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Abstract 
We propose a new class of metrics on sets, vectors, and functions that can be used 
in various stages of data mining, including exploratory data analysis, learning, and 
result interpretation. These new distance functions unify and generalize some of the 
popular metrics, such as the Jaccard and bag distances on sets, Manhattan distance on 
vector spaces, and Marczewski-Steinhaus distance on integrable functions. We prove 
that the new metrics are complete and show useful relationships with f -divergences 
for probability distributions. To further extend our approach to structured objects 
such as ontologies, we introduce information-theoretic metrics on directed acyclic 
graphs drawn according to a fixed probability distribution. We conduct empirical 
investigation to demonstrate the effectiveness on real-valued, high-dimensional, and 
structured data. Overall, the new metrics compare favorably to multiple similarity and 
dissimilarity functions traditionally used in data mining, including the Minkowski 
(L p) family, the fractional L p family, two f -divergences, cosine distance, and two 
correlation coefficients. We provide evidence that they are particularly appropriate for 
rapid processing of high-dimensional and structured data in distance-based learning. 
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1 Introduction 

The development of domain-specific learning algorithms inevitably requires choices 
regarding data preprocessing, data representation, training, model selection, or evalu-
ation. One such requirement permeating all of data mining is the selection of similarity 
or distance functions. In a supervised setting, for example, the nearest neighbor classi-
fiers (Cover and Hart 1967) and kernel machines (Shawe-Taylor and Cristianini 2004) 
critically depend on the selection of distance functions. Similarly, the entire classes 
of clustering techniques rely on the distances that are sensible for a particular domain 
(Tan et al. 2006). Modern applications further require that distance functions be fast 
to compute, easy to interpret, and effective on high-dimensional data. 

We distinguish between distances and distance metrics; i.e., functions that impose 
constraints on the general notion of distance (Deza and Deza 2013). Although restric-
tions to metrics are not required in data mining (Ben-David and Ackerman 2009; 
Ting et al. 2016), a number of algorithms rely on the existence of metric spaces 
either explicitly or implicitly. Metric-associated benefits include well-defined point 
neighborhoods, advanced indexing through metric trees, provable convergence, guar-
antees for embedding, and intuitive result interpretation. Satisfying metric properties 
is therefore desirable and generally leads to computational speed-ups and better infer-
ence outcomes (Moore 2000; Elkan 2003; Kryszkiewicz and Lasek 2010; Hamerly 
2010; Baraty et al. 2011). 

In this work we present a new class of metrics on sets, vectors, and functions that 
satisfy all of the aforementioned properties. We identify well-known special cases and 
then show how these distance functions can be adapted to give rise to information-
theoretic metric spaces on sets of directed acyclic graphs that are used as class labels 
in high-cardinality structured-output learning. We prove useful properties of the new 
metrics and then carry out experiments to assess their suitability in real-life appli-
cations. The new metrics exhibited good intuitive behavior and performed favorably 
against all similarity and dissimilarity functions evaluated in this work, including 
the Euclidean distance, cosine distance, Pearson’s correlation coefficient, Spearman’s 
rank correlation coefficient, and others. 

The remainder of this paper is organized as follows. In Sect. 2 we give a motivat-
ing example for this work and state the contributions. In Sects. 3 and 4 we present 
new metrics and prove useful theoretical properties. In Sect. 5 we carry out empirical 
evaluation on several types of data. In Sect. 6 we introduce metrics on ontologies and 
evaluate their performance on problems in computational biology. Sections 5 and 6 
also give performance insights and discuss computational complexity. In Sect. 7 we 
summarize the related work. Finally, in Sect. 8 we draw conclusions considering both 
theoretical and empirical findings of our study. 
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2 Motivation and contributions 

2.1 A motivating example 

The selection of distance functions and understanding of their behavior is fundamental 
to data mining. Inference algorithms such as k-nearest neighbor (KNN) classification 
and K-means clustering rely directly on user-provided distance functions and are 
among the most popular techniques in the field (Wu and Kumar 2009). Although 
both algorithms permit the use of any distance measure, they are generally used with 
the Euclidean distance.1 There is ample evidence, however, that Euclidean distance 
displays undesirable properties in high-dimensional spaces, leading to a body of the-
oretical and practical work towards understanding its properties (Beyer et al. 1999; 
Hinneburg et al. 2000;Aggarwal et al.  2001;Radovanović et al.  2010). Other distances; 
e.g., fractional distances or cosine typically improve the performance in practice. How-
ever, these distances are not metrics (e.g., they violate triangle inequality), and so 
applications using them relinquish theoretical guarantees reserved only for distance 
metrics. For example, well-known accelerations for K-means clustering only apply to 
metric spaces (Elkan 2003; Hamerly 2010). 

In an ideal application, one would select a distance function with good theoretical 
and practical characteristics. Surprisingly, however, we are not aware of any distance 
metric that performs competitively in high-dimensional spaces against best non-metric 
distances and other dissimilarities. One is therefore left with a balancing act between 
performance accuracy and theoretical guarantees, a choice that ultimately hinges on 
a practitioner’s intuition and experience. This work aims to address this situation by 
proposing a class of distance metrics that, among other benefits, also perform well in 
high-dimensional spaces. 

2.2 Contributions 

As discussed above, the motivation for this work is to addresses important needs 
of a typical data mining pipeline through theoretical and practical contributions. In 
particular, 

(i) We introduce a new class of distance metrics across different data types, 
including sets, vector spaces, integrable functions, and ontologies. 
(i i) We identify several important special cases of these metrics, also across 
different data types. This unexpected unification provides new insights and con-
nections between data mining applications. 
(i i i) We analyze theoretical properties of the new metrics and show connections 
with the Minkowski family and f -divergences. This analysis gives inequalities 
that can be used to provide guarantees in further theoretical studies (e.g., lower 
risk bounds). 

1 K-means algorithm aims to group the data so as to minimize the sum-of-squared-errors objective; i.e., 
the sum of squared Euclidean distances between data points and their respective centroids (Tan et al. 2006). 
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(iv) We empirically evaluate the performance of the new metrics against many 
other distance functions. While our metrics fare well on all types of data, the main 
distinction is shown on sparse high-dimensional data in text mining applications. 
(v) We extend the class of distance metrics to ontologies (directed acyclic graphs) 
drawn from a fixed probability distribution. We demonstrate that these metrics 
have natural information-theoretic interpretation and can be used for evaluation 
of classification models in structured-output learning; in particular, when the 
output of a classifier is a subgraph of a large directed acyclic graph. 
(vi) We evaluate distance metrics on ontologies in two bioinformatics case stud-
ies. The first application demonstrates the intuitive nature of new distances by 
comparing protein sequence similarity against similarity of their molecular and 
biological functions. The second application clusters several species based solely 
on biological functions of their proteins, defined via Gene Ontology (Ashburner 
et al. 2000) annotations, and shows that such clustering can recover the evolu-
tionary species tree obtained from protein sequences. 

3 Theoretical framework 

3.1 Background 

Metrics are a mathematical formalization of the everyday notion of distance (Goldfarb 
1992). Given a non-empty set X , a function d : X × X → R is called a metric if 

1. d(a, b) ≥ 0 (nonnegativity) 
2. d(a, a) = 0 (reflexivity) 
3. d(a, b) = 0 ⇔ a = b (identity of indiscernibles) 
4. d(a, b) = d(b, a) (symmetry) 
5. d(a, c) ≤ d(a, b) + d(b, c) (triangle inequality) 

for all a, b ∈ X . A non-empty set X endowed with a metric d is called a metric space 
(Deza and Deza 2013). 

Although these conditions donot provide theminimumset that defines ametric (e.g., 
1 follows from 4 and 5), they are stated to explicitly point out important properties of 
distance functions and enable us to distinguish between various types of distances. For 
example, there exists a historical distinction between the general notion of distance 
(conditions 1, 2, and 4) and that of a metric (Deza and Deza 2013), though there 
are inconsistencies in the more recent literature. Examples of distances that do not 
satisfy metrics requirements include cosine distance, fractional L p distances, one 
minus a Pearson’s correlation coefficient, etc. Furthermore, functions such as some f -
divergences may not even satisfy the symmetry requirement and are generally referred 
to as dissimilarities or divergences. 

In Sects. 3.2–3.4 we will introduce new metrics on sets, vectors, and integrable 
functions. Each metric will have a real-valued parameter p ≥ 1, with the possibility 
that p = ∞. All proofs can be found in Electronic Supplementary Materials. 
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3.2 Metrics on sets 

We start with the simplest case and define two new metrics on finite sets. Both will be 
extended to more complex situations in subsequent sections. 

3.2.1 Unnormalized metrics on sets 

Let X be a non-empty set of finite sets drawn from some universe U . We define a 
function d p : X × X → R as 

d p(A, B) = (|A\B|p + |B\A|p) 1 
p , (1) 

where | · | denotes set cardinality, A\B = A ∩ Bc with Bc = {x |x ∈ U and x / ∈ B}, 
and p ≥ 1 is a parameter mentioned earlier. 

Theorem 3.1 (X , d p) is a metric space. 

The symmetric distance on sets is a special case of d p when p = 1 and it converges 
to the bag distance as p → ∞ (Deza and Deza 2013). 

3.2.2 Normalized metrics on sets 

Let X again be a non-empty set of finite sets drawn from some universe. We define a 
function d p 

N : X × X → R as 

d p 
N (A, B) = 

(|A\B|p + |B\A|p) 1 
p 

|A ∪ B| , (2) 

if |A ∪ B| = 0 and zero otherwise. 

Theorem 3.2 (X , d p 
N ) is a metric space. In addition, d p 

N : X × X → [0, 1]. 
Observe that the Jaccard distance is a special case of d p 

N when p = 1. 

3.2.3 Relationship to Minkowski distance 

Although the newmetrics have a similar form to theMinkowski (L p) distance onbinary 
set representations, they are generally different. Take for example A = {1, 2, 4} and 
B = {2, 3, 4, 5} from a universe of k = 5 elements. A sparse set representation results 
in the following encoding: a = (1, 1, 0, 1, 0) and b = (0, 1, 1, 1, 1). The Minkowski 
distance of order p between a and b is defined as 

d p 
M(a, b) = 

 k 
i=1 |ai − bi |p 

1/p = a − b p , (3) 

and p ≥ 1. Substituting the numbers into Eq. (3) gives  d1 M(a, b) = 3 and d1(A, B) = 
3; d2 M(a, b) = 

√ 
3 and d2(A, B) = 

√ 
5, etc. In fact, d p M(a, b) = d p(A, B) for all 

p > 1. 
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3.3 Metrics on vector spaces 

We define a version of ourmetrics on the vector space Rk , where k ∈ N is the dimension 
of the space. Let x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) be any two points in 
R
k . 

3.3.1 Unnormalized metrics on vectors 

We define a function d p : Rk × R
k → R as 

d p(x, y) = 

   

i :xi ≥yi 

xi − yi 
p + 

  

i :xi <yi 

yi − xi 
p 

 1 
p 

. (4) 

Theorem 3.3 (Rk , d p) is a metric space. 

When p = 1 the distance from Eq. 4 is equivalent to the Manhattan (cityblock) 
distance. 

3.3.2 Normalized metrics on vectors 

We define a function d p N : R k × R 
k → R as 

d p 
N (x, y) = 

d p(x, y) k 
i=1 max(|xi |, |yi |, |xi − yi |) 

. (5) 

Theorem 3.4 (Rk , d p 
N ) is a metric space. In addition, d p 

N : X × X → [0, 1]. 

As mentioned above, the new metrics d p and the Minkowski distance d p M on R k 

are different for p > 1. However, we were able to establish a strong equivalence 
between the two in Sect. 4. Therefore, many useful properties of the class of Minkowski 
distances also hold for the metrics d p . For instance, the completeness of (Rk , d p 

M) 
implies that (Rk , d p) is also complete. 

We alert the reader that we used the same symbol d p in Eqs. 1 and 4 and d p 
N in 

Eqs. 2 and 5, but believe it should not present interpretation problems. For example, 
Eq. 5 is not the Jaccard distance when p = 1, but rather its analog in real-valued 
vector spaces, as defined in this work. We shall continue this notation pattern in the 
next section. 

3.4 Metrics on integrable functions 

We now extend the previously introduced metrics to integrable functions and show 
that the space of the integrable functions equipped with the new metrics is complete. 
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3.4.1 Unnormalized metrics on functions 

Let L(R) be a set of integrable functions on R. We define d p : L(R) × L(R) → R as 

d p( f , g) = 

  
( f − g)+ dx  

p 

+ 

  
( f − g)− dx  

p 1 
p 

, (6) 

where f + = max( f , 0), f − = max(− f , 0). 

Theorem 3.5 (L(R), d p) is a metric space. 

The well-known L1 distance is a special case of d p when p = 1. 

3.4.2 Normalized metrics on functions 

Let L(R) again be a set of bounded integrable functions on R and d p the distance 
function from Eq. 6. We define d p 

N : L(R) × L(R) → R as 

d p 
N ( f , g) = 

d p( f , g) 

max(| f |, |g|, | f − g|) dx  . (7) 

Theorem 3.6 (L(R), d p 
N ) is a metric space. In addition, d p 

N : L(R) × L(R) → [0, 1]. 

Observe that the Marczewski–Steinhaus (1958) distance is a special case of d p 
N when 

p = 1. 

Theorem 3.7 (L(R), d p) and (L(R), d p 
N ) are complete metric spaces. 

3.4.3 Geometric interpretation of the new distances 

We illustrate the geometry of new distances in Fig. 1. Consider two functions f (x) 
and g(x). Let  A f >g be the total area (volume) of the space between f and g where 
f > g and A f <g be the area where g > f . Our unnormalized distance corresponds 
to the L p norm of the vector (A f >g, A f <g). The similarity between f and g depends 
on the balance of A f >g and A f <g as a function of p. 

Fig. 1 Geometry of the new 
distances between two functions 
f (x) = sin(x) and 
g(x) = cos(x) over [0, 2π ]. The  
blue area corresponds to A f >g , 
whereas the red area 
corresponds to A f <g . The  
vertical lines visualize the 
normalization factor from Eq. 7 
(Color figure online) 
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3.4.4 Scaling 

The objects from the input space X may sometimes have interpretable bounded norms; 
e.g., M = max f ∈X | f (x)|dx  < ∞. One example is that f (x)dx  = 1 for every f 
in a space of probability densities, when the normalized distance from Eq. 7 reaches 
maximum at p 

√ 
2/2. In these situations it is possible to further scale Eq. 2, Eq.  5 and 

Eq. 7 to the full [0, 1] interval by multiplying the proposed distances by 2/ p 
√ 
2. For 

probability distributions and p = 2, this corresponds to multiplying the distance from 
Eq. 7 by 

√ 
2. 

4 Connections with other dissimilarity measures 

4.1 Equivalence with Minkowski distances 

In the previous section we noted that our various metrics reduce to certain well-known 
metrics when the parameter p is either 1 or ∞. 

In the case of our unnormalized metrics on vector spaces from Eq. 4, we can 
establish a stronger relationship with the Minkowski distance for p ≥ 1 and p = ∞. 

Proposition 4.1 The new metric d p and the Minkowski distance d p 
M on Rk , when they 

share the same parameter p, where p ≥ 0 or p = ∞, are  equivalent metrics; that is, 
there exist positive constants α and β such that for all x, y ∈ Rk it holds that 

αd p(x, y) ≤ d p M(x, y) ≤ βd p(x, y). (8) 

This proposition can be proved by invoking Hölder’s inequality and some algebraic 
manipulations (Electronic Supplementary Materials). 

4.2 Comparisons with f-divergences for probability distributions 

Suppose P and Q are probability distributions for some random variables defined on a 
Lebesgue-measurable set in R with probability densities h and g in L(R) respectively. 
Then d p(h, g) or d p 

N (h, g) provide a measure of dissimilarity between h and g. In  
comparison, an f -divergence of P with respect to Q is the expectation of f (dP/dQ) 
under the distribution Q (Csiszár 1967) with regularity constraints on f . Replacing 
f (t) by 12 |t −1|, (1− 

√ 
t)2 or t log(t) gives the total variation TV(P, Q), the Hellinger 

distance H (P, Q), or the Kullback-Leibler (KL) divergence DKL(P||Q), respectively 
(Liese and Vajda 2006). 

The total variation and the Hellinger distance are metrics while the KL divergence 
is not. However, the KL divergence DKL(P||Q) is meaningful as it measures the 
information theoretic divergence when P is the true underlying distribution for the 
model in hand and Q is the presumed distribution in model development. The infor-
mation theoretic bounds on compressibility and relationship to maximum-likelihood 
inference of DKL(P||Q) are well understood (Cover and Thomas 2006). 

123 



Metrics for learning on real-valued and structured data 1003 

When p = 1, our distance on probability densities h and g is equivalent to the 
total variation of their distributions P and Q as d p(h, g) = 2 TV(P, Q). Based 
on this equality we are able to establish the relationships between d p(h, g) to their 
corresponding KL divergence and Hellinger distance. 

Proposition 4.2 Let P and Q be probability distributions with respect to some real 
random variables with probability densities h and g in L(R), respectively. For any 
p ≥ 1 it holds that 

d p(h, g) ≤ 2min(DKL(P||Q), DKL(Q||P)). 

The result directly follows from Pinsker’s inequality (Pinsker 1964) and the sym-
metry of metrics. Interestingly, the converse does not hold. That is, there exist 
sequences of probability density functions {hn} and {gn} such that d p(hn, gn) → 0 
but DKL(Pn||Qn) → ∞. 

Proposition 4.3 Under the same conditions as in Proposition 4.2, it holds that 

2H (P, Q)2 ≤ d p(h, g) ≤ 2 
√ 
2H (P, Q). 

The conclusion follows from H (P, Q)2 ≤ TV(P, Q) ≤ 
√ 
2H (P, Q); see LeCam 

(1973). 
Proposition 4.2 and Proposition 4.3 (up to a multiplicative constant) also apply to 

d p N (h, g) as 1 2d 
p(h, g) ≤ d p N (h, g) ≤ d p(h, g) since h and g are densities. These 

inequalities can prove useful in establishing lower risk bounds in applications that 
directly minimize the new distances as opposed to f -divergences (Guntuboyina 2011). 

5 Empirical investigation 

5.1 Classification-based evaluation 

The performance of the new metrics was first evaluated through classification experi-
ments on thirty real-valued (low dimension) and ten text-document (high dimension) 
data sets. Classification on each data set was carried out by applying the KNN algorithm 
(Cover and Hart 1967) with different underlying distance measures. These distances 
were then compared based on the estimated performance of their corresponding clas-
sifiers. Classification accuracy (the fraction of correctly classified data points) was 
estimated though a five-fold cross-validation in all experiments. Parameter K was 
selected from {1, 3, 5, . . .  ,  

√
n }, where n is the data set size, using a leave-one-out 

procedure on the training partition. The selected K was then used to classify data 
points from the test partition. 

The new metrics were compared to the following distances: (1) Minkowski (L p) 
family; (2) fractional L p distances; i.e., Minkowski distances with 0 < p < 1; 
(3) normalized L p distances; i.e., x − y p /( x p + y p); (4) cosine distance; (5) 
one minus Pearson’s and Spearman’s correlation coefficient; (6) f -divergences; i.e., 
Hellinger distance and total variation; and (7) the fractional equivalent of all our metrics 
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( f p and f pN , 0  < p < 1). Note that all Minkowski distances, Hellinger distance, and 
total variation (applicable only to nonnegative inputs) are metrics. However, all frac-
tional distances, all normalized L p distances (except when p = 2, when it is a metric), 
cosine distance, and one minus the correlation coefficient are not metrics. For example, 
the cosine distance on Rk − {0}k violates the identity of indiscernibles and the triangle 
inequality. For all L p and d p distances, we varied p from {1, 2, 4, 8, 16, 32, ∞} and 
for fractional distances from {1/2, 1/4, 1/8, 1/16, 1/32}. 

The evaluation on high-dimensional data was carried out using tf-idf encoding (Tan 
et al. 2006) on ten text document data sets. The first data set was constructed in this 
work by using abstracts from five life sciences journals with the task of predicting 
the journal each paper was published in. The remaining data sets included webkb 
from Cardoso-Cachopo (2007); 20NewsGroups downloaded via scikit-learn library; 
MovieReview from Pang and Lee (2004); farm-ads, NIPS,Reuters and TTC-3600 from 
the UCI Machine Learning Repository and two data sets extracted from the literature 
(Dalkilic et al. 2006; Greene and Cunningham 2006). Each data set was treated as a 
multi-class classification problem; see Electronic Supplementary Materials. 

To compare distances d1 and d2 on a particular data set, we scored a “win” to the 
one with the higher estimated accuracy or assigned half a win to each in case of a 
tie. We then counted the number of wins in a “tournament” where each distance was 
pairwise-compared with all its competitors on each data set. The expectation is that a 
better distance will lead to higher classification performance and more wins. 

Figure 2 shows the number of wins per text data set with the variation assessed 
by bootstrapping. That is, the set of data sets was sampled with replacement 1000 
times from which wins and losses were counted as described above. We find that 
normalized distance functions outperformed their unnormalized counterparts; i.e., as 
a group, the d p 

N metrics show the best performance, with the maximum reached when 
p = 1. However, the performance of d1 N is not significantly better than that of d2 N (P = 
0.0547 using binomial test on the number of wins and P = 0.0578 using Friedman’s 
test on estimated accuracies). The d p and d p 

N metrics generally outperformed their 
L p counterparts. Interestingly, the normalized L1 distance, and one minus Spearman 
correlation coefficients show excellent performance on tf-idf data as shown in Fig. 2. 
However, neither of these functions is a metric. Therefore, the d p 

N metrics are the only 
group that provide both high performance accuracy and theoretical guarantees reserved 
for metric spaces. Specifically, d1 N performs significantly better than the best metrics, 
i.e., the normalized Euclidean metric on these high-dimensional data sets (P = 9.77× 
10−4 using bionomial test on the number of wins; P = 0.0016 using Friedman test 
on estimated accuracies). In fact, d1 N outperformed the normalized Euclidean metric 
on each data set. In addition, there is no significant difference among d1 N and the 
two top-performing non-metrics: one minus Spearman correlation coefficient and the 
normalized cityblock (P = 0.7037 using Friedman’s test on accuracies with the null 
hypothesis being “there is no difference in performance among these three methods”). 
Additional results obtained by varying data types (low dimensional dense real-valued 
versus high-dimensional sparse text data), and data normalization procedures (z-score, 
min-max, unit) are provided in Electronic Supplementary Materials. 
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Fig. 2 Comparison between distance functions on text document data. The upper panel shows the perfor-
mance comparison of the new metrics against all other metrics. The lower panel shows the comparison 
between the new metrics and all other non-metrics. The functions are color coded as follows: L p family 
(light blue), normalized L p family (dark blue), d p family (light green), normalized d p family (dark green); 
f -divergences (light yellow), cosine distance and the correlation coefficients (light red). All metrics are 
labeled by an asterisk (Color figure online) 

The evaluation on low-dimensional data was performed over thirty real-valued 
data sets from the UCI Machine Learning Repository (Lichman 2013). All data sets 
and results are summarized in Electronic Supplementary Materials, with the main 
conclusion that metrics generally outperform non-metrics and that p = 1 and p = 2 
are the most useful parameter choices. The new distances are competitive with the 
Minkowski family. 

Overall, the following results stand out. First, metrics have generally outperformed 
non-metrics and fractional distances did not provide the expected improvement on 
high-dimensional data. The d p distances outperformed their L p counterparts over all 
p > 1 (they are identical for p = 1). As expected, the cosine distance worked well on 
high-dimensional data, but surprisingly the two correlation coefficients were as good. 
Finally, when averaged over the two groups of data (Figures for real-valued data are in 
Electronic Supplementary Materials), d1 N and d2 N are the best performing metrics, with 
on par performance with the top non-metric distance functions. These results provide 
compelling evidence that the new metrics fare well against all competing distances. 

5.2 Hubness and concentration in high-dimensional spaces 

Recent work has shown that high-dimensional data sets suffer from the effect of 
hubness. That is, as the data dimensionality increases, a smaller fraction of points tend 
to find themselves as nearest neighbors of many other points in the data set, whereas 
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Fig. 3 Hubness in low- and high-dimensional data sets. The upper panels show the distribution of N5 for 
simulated data sets with the standard normal distribution (n = 10000, k ∈ {3, 100}). The lower panels show 
the distribution of N5(x) for the spambase (n = 4601, k = 57) and bbc (n = 2225, k = 9635) data sets 
(Color figure online) 

a larger fraction of points tend to be within no one’s nearest neighbors (Radovanović 
et al. 2010). This effect underlies the poor performance of traditional distance functions 
in high-dimensional spaces (Beyer et al. 1999). 

We investigated the effect of hubness for the d p and d p 
N metrics on both simulated 

and real data. Following Radovanović et al.  (2010), for every data point x we first 
counted the number of other points in the data set such that x was within their K 
closest neighbors, NK (x). We then plot the distribution of N5(x) on an i.i.d. Gaussian 
data and two real-life data sets from the collection used in this work (Fig. 3). We find 
that the d p 

N metrics show similar hubness effects and resilience to high dimension as 
the cosine distance, while at the same time being a metric. There do not exist similar 
normalizers for the L p family, except when p = 2 (Deza and Deza 2013). We next plot 
the relationship between N5(x) of each data point and its distance from the geometric 
mean of the data set (Fig. 4). We observe that, unlike the Euclidean distance, cosine 
and d p 

N do not show strong correlation with increasing dimensionality and the hubness 
effect as a long tail in N5(x) has been largely alleviated. 

Finally, we investigated concentration effects for d p and d p 
N metrics on simulated 

data and compare with other representative distances. Figure 5 reaffirms the compa-
rable behavior between d p 

N and cosine distances. 
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Fig. 4 Scatter plots and Spearman’s correlation coefficient (ρs ) of  N5(x) against the distance to the geomet-
ric mean of the data sets. Simulated data sets were generated i.i.d. following a standard Gaussian distribution 
and contained 10,000 points. From left to right: the dimensionality of the data set k chosen from {3, 20, 100}. 
From top to bottom, we show three dissimilarity functions: Euclidean, cosine and d 2 N (Color figure online) 

Fig. 5 Concentration effects in simulated data sets generated from a zero-mean Gaussian distribution with 
unit covariance matrix. Each data set contained 1000 points (Color figure online) 

5.3 Performance insights 

A potential factor contributing to the success of the d p 
N metrics on the tf-idf 

data could be the lack of translational invariance. We call a metric d on X 
translation-invariant if d(x, y) = d(x + z, y + z) for all x, y, z ∈ X . A num-
ber of classical metrics fall into this group, such as all norm-induced metrics; 
e.g., Minkowki distances. The normalized metric d p 

N is not translation-invariant as 
demonstrated by a simple example that ∀p > 1, d p 

N (0, 1) = d p 
N (1, 2). This effect, 

however, is important for quantifying distance in semantic data such as text docu-
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ments. To illustrate this, consider the following bag-of-words features of two pairs 
of article abstracts in Rk for p = 1; d p 

N ((1, 0, . . . , 0), (0, . . . , 0)) = 1 while 
d p 
N ((100, 100, . . . , 100), (99, 100, . . . , 100)) = 1/(100k). The two pairs of ele-

ments have equal Minkowski distance of 1, but the elements (100, 100, . . . , 100) 
and (99, 100, . . . , 100) are more related as they share a large number of words. The 
normalized metric d p 

N captures that strong similarity by incorporating built-in infor-
mation of the data as indicated by the results on text data (Fig. 2). The tf-idf data 
studied here can also be viewed as ontological data with a trivial structure, the concept 
of which will be introduced in Sect. 6. 

5.4 Computational efficiency 

Computing the Minkowski distance of order p between two k-dimensional vectors 
requires 2k − 1 additions and k exponentiations, before calculating the p-th root. Our 
unnormalized metric from Eq. 4 requires 2k − 1 additions, k comparisons to a 0, 
and only 2 exponentiations. Since exponentiation is slow, especially for larger p, the  
new metric is faster to compute. Both classes of metrics have the same asymptotic 
complexity of O(k). 

6 Application to ontologies 

Modern classification approaches increasingly rely on ontological output spaces 
(Grosshans et al. 2014; Movshovitz-Attias et al. 2015). An ontology O = (V , E) 
is a directed acyclic graph with a set of vertices (concepts) V and a set of edges (rela-
tional ties) E ⊂ V ×V . A news article, for instance, covering aspects of sports injuries 
might be labeled by the term “sports”, “medicine”, but also “sports medicine” that is 
a subcategory of both sports and medical articles. Similarly, a protein associated with 
the terms “transferase” and “oxidoreductase” could also be associated with a more 
general term “enzyme”. In terms of class labels, a news article or a protein function 
can be seen as a consistent subgraph F ⊆ V of the larger ontology graph. By saying 
consistent, we mean that if a vertex v belongs to F , then all the ancestors of v up 
to the root(s) of the ontology must also belong to F . This consistency requirement 
follows from the transitive relationships specified on edges that are commonly used; 
e.g., is-a and part-of. In some domains such as computational biology, a subgraph 
F corresponding to an experimentally characterized protein function (its biological 
activity) contains 10–100 nodes, whereas the ontology graph consists of 1000–10000 
nodes (Robinson and Bauer 2011). We will use the terms consistent subgraph and 
ontological annotation interchangeably. In the context of proteins, we will also refer 
to them as protein function. 

Before we introduce metrics on ontological annotations, we briefly review relevant 
theoretical concepts. Suppose that the underlying probabilistic model according to 
which ontological annotations have been generated is a Bayesian network structured 
according to the ontology O (Clark and Radivojac 2013; Jiang et al. 2014). That is, we 
consider that each concept in the ontology is a binary random variable and that the graph 
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structure specifies the conditional independence relationships in the network. Then, 
using the standard Bayesian network factorization we write the marginal probability 
for any consistent subgraph F as 

P(F) = 
v∈F 

P(v|Parents(v)), 

where P(v|Parents(v)) is the probability that node v is part of an ontological anno-
tation given that all of its parents are part of the annotation. Due to consistency, the 
marginalization can be performed in a straightforward manner from the leaves of the 
network towards the root. This marginalization is reasonable in open-world domains 
such as molecular biology because some activities are never tested and those that 
are might not be fully observable. Thus, treating nodes not in F as unknown and 
marginalizing over them is intuitive. Observe that each conditional probability table 
in this (restricted) Bayesian network needs to store a single number; i.e., the concept v 
can be present only if all of its parents are part of the annotation. If any of the parents 
is not a part of the annotation F , v is guaranteed to not be in F . 

6.1 Metrics on ontologies 

We express the information content of a consistent subgraph F as 

i(F) = log 
1 

P(F) 
= 

 
v∈F ia(v), 

where ia(v) = − log P(v|Parents(v)) is referred to as information accretion (Clark 
and Radivojac 2013). This term corresponds to the additional information inherent to 
the node v under the assumption that all its parents are already present in the annotation 
of the object. 

We can now compare two ontological annotations F and G. For the moment, 
suppose that annotation G is a prediction of F . We use  the term  misinformation to 
refer to the cumulative information content of the nodes in G that are not part of 
the true annotation F ; i.e., it gives the total information content along all incorrect 
paths in G. Similarly, the remaining uncertainty gives the overall information content 
corresponding to the nodes in F that are not included in the predicted graph G (Fig. 6). 
More formally, misinformation (mi) and remaining uncertainty (ru) are defined as 

mi(F, G) = 
 

v∈G\F 
ia(v) and ru(F, G) = 

 

v∈F\G 
ia(v). 

Let now X be a non-empty set of all consistent subgraphs generated according to 
a probability distribution specified by the Bayesian network. We define a function 
d p : X × X → R as 

d p(F, G) = ru  p(F, G) + mi p(F, G) 
1 
p . (9) 
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Fig. 6 Illustration of the calculation of the remaining uncertainty and misinformation for two proteins with 
their ontological annotations: F (true, blue) and G (predicted, red). The circled nodes contribute to the 
remaining uncertainty (blue nodes, left) and misinformation (red node, right) (Color figure online) 

We refer to the function d p as semantic distance. Similarly, we define another function 
d p 
N : X × X → R as 

d p 
N (F, G) = 

(ru  p(F, G) + mi p(F, G)) 
1 
p  

v∈F∪G ia(v) 
. (10) 

We refer to the function d p 
N as normalized semantic distance. 

Theorem 6.1 (X , d p) is a metric space. 

Theorem 6.2 (X , d p N ) is a metric space. In addition, d 
p 
N : X × X → [0, 1]. 

6.2 Indirect evaluations using ontological annotations for proteins 

Evaluating dissimilarity measures between consistent subgraphs is difficult because 
ontological annotations are usually class labels rather than attributes, and this excludes 
a classification-based benchmarking performed in Sect. 5. Therefore, we use an indi-
rect approach and assess the quality of the proposed semantic distance between 
ontological annotations using domain knowledge on the set of proteins for which 
both an amino acid sequence and an ontological annotation were available to us. 

In the first experiment, we take a set of protein pairs from the UniProt database 
(Bairoch et al. 2005) and compare their sequence similarity to ontological distance 
with a biologically justified expectation that more similar sequences will be associ-
ated with more similar ontological annotations. Figure 7 shows this relationship for 
three separate concept hierarchies in the Gene Ontology: Molecular Function Ontol-
ogy (MFO), Biological Process Ontology (BPO) and Cellular Component Ontology 
(CCO). We split the protein pairs in each ontology into three groups based on their 
sequence similarity and then measured distances between their ontological annota-
tions. As expected, we observed significant differences between each pair of sequence 
similarity groups in each ontology. Statistical tests give P-values close to zero on each 
data set. 
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Fig. 7 Indirect evaluation of semantic distance between ontological annotations. Distance comparisons are 
color-coded for the three Gene Ontology domains. In each domain, three boxes from light to dark show 
the distribution of pairwise distances (d 2 N ) between proteins within different sequence similarity groups: 
[0, 1/3), [1/3, 2/3) and [2/3, 1]; see Electronic Supplementary Materials for details related to sequence 
similarity calculation. Each box is sampled, with N = 5000, from all human-mouse protein pairs. All 
paired differences are statistically significant based on the t-test after Bonferroni correction (Color figure 
online) 

In the second experiment we perform clustering of organisms based on the onto-
logical annotations of their proteins; i.e., we ignore protein sequences and attempt to 
reconstruct the species tree using protein functions only. We considered five species for 
which we could extract a sufficient number of ontological annotations (Homo sapiens, 
Mus musculus, Saccharomyces cerevisiae, Arabidopsis thaliana and Escherichia coli), 
each species effectively being a set of protein functions. Hierarchical clustering on 
these groups of ontological annotations (one group for each species) was used to form 
an evolutionary tree; for simplicity, we refer to the tree derived solely from functional 
information as a functional phylogeny. A good distance measure is expected to provide 
the same evolutionary tree as the one that has been determined by evolutionary biol-
ogists based on DNA or protein sequences. Such studies are difficult among distantly 
related species (such as those studied here) for two reasons. First, researchers must be 
able identify single-copy genes shared by all species to build such trees from. Given 
that the species studied here share a common ancestor more than 1 billion years ago, 
there are very few such genes; e.g., see Wu et al. (2011). Second, even if appropriate 
sequences are identified, they may not be informative for deep phylogenetic relation-
ships, as multiple substitutions at individual nucleotides or amino acids effectively 
over-write evolutionary relatedness. For these reasons, we hoped that a tree based on 
function would provide more data with which to answer questions about phylogenetic 
relationships. 

Using the Molecular Function and Cellular Component functional annotations of 
the Gene Ontology, our clustering approach did recover the correct relationships among 
species (Fig. 8, left tree). This result is gratifying, especially as we might expect many 
similar functions to be present in the single-celled organisms (E. coli and S. cere-
visiae). However, using the Biological Process annotations did not result in the correct 
phylogeny, as the positions of S. cerevisiae and A. thaliana were reversed (Fig. 8, right 
tree). 

The accuracy of the molecular function and cellular component annotations and 
the inaccuracy of the biological process annotations are consistent with the higher 
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Fig. 8 Functional phylogenetic trees for H. sapiens, M. musculus, S. cerevisiae, A. thaliana and E. coli in the 
Molecular function and Cellular component ontologies (left, correct) and the Biological process ontology 
(right, incorrect). See Electronic Supplementary Materials for further details 

level of functional conservation for the less abstract annotations (Rogers and Ben-
Hur 2009; Nehrt et al.  2011), as greater conservation of function could result in more 
phylogenetic signal within this ontology. As a reminder, this algorithm only produces 
an unrooted topology among the species. It is up to the experimenters to root the tree 
with some expert knowledge, as we have done here. 

7 Related work 

7.1 Metric learning and data-dependent dissimilarities 

Learning distance metrics has emerged as one of the important topics in machine 
learning and data mining (Xing et al. 2003). In this approach, a metric itself depends 
on a set of parameters that are learned with respect to a specific problem, data set and 
algorithm at hand; e.g., KNN (Weinberger and Saul 2009), K-means (Bilenko et al. 
2004), sometimes under constraints such as sparseness. The most studied metric in 
this field is the Mahalanobis metric 

d(x, y) = 
 

(x − y)T A(x − y), 

where x, y ∈ Rk and A ∈ Rk×k , which usually leads to convex formulations. This 
approach has important merits such as application-specific optimality. However, there 
is insufficient theoretical understanding related to the consistency of metric learning 
(Bellet et al. 2013) as well as scalability issues caused by either large parameter space 
or the data set size (Yang and Jin 2006; Weinberger and Saul 2009). In contrast, 
default metrics, though not tailored for specific problems, are immediately available 
and usually present the first line of attack to a specific learning task. Incorporating 
the d p metrics into the metric learning framework might be an interesting research 
direction. 

Data-dependent dissimilarities provide another interesting direction in data mining. 
Dissimilarities such as shared nearest neighbor distance (Jarvis and Patrick 1973) and 
mass-based dissimilarity (Ting et al. 2016) have been shown to overcome clustering 
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problems related to sample spaces with varying densities or identification of local 
effects such as local anomalies. Although such functions have notable benefits when 
combined with particular learning algorithms (e.g., density-based clustering), they 
require further understanding and performance characterization in a range of different 
applications; for example, under sample selection bias. 

7.2 Default metrics 

A body of research exists on handcrafting domain-specific distance functions (Deza 
and Deza 2013). Distances on strings (Yujian and Bo 2007; Li et al.  2004), rankings 
(Kumar and Vassilvitskii 2010; Hassanzadeh and Milenkovic 2014), or graphs (Cao 
et al. 2013) have been actively researched in information retrieval, computational 
biology, computer vision, etc. Similarly, metrics on probability distributions have long 
been theoretically studied (Zolotarev 1983). Different metrics emerge for different 
reasons: some originated in functional analysis, such as the L p metric and the uniform 
metric, yet others due to their special properties; e.g., the Hellinger distance which 
admits decomposition under certain conditions (Zolotarev 1983). One application for 
such metrics is in stochastic programming and stability analysis in related problems 
(Rachev and Römisch 2002). They are also used in statistical inference (Rao 1973) 
or applied to measure the within- and between-population diversity in economics, 
genetics, etc. (Rao 1982). 

7.3 Kernel-induced distances 

Given an input space X , kernels are defined as symmetric positive semi-definite simi-
larity functions k : X × X → R (Shawe-Taylor and Cristianini 2004). The theoretical 
properties guarantee an existence of a Hilbert space in which the kernel can be equiv-
alently computed as an inner product of the images of the original objects as well as a 
globally optimal solution (unique if positive definite) when combined with optimizers 
such as support vector machines. Over the past three decades, kernels have been used 
ubiquitously with a number of applications in supervised and unsupervised learning 
(Shawe-Taylor and Cristianini 2004). As expected, there exist connections between 
kernels and distances; e.g., the transformation 

d(x, y) = k(x, x) + k(y, y) − 2k(x, y), ∀x, y ∈ X 

has been proposed as a general kernel-induced distance (Schölkopf 2000). Several 
other transformations are possible such as d(x, y) = 1 − k(x, y) for unit-normalized 
kernels that is equivalent to the cosine and correlation distances used in this work. 
Neither transformation, however, guarantees that the resulting distances satisfy metric 
properties; e.g., for x = (0, 1) and y = (0, 2) it follows that both equations violate 
the identity of indiscernibles (Sect. 3.1) for the cosine similarity. On the other hand, 
d(x, y) = 1−k(x, y) does guarantee a metric property for the Jaccard distance on sets. 
Therefore, while a thorough treatment and use of kernel-to-distance transformations 
have been out of scope for this study, we believe that both theoretical and empirical 
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studies are necessary to further understand the properties and performance of these 
transformations. 

8 Conclusions 

This work was motivated by the desire to develop a family of metrics for learning across 
different domains, especially on high-dimensional and structured data that characterize 
many modern applications. Overall, we believe that the class of functions proposed 
in this work present sensible choices in various fields and believe that their good 
theoretical properties and strong empirical performance will play a positive role in 
their adoption. 
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