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Abstract 

Background: Genomes sequenced using short-read, next-generation sequencing technologies can have many 
errors and may be fragmented into thousands of small contigs. These incomplete and fragmented assemblies lead 
to errors in gene identification, such that single genes spread across multiple contigs are annotated as separate 
gene models. Such biases can confound inferences about the number and identity of genes within species, as well 
as gene gain and loss between species. 

Results: We present AGOUTI (Annotated Genome Optimization Using Transcriptome Information), a tool that uses 
RNA sequencing data to simultaneously combine contigs into scaffolds and fragmented gene models into single 
models. We show that AGOUTI improves both the contiguity of genome assemblies and the accuracy of gene 
annotation, providing updated versions of each as output. Running AGOUTI on both simulated and real datasets, 
we show that it is highly accurate and that it achieves greater accuracy and contiguity when compared with other 
existing methods. 

Conclusion: AGOUTI is a powerful and effective scaffolder and, unlike most scaffolders, is expected to be more 
effective in larger genomes because of the commensurate increase in intron length. AGOUTI is able to scaffold 
thousands of contigs while simultaneously reducing the number of gene models by hundreds or thousands. The 
software is available free of charge under the MIT license. 
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Background 
Findings 
Genomes sequenced using short-read, next-generation 
sequencing technologies are fragmented into hundreds, 
sometimes even thousands, of small sequences [1]. In 
addition to a general lack of data about sequence 
contiguity, one consequence of fragmented genome 
assemblies is that single genes are placed on multiple 
contigs or scaffolds, increasing the number of predicted 
genes [2]. Such biases can confound inferences about 
the number and identity of genes within species, as well 
as gene gain and loss between species [3]. 
Data from expressed genes, that is, transcriptome or 

RNA sequencing (RNA-seq) data, has previously been 
used to combine contigs into scaffolds (e.g., [4, 5]), 
acting in effect as a mate-pair library with insert size 

equivalent to intron length. Such approaches have been 
shown to be able to improve genome assembly by 
increasing contiguity [6]. However, they do not generally 
decrease the number of incorrectly predicted genes. This 
is because contigs within scaffolds are connected by 
gaps, and gene prediction programs cannot predict 
across gaps of even moderate length. However, we previ-
ously showed that RNA-seq can also be used to reduce 
the number of gene models split apart by fragmented 
assemblies because it contains information about 
connections between exons in a single gene [2]. 
Here we combine these two uses of transcriptome data 

into a single lightweight program that we call AGOUTI 
(Annotated Genome Optimization Using Transcriptome 
Information). As with other scaffolders based on RNA-
seq, AGOUTI brings together contigs into scaffolds, 
yielding a more contiguous assembly. It does this with 
an algorithm similar to the one used in RNAPATH [5], 
but with additional denoising steps and constraints that 
ensure greater accuracy. AGOUTI also simultaneously 
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updates gene annotations by connecting predictions 
from multiple contigs, significantly reducing the number 
of gene models initially predicted from draft assemblies. 
We are not aware of other annotation software that has 
these features. 

Algorithm 
An overview of AGOUTI is given in Fig. 1. The method 
takes three inputs: an initial genome assembly in FASTA 
format, paired-end RNA-seq reads mapped against this 
assembly in BAM format, and gene predictions from the 
initial assembly in GFF format. The output of AGOUTI 
is an updated genome assembly file (in FASTA format) 
and an updated set of gene predictions (in GFF format). 
AGOUTI accepts assemblies as both contigs and scaf-
folds. In scaffold form, AGOUTI optionally breaks as-
semblies at gaps of certain lengths, essentially reducing 
them to contig form (a ‘split’ assembly). AGOUTI scaf-
folds on split assemblies and will report inconsistencies 

between the RNA-based scaffolding it conducts and 
the original scaffolding. These inconsistencies can also 
provide valuable evidence of errors in the original as-
sembly [6, 7]. 

Extracting joining-pairs 
AGOUTI starts by identifying ‘joining-pairs’, pairs of 
reads that are mapped to different contigs. It is through 
these pairs that many of the existing scaffolding algo-
rithms are able to assemble contigs into scaffolds (e.g., 
[5–9]). AGOUTI uses only those joining-pairs that are 
uniquely mapped, recording the mapping positions and 
orientations for all identified pairs. Short-read mappers 
such as BWA-MEM [10] and Bowtie2 [11] use a non-
zero mapping quality to determine the uniqueness of an 
alignment. Besides mapping quality, AGOUTI provides 
two additional parameters accessible from the command 
line to filter out suspicious alignments: maximum percent-
age of mismatches per alignment allowed (-maxFracMM; 

Fig. 1 AGOUTI workflow 
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5 % by default), and minimum percentage of alignment 
length allowed (i.e., the ratio of the alignment length to the 
read length; -minFracOvl; 70 % by default). Each filter is 
applied to both ends of a pair. These two options can be 
disabled by specifying 100 % mismatch rate and 0 % align-
ment length. All of our AGOUTI evaluations were 
conducted with these two parameters disabled. 

Denoising joining-pairs 
Prior to scaffolding, AGOUTI denoises the joining-pairs 
by identifying and removing erroneous ones. Such pairs 
can result from many types of error, for example, from 
highly similar sequences on different chromosomes. The 
details of this denoising module are as follows. Because 
each read-pair comes from a single cDNA fragment, 
AGOUTI requires that it should not be separated by any 
number of genes in-between. This can be established by 
first checking whether the joining-pairs are mapped to 
the gene models at the edges of the contigs, that is, at 5′ 
and 3′. Specifically, AGOUTI labels each end of a 
joining-pair (i.e., left or right end) as 5 or 3 if it overlaps 

with the gene model at 5′ or 3′ of each contig (Fig. 2a). 
Each joining-pair is thus labeled either 5-3, 5-5, 3-5 or 
3-3. If contigs contain only a single gene, reads overlap-
ping the gene can be labeled either 5 or 3. It is worth 
noting that there are cases where the mapping positions 
of reads fail to overlap with gene models at either 5′ or 
3′ ends. If joining-pairs fall between the terminal gene 
models in this way, they are excluded, as they are prob-
ably the result of highly similar sequences of genes in 
different parts of the genome (Fig. 2b). Otherwise, 
AGOUTI will retain the links and create artificial gene 
models at the corresponding locations (Fig. 2c, d). The 
artificial gene models not used in the scaffolding are dis-
carded from the final updated gene annotation. 
In addition, to ensure that joining-pairs map to the 

edges of contigs, AGOUTI checks the orientation of the 
reads in these pairs to denoise the graph to be traversed. 
As both ends of a read-pair are inwardly sequenced, 
orientation imposes another important constraint and it 
must be considered in combination with the end assign-
ments. For example, a joining-pair with a label of 5-3 

Fig. 2 Denoise joining-pairs by first making sure they are mapped to 5′-most and 3′-most gene models. a For each joining-pair connecting two 
contigs, AGOUTI assigns each end (i.e., forward and reverse) to 5′-most and 3′-most gene models on the two contigs. In this case, the ends of the 
joined contigs have been labeled 3′ and 5′, respectively. Doing so ensures that each joining-pair does not span any gene models (i.e., there are no 
intervening gene models). b A joining-pair fails to map to any gene model at the edges of the two contigs. AGOUTI does not use such joining-pairs 
in scaffolding. c The reverse end of the joining-pair is mapped to 5′ of the 5′-most gene model on Contig 2. AGOUTI will create an artificial gene model 
accordingly, and assign an end label of 5′. d Similarly to (C), the forward end is mapped to 3′ of the 3′-most gene model on Contig 1. AGOUTI will 
create an artificial gene model and assign an end label of 3′. e Orientation imposes an important constraint. In this case, joining the contigs in the 
correct orientation shows that there are multiple intervening gene models between them, and this pair is therefore ignored. Here we only show the 
gene models at the edges of the contigs. There can be many genes in between them 
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and mapped in a forward-reverse fashion could span 
multiple intervening gene models, and should be re-
moved (Fig. 2e). AGOUTI considers a pair of contigs for 
scaffolding as long as the joining-pairs supporting them 
follow one of the four valid combinations of end assign-
ment and orientation, as demonstrated in Fig. 3a–d. 
AGOUTI also keeps track of the identities of the pair of 
gene models used to connect each contig pair, and their 
corresponding orientations. 

Scaffolding 
AGOUTI carries out scaffolding by first building an 
edge-weighted adjacency graph using these joining-pairs 
(Fig. 4a). In the graph, each vertex represents a contig, 
and an edge connects two nodes if there are supporting 
joining-pairs between them. A weight is assigned to each 
edge according to the number of supporting joining-
pairs. The graph is simplified by only keeping edges with 
a minimum weight (by default, K = 5). 

AGOUTI traverses the graph from leaf nodes (i.e., 
those that connect to only one other contig), and follows 
the highest-weighted edges until no further extension 
can be made (Fig. 4a). For an edge to be traversed, it is 
required to have a minimum number of supporting 
joining-pairs, but AGOUTI makes this parameter (K) 
accessible from the command line. Each walk gives a 
scaffolding path, where the shortest such path includes 
only two contigs. This is the basic scaffolding procedure 
design in RNAPATH [5]. The RNAPATH scaffolding 
algorithm, however, ignores subgraphs made of only 
non-leaf vertices (Fig. 4b). Rather than randomly picking 
one, AGOUTI traverses such a subgraph from each of 
its nodes, following the highest-weighted edges. For the 
same group of vertices, AGOUTI records all possible 
traversal orders. AGOUTI will then identify a best order 
among them using the following steps. 
For all the scaffolding paths, AGOUTI reconciles each 

one using constraints imposed by the constituent gene 
models. Specifically, it examines each pair of vertices in 

Fig. 3 Denoise joining-pairs by further considering end-assignments with orientation constraints. The top row of each case shows the combination of 
the end-labels and orientation of a joining-pair. The bottom row demonstrates the orientation of the two contigs with the joining-pair after scaffolding. 
Because of the way each read-pair is sequenced (i.e., facing each other), we must ensure that the two contigs are scaffolded in a way such that this 
expected orientation is not violated. There are four combinations (a–d of the end-assignments and the orientation satisfying these requirements. For 
example, 5′R + 3′F means that one end of the joining-pair is mapped to the 5′-most gene model in the reverse orientation, while the other end is 
mapped to the 3′-most gene model in the forward orientation. If we reverse both sequences, we can make a valid scaffold between the two contigs 
using the joining-pair 
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a path using the gene model making the connection 
(Fig. 5). This process terminates at any vertex whose 
connection with the next would have intervening gene 
models between them (Fig. 5). An optimal path is the 
one incorporating all of its vertices. AGOUTI will give 
up checking other possible paths once an optimal path 
is achieved. Otherwise, it will pick a different node, re-
walk the subgraph, and reconcile the new path. After 
trying every vertex, AGOUTI will choose the path with 
the largest number of nodes. If there are two paths of 
equal length, AGOUTI will pick the path with the high-
est total weight; if there are two paths with equal weight, 
AGOUTI picks the first one in the list. AGOUTI marks 
all the vertices in the best path as visited and prevents 
them from being placed multiple times. In selecting an 
optimal scaffolding path, the reconciliation step prefers 
the smallest number of vertices over the highest total 
weight. This preference was established in response to 
observations that paths with the highest weights can 

have many connections, resulting in the presence of 
intervening gene models. In the future, it may be pos-
sible to extend the current greedy algorithm to a global 
optimal one with a score function of both weights and 
penalties on, for example, the number of intervening 
gene models. 
Both the denoising and reconciliation steps check for 

intervening gene models between pairs of contigs, but in 
different contexts. The former checks for each pair 
alone, while the latter makes sure the condition still 
holds when multiple contigs within a scaffolding path 
are considered simultaneously (Fig. 5). The following 
provides an example of when both steps are needed. 
Consider the case of a three-exon gene spanning three 
contigs, A, B and C, where their true order is A→B→C. 
The denoising step makes sure that zero intervening 
gene models connect AB, AC and BC. We further de-
note the number of supports for AB, AC and BC as 
dAB, dAC and dBC, respectively. In cases where dAB < 

Fig. 4 Scaffolding. a AGOUTI first builds an edge-weighted adjacency graph made up of contigs (vertices; black lines) and the joining-pairs between them 
(edges; purple arrows). Edges are weighted by the number of supporting joining-pairs. The graph is further simplified by removing edges with weight less 
than a user-specified value, and denoised using constraints described in the text and shown in Figs. 2 and 3. AGOUTI starts from leaf nodes (green vertices) 
and follows the highest-weighted edges. Each walk gives a scaffolding path, where the shortest such path has only two contigs. b Subgraphs with only 
non-leaf nodes that are ignored by RNAPATH. AGOUTI tries to traverse the subgraph starting from different vertices (shown in green). It records all the 
possible orders, each of which will be reconciled using constituent gene models to find the optimal one 
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dAC < dBC, by following the highest weights the scaf-
folding algorithm indicates an order A→C→B, in which 
B and C are reversed. This reversal can spawn many 
intervening gene models between A and B, and/or B and 
C. The reconciliation step, therefore, serves as a reorder-
ing step, and can prevent AGOUTI from making intra-
chromosomal errors (see evaluation below). 

Update 
For each reconciled path, AGOUTI joins contigs into 
scaffolds, separating them by a gap of length defined by 
the user (1 kbp by default). Contigs are reverse-
complemented whenever needed. AGOUTI also updates 
gene models according to the new assembly. For each 
pair of contigs within a scaffold, AGOUTI merges the 
two gene models from which the connection was made. 
The gene merge combines exons and converts coordi-
nates to the new scaffold system. If contigs are reverse-

complemented, all gene models on that contig will be 
reversed accordingly in the output annotation. 

AGOUTI applied to simulated assemblies 
To evaluate the performance of AGOUTI (v0.3.2), we 
randomly fragmented the genome of the N2 strain of 
Caenorhabditis elegans ([12], version WS246) into six 
assemblies with varying numbers of contigs (CE1-CE6, 
Table 1). For each fragmented assembly, we performed 
gene prediction using AUGUSTUS (v 3.0.2) by setting 
‘species = elegans’ and ‘gff = on’ [13]. We found that as-
semblies with larger numbers of contigs had increased 
numbers of predicted gene models (black squares in 
Fig. 6), consistent with results previously reported [2]. 
We used a single RNA-seq dataset from the same strain 
of C. elegans at the early embryo stage, obtained from 
modENCODE ([14], SRR316753, SRR317082 and 
SRR350977). We mapped these reads against each of 
our fragmented assemblies using BWA-MEM (v 0.7.10) 

Fig. 5 Scaffolding path reconciliation using constituent gene models. Each contig is denoted by a letter in a circle. The blue and green boxes represent 
the gene models at the 5′ and 3′ ends of a contig. Joining-pairs connecting two contigs are shown in purple, and orientation is indicated by arrows. 
Contigs are reverse-complemented as needed. a The scaffolding path obtained by following highest-weighted edges. Examining the gene model 
between each pair of the contigs in the path tells us that the extension from A to D violates the requirement for zero intervening gene models 
between two contigs. Therefore, the reconciled path contains only two contigs, rather than four. b The current best path is not the optimal one 
because it incorporates only a subset of all vertices. AGOUTI therefore picks another vertex and re-walks the subgraph. After reconciliation, the new 
path becomes the best path as it has more vertices than the previous one. c Similarly, AGOUTI next starts from node D and establishes a new path. 
The reconciled path contains all four vertices in the subgraph, and therefore AGOUTI uses it as the optimal one (edges shown in red) and stops 
checking other possible paths 
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with default settings [10], and used the mapping results 
[15], along with the predicted gene models, as inputs to 
AGOUTI. AGOUTI accepts results from any short-read 
mapper as long as: (1) it produces joining-pairs; (2) the 
results are in SAM/BAM format. 

Evaluation of genome scaffolding 
We evaluated the performance of AGOUTI on the six 
assemblies with both K = 5 and K = 2. AGOUTI was able 
to scaffold hundreds or thousands of contigs (open circles 
in Fig. 6), yielding higher scaffold N50 values (Table 2 and 

Additional file 1: Table S1). The most fragmented assem-
bly had the largest number of contigs joined into scaffolds 
and the largest reduction in the number of gene models 
(Fig. 6). We checked the accuracy of contigs placed within 
each scaffold by comparing the output of AGOUTI with 
the N2 reference assembly. Across our simulated assem-
blies (CE1-CE6), AGOUTI achieved high accuracy by put-
ting at least 99.98 % of contig pairs in the correct order 
(K = 2, Table 3). We found only a few pairs of contigs 
across our six assemblies that were incorrectly ordered 
(Intra-chromosomal error, Table 3), and a small number 
of cases where two contigs from different chromosomes 
were placed together (Inter-chromosomal error, Table 3). 

Comparison of AGOUTI and RNAPATH 
We compared results using AGOUTI with results ob-
tained from RNAPATH, across a range of different input 
values. To our knowledge, RNAPATH is the only pro-
gram that uses RNA-seq without further transcriptome 
assembly (e.g., [5]) to scaffold genomes. Across all condi-
tions, AGOUTI found more connections than RNA-
PATH (Table 2 and Additional file 1: Table S1) and 
produced fewer errors (Table 3 and Additional file 1: 
Table S2). 

Table 1 Summary of six simulated genome assemblies and 
annotation 

Assembly No. of contigs No. of predicted gene models 

CE1 12,196 23,822 

CE2 8,636 22,372 

CE3 7,336 21,768 

CE4 6,066 21,348 

CE5 4,586 20,719 

CE6 2,126 19,791 

N2/CB 6,623 24,220 

Lyco 103,352 85,058 

Fig. 6 Performance of AGOUTI scaffolding with K = 5. AGOUTI was able to scaffold hundreds to thousands of contigs, and significantly reduced 
the number of gene models. The least contiguous assembly has the largest number of contigs scaffolded and the largest reduction in the 
number of gene models. The leftmost trace represents the most contiguous assembly, and the assembly represented on the far right is the least 
contiguous. The number of gene models is on the y-axis. The black squares and open circles indicate the number of gene models before and 
after the scaffolding, respectively 
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One major difference between AGOUTI and RNA-
PATH is the denoising step AGOUTI performs prior to 
scaffolding, which removes erroneous joining-pairs. We 
expected a noise-free graph to result in better scaffold-
ing. We tested this by running RNAPATH on the same 
six assemblies on which AGOUTI was tested. More spe-
cifically, we compared the performance of these 
algorithms on two datasets, one with all the joining-
pairs (including noisy pairs), and the other using only 
the noise-free ones. Both sets of joining-pairs came from 
the same RNA-seq data. We also used the default set-
tings of RNAPATH (i.e., K = 2) for both tests. Consistent 
with our expectation, RNAPATH, with the additional 
noisy edges, recovered fewer contigs across all six 
assemblies (Table 2). This number was boosted when 
the noise-free data was used (compare RNAPATH with 
RNAPATHD in Table 2). 
Second, the scaffolding algorithm in AGOUTI is 

guided by evidence from gene models, in addition to 
weights. We expected this to result in more accurate 
scaffolding even when noise-free datasets were used. On 

the basis of the runs on the noise-free datasets described 
above, we found that RNAPATH suffered from many 
more inter-chromosomal errors than AGOUTI (Table 3). 
These errors occurred as a result of joining contigs from 
different chromosomes. In addition, RNAPATH pro-
duced intra-chromosomal errors that placed contigs of 
the same chromosome in the wrong order. We also 
observed that RNAPATH repeatedly incorporated the 
same contigs into different scaffolds when given noisy 
data, but these errors disappeared with the denoised 
read-pairs (compare RNAPATH with RNAPATHD in 
Table 3). 
These differences in error rate could be due to the 

difference in the minimum number of joining-pairs 
required by AGOUTI and RNAPATH, rather than the 
scaffolding algorithms themselves. We tested this by 
re-running RNAPATH on the six noise-free datasets, 
and increasing the minimum number of supporting 
joining-pairs to 5 (i.e., K = 5). With this larger 
number, RNAPATH still generated more error-prone 
results than AGOUTI (Additional  file  1:  Table S2).  

Table 2 Summary of scaffolding performance of AGOUTI and RNAPATH with K = 2 

Assembly Program No. of contigs scaffolded No. of scaffolds 
in final assembly 

Scaffold N50 No. of gene models 
in final assembly 

CE1 AGOUTI 5,349 8,525 36,096 21,776 

RNAPATH 3,421 9,841 28,769 -

RNAPATHD 5,323 8,528 36,235 -

CE2 AGOUTI 3,879 5,974 73,881 20,951 

RNAPATH 2,430 6,933 58,959 -

RNAPATHD 3,869 5,976 73,770 -

CE3 AGOUTI 3,093 5,243 97,924 20,658 

RNAPATH 1,980 5,968 85,802 -

RNAPATHD 3,082 5,244 100,700 -

CE4 AGOUTI 2,678 4,242 127,283 20,324 

RNAPATH 1,618 4,937 103,844 -

RNAPATHD 2,671 4,242 127,283 -

CE5 AGOUTI 1,966 3,284 258,507 19,978 

RNAPATH 1,225 3,760 202,360 -

RNAPATHD 1,961 3,285 258,507 -

CE6 AGOUTI 941 1,501 642,283 19,411 

RNAPATH 511 1,774 492,192 -

RNAPATHD 934 1,504 642,283 -

AGOUTI 1,358 5,743 73,952 23,666 

N2/CB RNAPATH 762 6,118 65,196 -

RNAPATHD 1,376 5,722 74,347 -

AGOUTI 20,594 89,452 27,524 79,222 

Lyco RNAPATH 8,797 97,181 24,127 -

RNAPATHD 20,529 89,301 28,202 -
DRNAPATH run with denoised joining-pairs. Best-performing programs are highlighted in bold 
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Finally, there were paths scaffolded by AGOUTI that 
were entirely missed by RNAPATH, for example, a path 
consisting of only non-leaf vertices (Fig. 4b). Because 
RNAPATH initiates a graph walk only from leaf nodes 
(and these have outdegree = 1) it ignores paths without 
leaves. In a comparison of the results from AGOUTI 
and RNAPATH, the former always placed more contigs 
regardless of parameter settings. 

Evaluation of genome annotation 
We also investigated whether the connections be-
tween contigs made by AGOUTI accurately reflected 
the existence of underlying genes. Specifically, we 
asked of each contig pair whether the joining-pairs 
used for scaffolding were mapped to two exons of a 
single gene (Fig. 7). We used the gene annotation of 
the same version as the reference N2 genome to 
evaluate these connections [12]. Within each assem-
bly, approximately 95 % of genes joined by AGOUTI 

connected two exons of the same annotated gene 
(using a minimum of five joining-pairs; Case 1, Fig. 7a; 
Table 4). Among the rest of the contig pairs, some 
connected an exon on one contig with an unanno-
tated exon on the other contig (Case 2, Fig. 7b; 2 % 
of cases). Another class of genes merged by joining-
pairs had mappings to two different genes (Case 3, 
Fig.  7c; 2 %). This  suggests that the  two genes  should  
be merged into one, or that there was a failure of 
transcriptional termination such that reads connect 
two adjacent genes. In a final scenario, both ends of 
the joining-pairs failed to map to any known genes 
on either contig, suggesting a potential novel gene 
(Case 3, Fig. 7d; 1 %). For consecutive pairs of con-
tigs (i.e., pairs that are physically next to each other 
on a chromosome), we considered these notable cases 
to be a bonus feature of AGOUTI and did not count 
them as false positives; the number of each type is 
listed in Table 4. 

AGOUTI applied to additional assemblies 
We tested AGOUTI under two additional scenarios. 
First, we sequenced a highly heterozygous, outbred indi-
vidual of C. elegans that was the result of a cross be-
tween the N2 and CB4856 strains, with 50X fragment 
libraries and 45X mate-pair libraries. We built an initial 
genome assembly with ALLPATHS-LG using all default 
settings ([16], release 51646). We evaluated AGOUTI on 
this assembly in contig form (N2/CB, Table 1). Second, 
we chose the domesticated tomato, S. lycopersicum, 
which represents a test of AGOUTI on a larger and 
more complex genome [17]. We downloaded its genome 
(v2.50) from the SOL Genomics Network, and randomly 
split it in a similar fashion as we did with the simulated 
C. elegans assemblies (Lyco, Table 1). We obtained 
RNA-seq reads for S. lycopersicum from a recent study 
of 13 species of wild tomato [18]. We repeated the gene 
prediction with AUGUSTUS, and read-mapping using 
BWA-MEM, on both assemblies as described earlier. 
We evaluated the performance of AGOUTI on the 

two assemblies with K = 2 and checked the accuracy by 
comparing the output of AGOUTI with the N2 refer-
ence. Consistently, AGOUTI was able to scaffold thou-
sands of contigs and merge hundreds to thousands of 
fragmented gene models for both assemblies (Table 2). 
RNAPATH, however, struggled to join as many contigs 
with the noisy data. Its performance was boosted when 
noise-free joining-pairs were provided (Table 2). This re-
sult emphasizes the importance of denoising prior to 
scaffolding. In terms of accuracy, AGOUTI consistently 
committed fewer errors when compared with RNA-
PATH, with the obvious differences falling in the intra-
chromosomal category (Table 3). This suggests that the 
heuristic of following the highest weights can lead to 

Table 3 Scaffolding accuracy of AGOUTI and RNAPATH with 
K = 2  

Assembly Program Inter-
chromosomal 
errors 

Intra-
chromosomal 
errors 

No. of contigs 
placed repeatedly 

CE1 AGOUTI 2 2 0 

RNAPATH 6 7 12 

RNAPATHD 8 10 0 

CE2 AGOUTI 2 0 0 

RNAPATH 8 14 1 

RNAPATHD 3 12 0 

CE3 AGOUTI 0 1 0 

RNAPATH 3 10 11 

RNAPATHD 2 11 0 

CE4 AGOUTI 1 0 0 

RNAPATH 7 5 10 

RNAPATHD 2 7 0 

CE5 AGOUTI 0 0 0 

RNAPATH 1 2 0 

RNAPATHD 1 4 0 

CE6 AGOUTI 1 0 0 

RNAPATH 6 4 0 

RNAPATHD 1 3 0 

AGOUTI 17 3 0 

N2/CB RNAPATH 37 14 6 

RNAPATHD 20 12 0 

AGOUTI 213 12 0 

Lyco RNAPATH 535 150 17 

RNAPATHD 366 292 0 
DRNAPATH run with denoised joining-pairs. Best-performing programs are 
highlighted in bold 
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many incorrect paths, and our reconciliation is able to 
derive the true order by taking into account features of 
gene models. 
We noticed that AGOUTI scaffolded fewer contigs for 

the real C. elegans assembly than the simulated ones. 
One possible explanation is that there are not as many 
breakpoints as in the simulated genome of the N2/CB 
assembly. The 24,000 predicted gene models, however, 
suggest otherwise (Table 1). We calculated and com-
pared the percentage of breakpoints falling within the 
non-coding regions of the N2/CB, and all six simulated, 
assemblies. This was done by first finding coordinates of 
breakpoints on the N2 reference, and then examining 
overlaps with annotations of protein-coding genes using 
BEDTools [19]. We designated a breakpoint as inter-
genic if it did not intersect with any genic intervals. In 
total, we observed no excess of intergenic breakpoints in 
the N2/CB assembly compared to CE1-CE6 (41 % versus 
38 %, 38 %, 39 %, 38 %, 41 % and 41 %, respectively). 
Another possibility is a difference in the number of 
joining-pairs found in each assembly. Given the same 
number of breakpoints, we expected that fewer joining-
pairs would make fewer connections. We thus compared 
the numbers of joining-pairs found in the N2/CB and 
CE1-CE4 assemblies and observed an almost three-fold 

Fig. 7 Evaluation of whether each pair of contigs was connected because of the existence of an underlying gene. The top row of each panel shows a 
single sequence that will be assembled into two contigs. The site where the split in the assembly occurs is indicated by ‘cut’. The  bottom row of each 
panel shows, for the two contigs, whether they are brought together because of exons of the same gene. Blue and green boxes represent genes, with 
the red boxes inside them representing exons; arrows in purple represent joining-pairs of reads. a Case 1. Two contigs are connected by AGOUTI 
because they carry exons of the same gene. Approximately 95 % of the contig pairs scaffolded by AGOUTI fell into this category. b Case 2. Only one 
end of a joining-pair overlaps a predicted gene on either contig. This suggests the existence of a new exon in one of the predicted genes. c Case 3. 
The joining-pairs are mapped to two different annotated genes in the C. elegans genome. This suggests that the two genes should be merged into 
one, or that there was a failure of transcriptional termination such that reads connected two adjacent genes. d Case 4. The joining-pairs are not 
mapped to any predicted genes, which may indicate the existence of a novel gene 

Table 4 Evaluation of AGOUTI scaffolding in terms of 
gene models 

Number of contig pairs scaffolded 

Assembly K Total Case 1 Case 2 Case 3 Case 4 

CE1 2 3,671 3,427 92 (74)a 75 (57) 77 (67) 

5 2,994 2,858 56 (40) 56 (40) 24 (21) 

CE2 2 2,660 2,463 72 (55) 47 (34) 78 (68) 

5 2,184 2,072 39 (29) 39 (26) 34 (27) 

CE3 2 2,093 1,928 59 (44) 42 (33) 64 (60) 

5 1,699 1,611 36 (24) 25 (20) 27 (25) 

CE4 2 1,822 1,697 50 (39) 32 (26) 43 (38) 

5 1,486 1,424 24 (16) 26 (21) 12 (10) 

CE5 2 1,302 1,215 41 (34) 20 (18) 26 (21) 

5 1,054 1,011 18 (13) 13 (13) 12 (8) 

CE6 2 624 582 22 (19) 6 (5) 14 (10) 

5 501 483 10 (7) 4 (4) 4 (1) 
aThe figures in parentheses show the number of consecutive contig pairs in 
each case 
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difference among them (202,264 versus 519,444, 
382,836, 578,406 and 261,308, respectively). This is not 
surprising as we mapped RNA-seq reads sequenced 
from the N2 strain to the assembly carrying not only the 
N2 alleles but also the CB4856 ones. The sequence di-
vergence between the two strains alone can prevent 
many reads from being mapped [20]. Lastly, heterozy-
gous individuals pose great challenges for genome as-
semblers, and one such error is known as allelic splitting 
[2]. Allelic splitting refers to the case where alleles (hap-
lotypes) at the same locus are incorrectly assembled as 
paralogous loci, thereby inflating the number of pre-
dicted gene models. It is highly likely that many of the 
24,000 gene models predicted from the N2/CB assembly 
fell into this category. Because AGOUTI is not designed 
to fix gene models that result from allelic splitting, it 
makes sense that we have seen less of an impact. 

Running time and memory usage 
We compared running time and maximum memory 
usage between AGOUTI and RNAPATH on the CE1-
CE6, N2/CB and Lyco assemblies. All tests were done 
on an HP DL360 server with two Intel Xeon E5-2600 
processors and 24 GB of RAM. We ran RNAPATH on 
noise-free datasets to enable fair comparisons. AGOUTI 
was at least 100 times faster than RNAPATH in con-
structing graphs and scaffolding, and consumed a low 
amount of memory (Table 5). These differences reached 
a maximum when the Lyco assembly was evaluated. In 
addition, we tested the running time of denoising and 
reconciliation, the steps that give AGOUTI an advantage 

over RNAPATH. Both modules ran very efficiently and 
finished within 2 min for the 750 Mbp tomato assembly 
(Table 5). This suggests that AGOUTI can be applied 
not only to species with smaller genomes, but also those 
with larger ones. 

Conclusions 
AGOUTI is a powerful and effective scaffolder and, 
unlike most scaffolders, is expected to become more 
effective in larger genomes because of the commensur-
ate increase in intron length. AGOUTI is able to scaffold 
thousands of contigs while simultaneously reducing the 
number of gene models by hundreds or thousands, 
making it easier to improve both genome assemblies and 
genome annotations. 

Availability and requirements 
• Project name: AGOUTI 
• Project home page: https://github.com/svm-zhang/ 
AGOUTI 
• Operating system(s): Linux 
• Programming language: Python 
• Requirements: Python 2.7 or higher 
• License: MIT 

Additional files 

Additional file 1: Supplementary tables. Scaffolding performance and 
accuracy of AGOUTI and RNAPATH with K = 5. (DOCX 16 kb) 

Additional file 2: Supporting data description. (DOCX 14 kb) 

Table 5 Comparison of running times and maximum memory for AGOUTI and RNAPATH 

Assembly Programs Graph buildinga Scaffoldinga Denoisinga Reconciliationa Max. memoryb 

CE1 AGOUTI 0.018 2.412 17.4 1.152 0.248 

RNAPATHD 6.342 130.2 - - 0.421 

CE2 AGOUTI 0.012 0.342 7.2 0.882 0.23 

RNAPATHD 5.232 64.2 - - 0.273 

CE3 AGOUTI 0.012 0.27 15.6 0.66 0.267 

RNAPATHD 5.142 45.6 - - 0.24 

CE4 AGOUTI 0.018 0.21 5.4 0.588 0.22 

RNAPATHD 2.358 34.8 - - 0.16 

CE5 AGOUTI 0.012 0.132 3.6 0.39 0.202 

RNAPATHD 1.278 16.8 - - 0.161 

CE6 AGOUTI 0.0006 0.06 3 0.192 0.204 

RNAPATHD 0.762 3.6 - - 0.172 

N2/CB AGOUTI 0.012 0.078 2.4 0.288 0.188 

RNAPATHD 0.912 17.4 - - 0.205 

Lyco AGOUTI 0.09 5.4 87 4.8 1.389 

RNAPATHD 374.148 7,186.8 - - 8.994 
aThe numbers represent seconds. bThe numbers represent gigabytes 
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