 
and GDL was not a factor, all methods had the 
expected performance: accurate species tree estimates 
that improved as the number of gene trees used 
increases. In the case where the level of ILS was 
very low (the 12-taxon data), the methods had perfect 
performance under almost all conditions, regardless of 
the number of gene trees used. FastMulRFS (Molloy and 
Warnow 2020) sometimes had high error rates when 
rates of ILS were high, a result that has been found 
in previous studies on the accuracy of this method 
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(Zhang et al. 2020). FastMulRFS is also the only method 
employed here that has not been proven to be statistically 
consistent under the multispecies coalescent model, in 
which ILS is the driving forces behind incongruence. 

In the cases where both ILS and GDL acted, the 
performance of the five methods was hardly affected 
by the type of data set used (ALL, ONE, ONLY, ONLY-
NoDup). Within the range of simulation parameters and 
data sets analyzed here, our results imply that running 
these methods on data with paralogs will produce 
species tree topologies at least as accurate as those using 
single-copy orthologs alone. This is especially important 
for data sets with a large number of species or high GDL 
rates. 

When the methods were run on the locus tree data, 
where ILS does not play a role and the data consist of 
many gene families with multiple copies, the methods 
produced very accurate species trees. When as few as 
ten gene trees were used, error rates were elevated in 
data sets including paralogs (Supplementary Fig. S9 
available on Dryad). However, with more than 10 
genes, GDL alone did not appear to affect species tree 
inference under our simulation conditions. This further 
demonstrates that GDL has very little effect on the 
performance of these methods. 

While at first it may be surprising that these 
methods performed very well in terms of accuracy, 
the majority of signal in any input gene tree reflects 
species relationships. Gene duplication—if random 
across the species tree—simply adds noise to the data, 
while at the same time often doubling the amount 
of information on the relationships among species 
carrying an extra gene copy. Similarly, gene loss does not 
positively mislead these methods, leading to accurate 
reconstructions of the species tree. Nevertheless, upon 
close inspection, some of these results are not intuitive, 
especially for the maximum pseudolikelihood inference. 
InferNetwork_MPL makes direct use of the MSC, 
whose assumptions are clearly violated in all data sets 
except when the GDL rates are set to 0, whereas all other 
methods are summary methods that make no direct use 
of the MSC. Consequently, one would have expected 
that InferNetwork_MPL would be very sensitive to the 
presence of paralogs in the data, while the others were 
less so. However, we largely did not observe this behavior 
(but see discussion of the fungal tree below). Using 
methods designed specifically to deal with duplication 
and loss (ASTRAL-Pro and FastMulRFS) also did not 
lead to lower error rates. In the case of ASTRAL-Pro, we 
find performance similar to ASTRAL, as expected given 
the statistical consistency of these methods, as discussed 
above. 

In practice, gene trees are estimated from sequence 
data and can be erroneous. Error in the gene tree 
estimates, rather than ILS, could explain much 
of the heterogeneity observed in phylogenomic 
analyses, especially at deeper nodes in a species tree 
(Scornavacca and Galtier 2017). We showed the gene tree 
estimation error can indeed impact species tree inference 

significantly, and that the level of its impact is similar 
to that of ILS, if not larger. The results from simulations 
including gene tree error (and from the biological data 
sets) should be considered the most realistic. However, 
as more gene trees are used, regardless of levels of ILS 
or GDL, species tree accuracy increased. 

In analyses of two biological data sets where a species 
tree has been inferred using hundreds or thousands 
of loci, we found high accuracy of the methods using 
paralogs. All methods accurately inferred the published 
fly species tree. For the fungal species tree, no methods 
inferred the species tree we initially assumed to be true, 
which is originally based on a concatenated analysis of 
706 single-copy genes (Butler et al. 2009). All methods, 
applied to all data sets, disagreed with this published 
tree with respect to the relative positions of C. glabrata 
and S. castellii (Fig. 7). Interestingly, the position of S. 
castellii in Butler et al. (2009) was constrained prior to 
tree search based on several rare genomic changes; an 
unconstrained search produced a topology consistent 
with the one found here. Shen et al. (2016), using a data 
set of 1233 single-copy orthologs, could not confidently 
determine the relationships among these species. Here, 
by more than doubling the number of gene trees, we 
find a species tree with a local posterior probability of 
1.0 for the topology shown in Figure 7. Furthermore, 
the results of Shen et al. (2016) support the placement 
of K. lactis found here. The only sets of relationships 
that appears to differ with up-to-date fungal phylogenies 
are the ones inferred by InferNetwork_MPL(ALL) 
and InferNetwork_MPL(ONLY). This may be because 
InferNetwork_MPL explicitly models data according 
to the MSC. 

As we highlighted above, we used SimPhy to 
generate synthetic data, and this tool makes simplifying 
assumptions including no hemiplasy of new duplicates 
and that all gene families are independent. Under the 
conditions of our simulations and on the two biological 
data sets used here, our results point to a clear message: 
running species tree inference methods intended to deal 
with ILS on gene trees with paralogs yields highly 
accurate results. This conclusion is powerful for at least 
two reasons. First, it implies that orthology assignment 
and paralogy removal are not necessary for running 
gene tree-based species tree inference; simply treating 
all copies as different individuals or randomly selecting 
a single copy would yield very accurate species tree 
topologies. Nevertheless, accurate orthology inference 
prior to species tree inference could be helpful under 
evolutionary scenarios not captured by our simulations. 
Second, in many practical cases, too few single-copy 
genes are available to ensure good performance of 
species tree inference from those data alone. In these 
cases, our results suggest a ready source of more 
phylogenetic signal. Summary methods that do not 
explicitly use the MSC model (i.e., ASTRAL, ASTRAL-
Pro, FastMulRFS, and NJst ) are expected to be more 
robust in the presence of GDL than methods that 
explicitly use the model—some of these methods have 
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even been found to be statistically consistent under a 
model of GDL and ILS, as discussed above. 

While our study focused on the accuracy of the 
inferred species tree topology, using paralogs for 
inference would clearly have an impact on the estimated 
branch lengths of the species tree for methods designed 
with orthologs in mind. In particular, under the ALL 
setting, there could be much more incongruence due 
to the large number of lineages, and, consequently, 
methods that use incongruence (and assume all 
incongruence is due to ILS) to estimate branch lengths 
would give values that are shorter than they truly 
are. For this reason, branch lengths inferred by such 
methods should not be used. Branch lengths estimated 
in ASTRAL-Pro should be accurate assuming that the 
rooting-and-tagging algorithm used is accurate, but, to 
our knowledge, the accuracy of branch length estimates 
using this approach has not been evaluated. When 
users wish to estimate branch lengths using a method 
designed for use with paralogs, an alternative approach 
is needed. The results of our analyses point to the 
following potential approach for inferring accurate 
species trees (topologies and branch lengths) by utilizing 
as much of the phylogenomic data as possible: 

1. Use all available gene trees as input, whether or 
not they are single-copy in all species. 

2. Feed all gene trees to a gene tree-based method to 
obtain a species tree topology. 

3. Using a smaller subset of truly single-copy genes, 
and fixing the species tree topology obtained from 
Step (2), optimize the branch lengths of the species 
tree. 

For Steps (1) and (2), one option is to repeat the 
random sampling of single copies from each species 
used to generate multiple “ONE” data sets. Then, 
these inferred species trees could be scored under 
some criterion that combines the MSC with a model 
of gene duplication/loss. This would overcome the 
issue of fixing a single species tree as input to Step 
(3), and avoids searching species tree space while 
evaluating a likelihood function that is very complex 
and computationally very demanding to compute. As 
an alternative to using only single-copy orthologs in 
Step (3), one could also use a statistical model that 
combines the MSC and GDL models (e.g., Rasmussen 
and Kellis 2012). Such methods allow for paralogy 
detection and orthology assignment, conditional on the 
fixed species tree (or species trees), by using a more 
detailed evolutionary model and the full signal in the 
sequence data. For example, the orthology assignment 
could be “integrated out” or sampled, depending on 
the desired outcomes of the analysis. Unfortunately, 
while full Bayesian methods exist that model GDL alone 
(Boussau et al. 2013) or that model ILS alone (Ogilvie 
et al. 2017), none that we know of can model both. 

CONCLUSIONS 

In this article, we set out to study how gene tree-
based species tree inference would perform on data with 
paralogs. The motivation for exploring this question 
was two-fold. First, as methods for dealing with 
incongruence due to ILS have become commonplace, 
and as practitioners are almost never certain that their 
data contain no paralogs, it is important to understand 
the effect of hidden paralogy on the quality of the 
inference. Second, as larger phylogenomic data sets 
become available, insistence on single-copy genes would 
mean throwing away most of the data and potentially 
keeping a number of loci that may be inadequate for 
suitably complex species tree inference methods to 
perform well. We investigated this question through a 
combination of simulations and biological data analyses. 
Our results show that gene tree-based inference is robust 
to the presence of paralogs in the data, at least under the 
simulation conditions and on the empirical data sets we 
investigated. 

Our results highlight the issue that gene tree-based 
inference could result in very accurate species trees even 
when ILS is not a factor or not the only factor. This 
finding implies that orthology detection and restricting 
data to single-copy genes as a requirement for employing 
gene tree-based inference can be mostly eliminated, thus 
making use of as much of the data as possible (cf. Smith 
and Hahn 2021b). In particular, for very large data sets 
(in terms of the number of species), eliminating all but 
single-copy genes might leave too few loci for the species 
tree to be inferred accurately. Our findings show that 
this data exclusion could be an unnecessary practice. It 
is important to note however, that our results do not 
apply to concatenated analyses, and in such cases, the 
presence of paralogs may indeed have a large, negative 
effect (Brown and Thomson 2016). Species tree inference 
from a concatenation of the sequences with gene families 
is challenging in the presence of paralogs for at least 
two reasons. First, when gene families have different 
numbers of copies across species, the concatenated 
alignment will have very large gaps. Second, correct 
orthology detection is still required, so that orthologous 
gene copies are placed in correct correspondence across 
the multiple genomes in the concatenated alignment. 
This issue is very important to examine so as to avoid 
aligning non-orthologous sequences in the concatenated 
data set. 

In our simulations, we generated gene families under 
a neutral model and with GDL rates that were the same 
across all families. It is well known that the functional 
implications of gene duplication and the ways in which 
they are fixed and maintained in the genome result 
in much more complex scenarios than those captured 
in our simulations (Hahn 2009; Innan and Kondrashov 
2010). However, analyses of the two biological data sets 
yield results with very similar trends to those observed 
in our simulations. 
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Finally, while we did not discuss or incorporate gene 
flow in our study, it is possible that all three processes— 
ILS, GDL, and gene flow—are simultaneously involved 
in the evolution of some clades. Studies of the robustness 
of gene tree-based species tree inference under some 
models of gene flow exist (Roch and Snir 2012; Steel 
et al. 2013; Davidson et al. 2015; Solís-Lemus et al. 2016; 
Zhu et al. 2016; Long and Kubatko 2018), but, to the 
best of our knowledge, such studies under scenarios that 
incorporate all the aforementioned processes do not exist 
yet. It is important to highlight, as well, that great strides 
have been made in developing methods for phylogenetic 
network inference in the presence of ILS (Elworth et al. 
2019), but no probabilistic methods currently incorporate 
gene duplication and loss (see Li et al. (2021) for a very  
interesting alternative approach). We believe methods 
along the lines described in the previous section could 
be promising for accurate and scalable phylogenomic 
inferences without sacrificing much of the data. 
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